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Abstract We consider the non-parametric statistical model E(p) of all positive
densities q that are connected to a given positive density p by an open exponen-
tial arc, i.e. a one-parameter exponential model p(t), t ∈ I, where I is an open
interval. On this model there exists a manifold structure modeled on Orlicz
spaces, originally introduced in 1995 by Pistone and Sempi. Analytic properties
of such a manifold are discussed. Especially, we discuss the regularity of mix-
ture models under this geometry, as such models are related with the notion of
e- and m-connections as discussed by Amari and Nagaoka.

Keywords Information geometry · Statistical manifold · Orlicz space · Moment
generating functional · Cumulant generating functional · Kullback–Leibler
divergence

1 Introduction

1.1 Content

In the present paper we follow closely the discussion of Information Geometry
developed by Amari and coworkers, see e.g. in Amari (1982), Amari (1985),
Amari and Nagaoka (2000), with the specification that we want to construct
a Banach manifold structure in the classical sense, see e.g. Bourbaki (1971) or
Lang (1995), without any restriction to parametric models.
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We build on the previous work on the theory of Statistical Manifolds
modeled on Orlicz spaces as defined in Pistone and Sempi (1995), Pistone
and Rogantin (1999), Gibilisco and Pistone (1998) and the unpublished PhD
thesis Cena (2002). We give a number of new results and improvements of
the basic theory, together with results from Cena (2002). Concerning more ad-
vanced topics, a related paper, currently in progress, will discuss fiber bundles
and the theory of Amari’s α-connections in the same framework. Some of the
material presented here in detail was presented by the second author, without
proofs, in the IGAIA 2005 Tokyo Conference, see Pistone (2005).

The rest of this introductory section contains a review of relevant facts related
with the topology of Orlicz spaces.

Section 2 is devoted to the properties of the moment generating functional
and the cumulant generating functional as defined and discussed in Pistone and
Sempi (1995), Pistone and Rogantin (1999). The statement and proof of the
analyticity of both functionals is taken from Cena (2002) and published here
for the first time. Most of this section is devoted to a detailed discussion of the
exponential function as an analytic mapping. The main point is to explain why
in this case the radius of convergence of the exponential Taylor series is finite.
Finally, a new proof of Fréchet-differentiability follows from analyticity.

Section 3 contains a discussion of densities which are connected by open
mixture and exponential arcs (one dimensional models); here ‘open’ means
that the parameter takes values in an open real interval. Moreover, we define
and discuss the properties of the maximal exponential model. In particular, the

Kullback–Leibler divergence D(q ‖ p) = Ep

[
q
p log

(
q
p

)]
takes a special form on

the maximal exponential model. Apart from Theorem 19, which is taken from
Pistone and Rogantin (1999) and it is reproduced here for the sake of clarity,
the rest is new, at least in the present form.

The definition of the Exponential Statistical Manifold in Pistone and Sempi
(1995) was based on a system of charts whose image was the open unit ball
of an Orlicz space. In Sect. 4 we introduce a new equivalent definition, based
on an extension of such charts. In fact, we show that the general exponential
model u �→ eu−Kp(u)p, on the maximal open set where it is defined, is the
inverse of a chart. However, the old definition still remains of interest, because
some properties can be proved only on the smaller domains. The final part
of the section is devoted to the topology of the exponential statistical mani-
fold. It contains the adaptation to the new framework of what was discussed in
the previous papers, in particular e-convergence and the disconnection of the
exponential statistical manifold into maximal exponential models. Especially,
Proposition 29 considers a simple case of an interesting question raised by
Streater and concerning the compatibility of mixture models with the exponen-
tial structure.

Section 5 discusses the construction of a manifold supporting the mixture
geometry. As we are unable to do that on positive densities, our manifold
is supported by measurable functions with integral 1. The charts we use are
a non-parametric version of the expectation parameterization for parametric



Exponential statistical manifold 29

exponential models. The relation with the divergence functional is discussed.
Most of the results are published here for the first time.

In Sect. 7 we prove the C∞-regularity of the divergence in both variables
with the consequence that the Fisher information has the same regularity. The
inclusion of the exponential structure into the L2 structure was presented in
Gibilisco and Pistone (1998). In Sect. 7 it is proved that the inclusion of the
strictly positive densities M into the set P of random variables with unit inte-
gral is C∞ for the relevant structures. The results in this section are new.

1.2 Notations

For all of this paper, we are given a probability space (X, X , μ) and we will
denote by M the set of all densities which are positive μ-a.s. The set M is
thought to be the maximal regular statistical model. Here, ‘regular’ means that
the support of each density in the model is the same X. We want to endow this
maximal model with a manifold structure in such a way that each specific statis-
tical model could be considered as a sub-manifold of M. This ultimate goal is
not fully achieved in the present paper, because it requires an unconventional
definition of sub-manifold, cf. the discussion in Sect. 7.

Locally, at each p ∈ M, the model space for the manifold is an Orlicz space
of centered random variables. We refer to Lang (1995) for the theory of mani-
folds modeled on Banach spaces and to Krasnosel’skii and Rutickii (1961) and
Rao and Ren (2002) for the theory of Orlicz spaces. The rest of this sub-section
contains a compact review of these matters.

The Young function �1(x) = cosh x−1 is used here instead of the equivalent
and more commonly used Young function �2(x) = e|x| − |x| − 1. Its conjugate
Young function is denoted by �1(y) = ∫ y

0 sinh−1 (s) ds. It is the smallest function
such that �1(y) ≥ xy − �1(x). The function y �→ (1 + y) log(1 + y) − y, y ≥ 0, is
equivalent to �1(y).

A real random variable u belongs to the vector space L�1(p) if Ep [�1(αu)] <

+ ∞ for some α > 0. This space is a Banach space when endowed with the Lux-
emburg norm ‖ · ‖�1,p; this norm is defined by the assumption that its closed
unit ball consists of all u’s such that Ep [�1(u)] ≤ 1. Then, the open unit ball
B(0, 1) consists of those u’s such that αu is in the closed unit ball for some α > 1.
A sequence un, n = 1, 2, . . . is convergent to 0 for such a norm if and only if for
all ε > 0 there exists a n(ε) such that n > n(ε) implies Ep

[
�1(

un
ε

)
] ≤ 1. Note

that |u| ≤ |v| implies

Ep

[
�1

(
u

‖v‖�1,p

)]
≤ Ep

[
�1

(
v

‖v‖�1,p

)]
≤ 1

so that ‖u‖�1,p ≤ ‖v‖�1,p.
As we systematically connect Orlicz spaces defined at different points of

statistical models, we will use frequently the following lemma. It is a slight but
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important improvement upon the similar statements in Pistone and Rogantin
(1999) and Cena (2002).

Lemma 1 Let p, q ∈ M and let �0 be a Young function. If the Orlicz spaces
L�0(p) and L�0(q) are equal as sets, then their norms are equivalent.

Proof Note that p and q have to be equivalent, otherwise the two Orlicz spaces
cannot be equal as sets. We prove the equivalence of norms by a standard argu-
ment for function spaces. Let {un} ⊂ L�0(p) be a sequence converging in norm
to 0. Let us assume it does not converge in the norm of L�0(q). By possibly
considering a subsequence, we suppose ‖un‖�0,q > ε for some ε > 0. By the
convergence in norm ‖ · ‖�0,p, there is a sub-sequence

{
unk

}
such that

‖unk‖�0,p <
1
2k

.

Since

∞∑
k=1

‖kunk‖�0,p ≤
∞∑

k=1

k

2k
< ∞

and
(
L�0(p), ‖ · ‖�0,p

)
is complete, the series

∑
k|unk | converges in norm to

r ∈ L�0(p). Moreover, the partial sums rm = ∑m
k=1 k

∣∣unk

∣∣ are increasing and
convergent to r a.s., then rm ≤ r, or |unk | ≤ r

k . As r is in L�0(q) by the equality
of the vector spaces, then r

k → 0 in L�0(q) and limk→∞ unk = 0 in L�0(q),
contradicting the assumption. Hence the identity map is continuous and, by
symmetry, it is an homeomorphism, i.e. the norms are equivalent. 
�

The condition u ∈ L�1(p) is equivalent to the existence of the moment gen-
erating function g(t) = Ep

[
etu

]
on a neighborhood of 0. The case when such a

moment generating function is defined on all of the real line is special, as the
following lemma shows. In fact, the space of bounded random variables is not
dense in the space L�1(p), cf. Rao and Ren (2002). Especially, the sequence of
truncations of a generic element of such a space does not converge in general to
the original variable. On the other side, the lemma below characterizes in terms
of the moment generating function those random variables for which the trun-
cations converge. The restriction of our construction to such a class of random
variables in order to save the density of the class of bounded random variables
in the model space would considerably restrict the scope of our definition of
manifold. The opposite option has been discussed and developed in detail in
Grasselli (2001).

Lemma 2 Let u ∈ L�1(p) and let un = (|u| ≤ n)u be its sequence of trunca-
tions at n. Then limn→∞ ‖u − un‖�1,p = 0 if and only if the moment generating
function g of u is defined on R.
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Proof If the moment generating function of u is defined on R, then for ε > 0

�1

(
u − un

ε

)
= �1

(
(|u| > n)u

ε

)
≤ �1

(u
ε

)
,

where the left-end side goes a.s. to 0, while the right-end side is integrable.
Vice-versa,

Ep

[
�1

(u
ε

)]
= Ep

[
�1

(u
ε

)
(|u| ≤ n)

]
+ Ep

[
�1

(u
ε

)
(|u| > n)

]

≤ �1

(n
ε

)
+ Ep

[
�1

(
u(|u| > n)

ε

)]
,

where the last term is lesser or equal to 1 for some n. 
�
In fact, the Banach space L�1(p) is not separable, unless the basic space has a

finite number of atoms. In this sense it is an un-natural choice from the point of
view of functional analysis and manifold’s theory. However, L�1(p) is natural
for statistics because for each u ∈ L�1(p) the Laplace transform of u is well
defined at 0, then the one-dimensional exponential model p(θ) ∝ eθu · p is well
defined.

However, the space L�1(p) is separable and its dual space is L�1(p), the
duality pairing being (u, v) �→ Ep [uv]. This duality extends to a continuous
chain of spaces:

L�1(p) � La(p) � Lb(p) � L�1(p), 1 < b ≤ 2,
1
a

+ 1
b

= 1,

where � denotes continuous injection.
From the duality pairing of conjugate Orlicz spaces and the characterization

of the closed unit ball it follows a definition of a dual norm on L�1(p):

Np(v) = sup
{
Ep [uv] | Ep [�1(u)] ≤ 1

}
.

This norm is equivalent to the �1-Luxemburg norm.

2 Moment generating functional and cumulant generating functional

Let p ∈ M be given. We shall define an analytic function between the open unit
ball B (0, 1) of the Orlicz space L�1 (p) and the Lebesgue space La (p), a ≥ 1.
We refer to Upmeier (1985) for the relevant theory of Banach valued analytic
functions.

Lemma 3 For each a ≥ 1, n ∈ N
∗ and u ∈ B (0, 1), let λa,n (u) be defined by:

λa,n (u) :

{
L�1 (p) × · · · × L�1 (p) → La (p)

(w1, . . . , wn) �→ w1

a
· · · wn

a
e

u
a
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Then each λa,n(u) is a continuous, symmetric, n-multi-linear map from
(
L�1 (p)

)n

to La (p).

Proof Consider r = (1 −‖u‖�1,p)/n. Let v1, . . . , vn ∈ L�1 (p) with ‖vi‖�1,p = 1.
Then

∥∥∥∥∥u + r
n∑

i=1

|vi|
∥∥∥∥∥

�1,p

≤ ‖u‖�1,p + rn = 1

that is u + r
∑n

i=1 |vi| ∈ B (0, 1), hence Ep
[
cosh

(
u + r

∑n
i=1 |vi|

)] ≤ 2. Since
|rvi|a/aa < e|rvi| for i = 1, . . . , n,

Ep

[∣∣∣r v1

a

∣∣∣
a · · ·

∣∣∣r vn

a

∣∣∣
a

eu
]

≤ Ep

[
eu+r

∑n
i=1 |vi|

]

≤ 2Ep

[
cosh

(
u + r

n∑
i=1

|vi|
)]

≤ 4,

hence

Ep

[∣∣∣v1

a
· · · vn

a
e

u
a

∣∣∣
a] ≤ 4

rna = 4nna
(
1 − ‖u‖�1,p

)na = Cn (u) < ∞.

For each w1, . . . , wn ∈ L�1(p)\{0}, if define vi = wi/‖wi‖�1,p,

Ep

[∣∣∣w1

a
· · · wn

a
e

u
a

∣∣∣
a] = Ep

[∣∣∣v1

a
· · · vn

a
e

u
a

∣∣∣
a] ‖w1‖a

�1,p · · · ‖wn‖a
�1,p .

Then λa,n (u) is a continuous multi-linear symmetric function, since

∥∥λa,n (u) · (w1, . . . , wn)
∥∥

a =
(

Ep

[∣∣∣w1

a
· · · wn

a
e

u
a

∣∣∣
a]) 1

a

≤ (Cn (u))
1
a ‖w1‖�1,p · · · ‖wn‖�1,p .

(1)


�
If u ∈ B (0, 1), then eu/a ∈ La (p). In fact, since ‖u‖�1,p < 1,

Ep

[∣∣∣e u
a

∣∣∣
a] ≤ Ep

[
e|u|] ≤ 2Ep [cosh |u|] ≤ 2Ep

[
cosh

|u|
‖u‖�1,p

]
≤ 4 .

Definition 4 For each a ≥ 1, n ∈ N and u ∈ B (0, 1), we can define the contin-
uous n-homogeneous polynomial λ̂a,n (u) of degree n from L�1 (p) to La (p) as
follows: if n = 0

λ̂a,0 (u) := e
u
a
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otherwise λ̂a,n (u) is determined by its polar form λa,n (u),

λ̂a,n (u) · w = λa,n (u) · (w, . . . , w) ∀ w ∈ L�1 (p) .

The radius of convergence of the Taylor series of the real function eu/a is +∞.
However, the composition operator u �→ eu/a could have a restricted domain
and a finite radius of convergence as a map between Banach spaces.

Lemma 5 Let a ≥ 1, then

A (v) :

⎧
⎪⎨
⎪⎩

L�1 (p) → La (p)

v �→
∞∑

n=0

1
n!

(v
a

)n

is a power series from L�1 (p) to La (p) with radius of convergence ρ̂ ≥ 1.

Proof A = ∑∞
n=0

1
n! λ̂a,n (0) is the power series from L�1 (p) to La (p) defined

by the n-homogeneous polynomials λ̂a,n (0).
For each degree n, in the space Pn

(
L�1 (p) , La (p)

)
of all the n-homoge-

neous polynomials from L�1 (p) to La (p) the norms of 1
n! λ̂a,n (0) are uniformly

bounded. In fact, for each v ∈ L�1 (p) with ‖v‖�1,p = 1, from 1
n!
( |v|

a

)n
< e|v|/a

it follows that

Ep

[∣∣∣∣
1
n!

(v
a

)n
∣∣∣∣
a]

≤ Ep

[
e|v|] ≤ 2Ep [cosh |v|] ≤ 4,

hence
∥∥∥∥

1
n! λ̂a,n (0)

∥∥∥∥Pn
= sup

‖v‖�1,p=1

∥∥∥∥
1
n! λ̂a,n (0) · v

∥∥∥∥
a

≤ 4
1
a .

By Cauchy–Hadamard Formula 1/ρ̂ = lim supn→∞
∥∥∥ 1

n! λ̂a,n (0)

∥∥∥
1/n

Pn
, one can con-

clude that 1/ρ̂ ≤ limn→∞ 41/(na) = 1 and ρ̂ ≥ 1. 
�
It was correctly pointed out by one of the anonymous Referee of this paper

that this lemma does not tell if and in which cases the radius of convergence is
actually +∞ as in the ordinary exponential Taylor series. The following exam-
ple shows a case with finite radius of convergence. Let p (x) = e−x (0 < x < ∞)

be the exponential distribution and let us consider A : L�1 (p) → L1 (p). For
each α ∈ R, the random variable αx ∈ L�1 (p) and ‖αx‖�1,p = |α| √2. As∥∥∥ (αx)n

n!
∥∥∥

L1(p)
= |α|n, if |α| ≥ 1, then the general term of the series A (αx) does

not converge to 0 in L1 (p). From this follows that ρ̂ <
√

2.
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Definition 6 For each a ≥ 1 we call exponential function the mapping expp,a

between the open unit ball of the Orlicz space L�1 (p) and the Lebesgue space
La (p)

expp,a :

⎧⎪⎨
⎪⎩

B (0, 1) → La (p)

v �→
∞∑

n=0

1
n!

(v
a

)n

We remark that expp,a (v) = ∑∞
k=0

1
k!
( v

a

)k converges absolutely in La (p) for
each v ∈ B (0, 1) and it converges uniformly for each v in the closed ball B̄ (0, r)
with r < 1. Moreover, the sequence of partial sums sn = ∑n

k=0
1
k!
( v

a

)k con-
verges to expp,a (v) also in probability and sn converges a.s. and in probability
to ev/a, so expp,a (v) = ev/a a.s..

Proposition 7 The exponential function expp,a satisfies the following properties:

(1) expp,a (0) = 1;
(2) for each u, v ∈ B (0, 1) such that u + v ∈ B (0, 1)

expp,a (u + v) = expp,a (u) expp,a (v) ;

(3) for each u ∈ B (0, 1), expp,a (u) has an inverse
(

expp,a (u)
)−1

in La (p) and

(
expp,a (u)

)−1 = expp,a (−u) .

Proof (1) expp,a (0) = λ̂a,0 (0) = e0 = 1.
(2) Since in a Banach space absolute convergence implies unconditional

convergence, with a rearrangement of terms we have:

expp,a (u + v) =
∞∑

n=0

1
n!

n∑
m=0

(
n
m

)(u
a

)n−m (v
a

)m

=
∞∑

k=0

1
k!

(u
a

)k ∞∑
m=0

1
m!

(v
a

)m = expp,a (u) expp,a (v) .

(3) It follows from (1) and (2) if v = −u. 
�
Theorem 8 Let a ≥ 1. Mapping expp,a is an analytic function. In a neighborhood
of each u0 ∈ B (0, 1) it can be expanded in the Taylor series

expp,a (u) =
∞∑

n=0

1
n!

(
u − u0

a

)n

e
u0
a . (2)
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Proof Let u0 ∈ B (0, 1) and consider the power series
∑∞

n=0
1
n! λ̂a,n (u0). Power

series are analytic in a ball B (0, ρ) where ρ is the radius of restricted conver-
gence. Using Inequality (1) of Lemma 3, one can determine the following bound
for the norm of the continuous n-multi-linear mapping 1

n!λa,n (u0):

∥∥∥∥
1
n!λa,n (u0)

∥∥∥∥Ln
≤ (Cn (u0))

1/a

n!
where Cn is defined in the proof of Lemma 3. Then, by Cauchy–Hadamard

Formula 1/ρ = lim supn→∞
∥∥∥ 1

n!λa,n (u0)

∥∥∥
1/n

Ln
, one can check ρ ≥ (1 − ‖u0‖�1,p)/

e = r, that is the series
∑∞

n=0
1
n! λ̂a,n (u0) is analytic in a ball with radius greater

than r.
Also, for u such that ‖u − u0‖�1,p < r

expp,a (u) =
∞∑

n=0

1
n! λ̂a,n (u0) · (u − u0) .


�
We are now able to improve the results of Pistone and Sempi (1995) about

the regularity of the moment generating functional.

Definition 9 The moment generating functional is

Mp :
{

L�1(p) → R ∪ {+∞}
u �→ Ep

[
eu
]

Note that Mp, if restricted to the open unit ball B (0, 1), coincides with the
expected value at p of expp,1.

Theorem 10 The moment generating functional Mp satisfies the following prop-
erties:

(1) Mp(0) = 1; otherwise, for each centered random variable u �= 0, Mp(u) > 1.
(2) Mp is convex and lower semi-continuous, and its proper domain

dom Mp = {
u ∈ L�1(p) | Mp(u) < ∞}

is a convex set which contains the open unit ball B(0, 1) ⊂ L�1(p); in
particular the interior of such a domain is a non empty convex set.

(3) Mp is infinitely Gâteaux-differentiable in the interior of its proper domain,

the nth-derivative at u ∈
◦

dom Mp in the direction v ∈ L�1(p) being

dn

dtn
Mp(u + tv)

∣∣∣∣
t=0

= Ep
[
vneu] ;
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(4) Mp is bounded, infinitely Fréchet-differentiable and analytic on the open
unit ball of L�1(p), the nth-derivative at u∈B(0, 1) evaluated in (v1, . . . , vn)∈
L�1(p) × · · · × L�1(p) is

DnMp(u) · (v1, . . . , vn) = Ep
[
v1 · · · vneu] .

In particular, DMp (0) = Ep.

Proof (1), (2) and (3) are proved in Pistone and Sempi (1995).

(4) For each u ∈ B (0, 1) and n ∈ N, we have Ep

[
λ̂1,n (u)

]
∈ Pn

(
L�1 (p) ; R

)

and
∑∞

n=0
1
n!Ep

[
λ̂1,n (u)

]
is a power series from L�1 (p) to R with positive radius

of convergence. In a neighborhood of each u0 ∈ B (0, 1), by (2) we have

Mp (u) = Ep

[
expp,1 (u)

]
=
∫ ∞∑

n=0

1
n!λ1,n (u0) (u − u0)

n pdμ.

Integrating term by term we obtain the following expansion in power series
about u0:

Mp (u) =
∞∑

n=0

1
n!Ep

[
λ̂1,n (u0) (u − u0)

]

=
∞∑

n=0

1
n!Ep

[
(u − u0)

n eu0
]

.

Hence Mp is an analytic function. Its nth-derivative at u in the directions
(v1, . . . , vn) ∈ L�1(p) × · · · × L�1(p) is

DnMp (u) · (v1, . . . , vn) = Ep
[
λ1,n (u) · (v1, . . . , vn)

] = Ep
[
v1 · · · vn eu] .


�
We introduce here the notations Bp = {

u ∈ L�1(p) | Ep [u] = 0
}

and Vp =
Bp ∩ B(0, 1) that is

Vp = {
u ∈ Bp | ‖u‖�1,p < 1

}
.

Definition 11 The cumulant generating functional is

Kp :
{

Bp → R ∪ {+∞}
u �→ log

(
Mp (u)

)

For convenience, the moment generating functional is defined on the space L�1 ,
while the cumulant generating functional is defined on the corresponding space
of centered random variables.
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Theorem 12 The cumulant generating functional Kp satisfies the following prop-
erties:

(1) Kp(0) = 0; otherwise, for each u �= 0, Kp(u) > 0.
(2) Kp is convex and lower semi-continuous, and its proper domain

dom Kp = {
u ∈ Bp | Kp(u) < ∞}

is a convex set which contains the open unit ball Vp; in particular the interior
of such a domain is a non empty convex set.

(3) Kp is infinitely Gâteaux-differentiable in the interior of its proper domain.
(4) Kp is bounded, infinitely Fréchet-differentiable and analytic on the open

unit ball of Vp.

Proof All immediate from the definition of Kp. 
�

3 Families of Orlicz spaces

In the theory of statistical models, it is usual to associate to each density p in the
model a space of p-centered random variables to represent scores or estimating
functions. In fact, if the one-parameter statistical model p(t), t ∈ I, I open inter-
val, is regular enough, then u(t) = d

dt
log p(t) satisfies Ep(t) [u(t)] = 0 for all t ∈ I.

A general estimating function is such a u(t), other than the score. It is crucial
to discuss how the relevant spaces of p-centered random variables depend on
the variation of the density p. In particular, we are interested in the variation of
the spaces Bp = L�1

0 (p) and ∗Bp = L�1
0 (p) along a one-dimensional statistical

model p(t), t ∈ I. In Information Geometry, those spaces are models for the
tangent and cotangent spaces of the statistical models. On two different points
of a regular model, they must be isomorphic, or, in particular, equal.

In order to introduce our discussion, we are going to present a peculiar
notion of connection by arcs, which is different from what is usually meant with
this name. Note that, given p, q ∈ M, the exponential model p (θ) ∝ p1−θ qθ ,
0 ≤ θ ≤ 1 connects the two given densities as end points of a curve, sometimes
called Hellinger arc. In fact, such a density in exponential form is

exp

(
θ log

q
p

)
· p,

where log q
p is not in the exponential Orlicz space at p unless θ can be extended

to assume negative values. As the Hellinger arc need not be continuous for the
topology we are going to put on the set of all positive densities M, we insist our
one-parameter exponential models to be defined on open intervals.

In order to introduce our discussion, we start with an elementary example.
The family of beta densities p (t) ∝ xt is an exponential model with t ∈ I =]−1, +∞[

. We are going to consider general cases of the following facts:
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(1) Given t1, t2 ∈ I, t2 > t1, the densities p = p (t1) and q = p (t2) are con-
nected by an open exponential model proportional to x(1−θ)t1 xθ t2 with

θ ∈
]
− t1+1

t2−t1
, +∞

[
⊃ [

0, 1
]
.

(2) Given t1, t2 ∈ I, the densities p = p (t1) and q = p (t2) are connected by the
mixture model p(λ) = (1 − λ)p + λq, λ ∈ [0, 1], then by a closed mixture
model, but it is impossible to extend λ to take value either smaller than
zero or bigger than 1 without violating the non-negativity. Then, p and q
are not connected by an open mixture model.

(3) At all points t ∈ I, the exponential Orlicz spaces L�1 (p (t)) coincide.
This is shown by considering the proper domain of the convex function
(θ , t) �→ ∫ 1

0 eθxxtdx.
(4) Given t1, t2 ∈ I, t2 > t1, we have L2 (p (t1)) �= L2 (p (t2)) and L�1 (p (t1)) �=

L�1 (p (t2)). This can be checked by considering test random variables, e.g.

xα : if α ∈
]
− 1+t2

2 , − 1+t1
2

]
, then xα ∈ L2 (p (t2)) and xα /∈ L2 (p (t1)).

We consider first the case of mixture models.

Definition 13 We say that p, q ∈ M are connected by an open mixture arc
if there exist an open interval I and a mixture model p (t), t ∈ I, containing both
p and q at t0, t1 ∈ I, respectively.

Proposition 14 The relation in Definition 13 is an equivalence relation.

Proof Reflexivity and symmetry follow from the definition, as a single point p is
part of the mixture model t �→ (1 − t) p + tp. For transitivity, consider two open
mixture models p (t), t ∈ I and q (s), s ∈ J, with p = p (t0), q = p (t1) = q (s0),
r = q (s1) (see Fig. 1):

p (t) = t1 − t
t1 − t0

p + t − t0
t1 − t0

q q (s) = s1 − s
s1 − s0

q + s − s0

s1 − s0
r

Fig. 1 Proof of Proposition 14
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or, under a change of parameters,

p (λ) = (1 − λ) p + λq q (θ) = (1 − θ) q + θr

with λ and θ defined in a pair of open intervals containing
[
0, 1

]
. Any convex

combination of a p (λ) with a q (θ) is positive, then it is a density. For some
ε > 0, consider the convex combination p1 of p (−ε) with q (−ε)

p1 =
(

1 − ε

1 + 2ε

)
p (−ε) + ε

1 + 2ε
q (−ε) = (1 + ε)2

1 + 2ε
p − ε2

1 + 2ε
r

and the convex combination p2 of p (1 + ε) with q (1 + ε)

p2 =
(

1 − 1 + ε

1 + 2ε

)
p (1 + ε) + 1 + ε

1 + 2ε
q (1 + ε) = − ε2

1 + 2ε
p + (1 + ε)2

1 + 2ε
r.

The mixture model r (k) = (1 − k) p1 + kp2, k ∈ (0, 1), contains p = r(ε2/(1 +
2ε + 2ε2)) and r = r((1 + ε)2/(1 + 2ε + 2ε2)). 
�
Proposition 15 Let �0 be any Young function. If p and q are connected by an
open mixture arc, then:

(1) The ratio q/p is bounded above and below by positive constants.
(2) L�0(p) = L�0(q).

Proof (1) If two densities p and q are connected by an open mixture model
p (λ) = (1 − λ) p + λq with λ ∈ ]α, 1 + β[ ⊃ [

0, 1
]
, as p (−α) and p (1 + β) are

non negative
β

1 + β
≤ q

p
≤ 1 + α

α
. (3)

(2) Let u ∈ L�0(p), that is Ep [�0(αu)] < +∞ for some α > 0. By assump-
tion, there exists a point r on the mixture model such that p = (1 − θ) r + θq,
θ ∈ ]

0, 1
[
. From

∫
�0(αu)

[
(1 − θ) r + θq

]
dμ < +∞ ⇒

∫
�0(αu)qdμ < +∞

we get u ∈ L�0(q). 
�
Second, we consider exponential models.

Definition 16 We say that p, q ∈ M are connected by an open exponential arc
if there exist r ∈ M, a random variable u and an open interval I, such that
p (t) ∝ etur, t ∈ I, is an exponential model containing both p and q at t0, t1
respectively. By the change of parameter s = t − t0, we can always reduce to the
case where r = p and u ∈ L�1(p).
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Proposition 17 The relation in Definition 16 is an equivalence relation.

Proof Reflexivity and symmetry follow from the definition. For transitivity,
consider the open exponential models

p (t) ∝ etuq, r (t) ∝ etvq, t ∈ ]−ε, 1 + ε
[

with p (1) = p, r (1) = r, u, v ∈ L�1 (q). The exponential model

q (θ) ∝ e(1−θ)u+θvq ∝ eθ(v−u)p

is defined, by convexity, for θ in an open neighborhood of
[
0, 1

]
and it is such

that q (0) = p and q (1) = r. 
�
In order to prove our key results, e.g. Theorem 19 below, we need the following
lemma.

Lemma 18 Let � be a strictly convex symmetric function and �0 = � − �(0)

the related Young function. Let p (t) ∝ f (t), t ∈ I, I open interval, be such that
for each random variable w the function

g(θ , t) = E(�(θw)f (t)), θ ∈ R, t ∈ I

is convex. Then, for all t ∈ I the spaces L�0(p(t)) are equal.

Proof We prove equality of the Orlicz spaces by a convexity argument. Let
t0, t1 ∈ I and assume w ∈ L�0 (p (t0)). Then, the function θ �→ g (θ , t0) is finite
on a symmetric interval J. As I is open, there exist a t̄ ∈ I such that t1 is between
t0 and t̄. The function t �→ g(0, t) is finite on the interval whose end points
are t0, t̄. Because of the convexity, the function g is finite on the convex hull of
J×{t0}∪{0}×[

t0, t̄
]
. Especially, the function θ �→ g(θ , t1) is finite on a symmetric

interval, then it follows w ∈ L�0 (p (t1)). 
�
Theorem 19 Let p and q be densities connected by an open exponential arc.
Then the Banach spaces L�1(p) and L�1(q) are equal as vector spaces and their
norms are equivalent.

Proof Equality as vector spaces follows from Lemma 18 with �(x) = cosh (x)

and f (t) ∝ etup. Equivalence of the norms follows from Lemma 1. 
�
The following definition was introduced in Pistone and Sempi (1995).

Definition 20 Let us denote by Sp the interior of the proper domain of the cum-

ulant generating functional
◦

dom Kp. For every density p ∈ M, the maximal
exponential model at p is defined to be the family of densities

E (p) :=
{

eu−Kp(u)p | u ∈ Sp

}
⊆ M.
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In the original paper, such a definition was introduced to discuss the con-
nected components of the exponential manifold. Here, we will show in Theorem
25 below that there is a unique chart of the manifold whose domain is Sp and
the image is E(p). We give now equivalent conditions to check if a given den-
sity q belongs to the maximal exponential model at p. The main point is that
being in the same maximal exponential model and being connected by an open
exponential arc is the same property, cf. 17.

Theorem 21 The following statements are equivalent:

(1) q ∈ E(p);
(2) q ∈ M is connected to p by an open exponential arc;
(3) E(p) = E(q);
(4) log q

p belongs to both L�1(p) and L�1(q).

Proof If q ∈ E (p), then q ∝ eup for some u ∈ Sp. As tu ∈ Sp for t in an
open interval containing both 0 and 1 because {tu} ∩ Sp is a convex open set
containing both 0 and u in the line generated by u, then p(t) ∝ etup is an open
exponential arc containing q. This shows that (1) implies (2).

Let us assume (2). Then, the exponential arc p(t) ∝ etup contains q at t = 1
and is defined at some t̄ > 1. Let v have a distance from u smaller than (t̄ − 1)/t̄.
Define ū = t̄u and v̄ = t̄(v − u)/(t̄ − 1). The norm of v̄ is smaller than 1, so that
v̄ belong to Sp and v is a convex combination of v̄ and ū. This shows that u is in
Sp because of the convexity, then (1) is true.

Now we show that (1) and (2) imply (4). If q ∈ E (p), then log q
p differs by

a constant from an element of Sp, in particular it belongs to L�1 (p). Also, as
L�1 (p) = L�1 (q) because of the property (2) and Theorem 19, then log q

p ∈
L�1 (q).

If (3) holds, then (2) is true. Vice-versa, by Proposition 17, the two equiva-
lence classes E(p) and E(q) are the same equivalence class.

Finally, log q
p belongs to the Orlicz space L�1 (p) if and only if its moment

generating functional is defined in an open interval containing 0 which implies
that there is an exponential arc containing p in its interior. The second part of
the assumption rules the case of q in a similar way. 
�

In the following proposition we have collected a number of properties of the
maximal exponential model E(p) which are relevant for its manifold structure.

Proposition 22 Assume q ∈ E(p). Then the following statements are true.

(1) The mapping

Upq :

{
L�1 (p) → L�1 (q)

v �→ v
p
q

is an isomorphism of Banach spaces.
(2) q/p ∈ L�1(p).
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(3) D (q ‖ p) = DKp(u) ·u−Kp(u) with q = eu−Kp(u)p, in particular D(q ‖ p) <

+∞.
(4)

Bq = L�1
0 (q) =

{
u ∈ L�1(p) | Ep

[
u

q
p

]
= 0

}
.

(5) u �→ u − Eq [u] is an isomorphism of Bp onto Bq.

Proof (1) Let v ∈ L�1 (p) and consider, if it exists, the norm Nq of vp/q in
L�1(q)

Nq

(
v

p
q

)
= sup

{
Eq

[
uv

p
q

]
| Eq [�1(u)] ≤ 1

}

= sup
{
Ep [uv] | Eq [�1(u)] ≤ 1

}

≤ sup
{
αEp

[u
α

v
]

| Ep

[
�1

(u
α

)]
≤ 1

}

≤ αNp(v) < ∞,

where α is such that for all u ‖u‖�1,p ≤ α ‖u‖�1,q. Since Nq (v p/q) < αNp(v) is
bounded, v p/q is an element of L�1 (q) and the linear mapping Upq is contin-
uous. The same is true for the inverse map w �→ Uqp (w) = wq/p ∈ L�1 (p).

(2) q/p is the image of 1 under the map Upq.
(3) As Kp is Gâteaux-differentiable in the interior of its proper domain,

D (q ‖ p) = Eq [u] − Kp (u)

= Ep
[
ueu

]

Ep [eu]
− Kp (u)

= DMp (u) · u
Mp (u)

− Kp (u)

= DKp (u) · u − Kp (u) .

(4) As the Orlicz space L�1(q) is equal to L�1(p), then u ∈ Bq means

u ∈ L�1(q) = L�1(p) and Eq [u] = Ep

[
u q

p

]
= 0.

(5) The map is linear with inverse the mapping v �→ v − Ep [v] of Bq onto Bp.
To prove continuity consider, for any u ∈ Bp, the following bound

∥∥u − Eq [u]
∥∥

�1,q ≤ ‖u‖�1,q + ∣∣Eq [u]
∣∣ ‖1‖�1,q ≤ C ‖u‖�1,p ,

where equivalence of L�1(p) and L�1(q) and continuity of Eq [ · ] are exploited.

�

Two remarks are of order. First, the necessary condition q/p ∈ L�1(p) = L�1(q)

is a statement of finite relative entropy. We do not know if it is actually sufficient.
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Second, the characterization of all Bq’s as subspaces of codimension 1 of the
same model space is crucial for the construction of the exponential manifold,
its tangent bundle and both its e- and m-connections, as in Amari and Nagaoka
(2000).

4 Exponential manifold

If p, q ∈ M are connected by an open exponential arc, then the random

variable u ∈ Sp such that q ∝ eup is unique and it is equal to log q
p − Ep

[
log q

p

]
.

In fact, q ∝ eup for some u ∈ L�1 (p) if and only if u − log q
p is a constant.

If u ∈ Sp ⊂ Bp, then u − log q
p = Kp (u) and, as u is centered, it follows that

−Ep

[
log q

p

]
= Kp (u) and u = log q

p − Ep

[
log q

p

]
. Indeed, u is the projection of

log q
p onto Bp in the split L�1 (p) = Bp ⊕ 〈1〉.

Definition 23 We define two one-to-one mappings: the parameterization
(Sp, ep

)
and the chart

(E (p) , sp
)
, respectively, as

ep :

{ Sp → E (p) ⊆ M
u �→ eu−Kp(u) · p

sp :

⎧
⎪⎨
⎪⎩

E (p) → Sp

q �→ log
q
p

− Ep

[
log

q
p

]

As the interior of the proper domain of Kp contains the unit ball Vp ⊂ Bp,
the current definition is an extension of the charts sp : Up → Vp introduced in
previous papers. In statistical terms, the coordinate sp(q) represents the density
q ∈ E (p) with its centered log-likelihood sp. The charts

(E (p) , sp
)

are defined
on domains which are either equal or disjoint. This fact simplifies the proof of
the properties of the corresponding atlas.

Theorem 24 If p1, p2 ∈ E (p) for a pair of densities p1, p2 ∈ M, then the transi-
tion mapping sp2 ◦ ep1 is the restriction of an affine function

sp2 ◦ ep1 :

⎧⎪⎨
⎪⎩

Sp1 → Sp2

u �→ u + log
p1

p2
− Ep2

[
u + log

p1

p2

]

Proof Let p1 = ew−Kp2 (w)p2 with w = log p1
p2

− Ep2

[
log p1

p2

]
∈ Sp2 . For any

q ∈ E (p) there exist u1 = sp1 (q) ∈ Sp1 and u2 = sp2 (q) ∈ Sp2 . With a direct
calculation one can check that
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u2 = u1 − Ep2 [u1] + log
p1

p2
− Ep2

[
log

p1

p2

]
= u1 − Ep2 [u1] + w.


�
With the notations of the previous proof, observe that the image under sp1

of the open exponential arc etu1−Kp1 (tu1)p1 connecting p1 to q lies on the line
of Bp1 generated by u1 and that it is mapped by the overlap map sp2 ◦ ep1 into
the affine line generated by the projection of u1 onto Bp2 with a translation of
w = sp2(p1).

The derivative of the transition map sp2 ◦ ep1 is the isomorphism of Bp1

onto Bp2

Bp1 � u �→ u − Ep2 [u] ∈ Bp2 .

The new manifold structure defined above is equivalent to the old one in
Pistone and Sempi (1995).

Theorem 25 The atlases

A = {(E (p) , sp
) | p ∈ M}

and B = {(Up, sp
) | p ∈ M}

are equivalent.

Proof We must prove that all overlap maps mixing charts of the two atlases
have open domains and are of class C∞. In this case the intersection of the two
domains is always of the form Up ∩ E (q) which is either empty or equal to Up.
The overlap map is a restriction of the map computed in the previous theorem.


�
Definition 26 The exponential statistical manifold is the manifold defined by
either one of the atlases in Theorem 25.

Notice that for every density p ∈ M, the maximal exponential model E (p) is
the connected component of the exponential statistical manifold M containing
p. In fact, all points of E(p) are connected by continuous exponential arcs and
E(p) is both open, being the image of a chart, and closed, being the complement
of all the others.

We do not require M to be a topological space as in Pistone and Sempi
(1995). However, a metric topology is induced by the equivalent atlases A and
B. As we are going to use a specific characterization of such topology to prove
the continuity of open mixture models, we recall such a characterization.

Definition 27 The sequence {pn}, n ∈ N, in M is e-convergent (exponentially
convergent) to p if {pn} tends to p in μ-measure as n → ∞ and moreover

sequences
{

pn
p

}
and

{
p

pn

}
are eventually bounded in each Lα (p), α > 1, that is

∀ α > 1, lim sup
n→∞

Ep

[(
pn

p

)α]
< ∞ and lim sup

n→∞
Ep

[(
p
pn

)α]
< ∞.

Here is an equivalent statement.
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Proposition 28 A sequence {pn}, n ∈ N, is e-convergent to p if and only if
sequences {pn/p} and {p/pn} are convergent to 1 in each Lα (p), α > 1.

Proof Let us assume

Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
α]

→ 0 and Ep

[∣∣∣∣
p
pn

− 1
∣∣∣∣
α]

→ 0 (4)

for each α > 1. Since Lα (p) � L1 (p), the convergences (4) hold also for α = 1
and, in particular,

∫
|pn − p| dμ = 2

(
1 −

∫
min(pn, p)dμ

)
→ 0

which is equivalent to pn
μ−→ p.

In order to prove the boundedness condition of the sequence {pn/p} it suffices
to use Minkowsky’s Inequality and the convergence of {pn/p} to 1 in Lα (p),

Ep

[∣∣∣∣
pn

p

∣∣∣∣
α]

= Ep

[∣∣∣∣
pn

p
− 1 + 1

∣∣∣∣
α]

≤

⎡
⎢⎢⎢⎣
(

Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
α])1/α

︸ ︷︷ ︸
−→ 0

+1

⎤
⎥⎥⎥⎦

α

and lim supn→∞ Ep
[|pn/p|α] ≤ 1. The same argument applies to {p/pn}.

Conversely, let the sequence {pn} be e-convergent to p. We remark that, for
each α > 1, Minkowsky’s Inequality

(
Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
α])1/α

≤
(

Ep

[∣∣∣∣
pn

p

∣∣∣∣
α])1/α

+ 1

and the boundedness condition of e-convergence definition show that the se-
quence

{
Ep

[|pn/p − 1|α]} is eventually bounded. As pn converges to p in L1 (μ),
then pn/p converges to 1 in L1 (p).

Let a ∈ ]
α − 1, α

[
be given. Hölder’s Inequality and the convergence

pn/p → 1 in L1 (p) show that pn/p → 1 in Lα (p):

Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
α]

≤
(

Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
])α−a

(
Ep

[∣∣∣∣
pn

p
− 1

∣∣∣∣
a

1−α+a
])1−α+a

→ 0.
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The convergence p/pn → 1 in Lα (p) follows from

Ep

[∣∣∣∣
p
pn

− 1
∣∣∣∣
α]

= Ep

[(
p
pn

)α ∣∣∣∣1 − pn

p

∣∣∣∣
α]

≤
(

Ep

[(
p
pn

)2α
])1/2 (

Ep

[∣∣∣∣1 − pn

p

∣∣∣∣
2α
])1/2

→ 0.


�
This characterization of e-convergence could be used to prove directly the con-
tinuity of open exponential arcs. However, this continuity follows also from the
C∞-regularity of open exponential arcs, as images of lines.

We consider the closed mixture model connecting two points on a maximal
exponential model.

Proposition 29 If q ∈ E (p), then the mixture model p (λ) = (1 − λ) p + λq ∈
E (p) for λ ∈ [

0, 1
]
.

Proof If q ∈ E (p), then the exponential model p1−θ qθ is defined for θ ∈]−α, 1 + α
[
. As xθ is a convex function for each θ ∈ ]−α, 0[ ∪ ]

1, 1 + α
[
,

Ep

[(
p (λ)

p

)θ
]

≤ (1 − λ) + λEp

[(
q
p

)θ
]

< +∞ λ ∈ [
0, 1

]
.

For each θ ∈ [0, 1] there is nothing to prove, because we have an Hellinger arc.
This shows that p1−θ p (λ)θ is an open exponential model connecting p and p (λ).


�
We use now e-convergence to prove continuity of an open mixture arc.

Proposition 30 An open mixture arc

p (·) :

{ ]−α, 1 + β
[ → M

t �→ (1 − t) p + tq

is a continuous path.

Proof Let {tn} be a sequence converging to t̄ ∈ ]−α, 1 + β
[
. We shall prove that

{p (tn)} is e-convergent to p
(
t̄
)
.

It follows from p(tn) − p(t̄) = (tn − t̄)(q − p) that {p (tn)} converges to p
(
t̄
)

in
L1 (μ). Then, p(tn) → p(t̄) in μ-measure, an also p(tn)/p(t̄) → 1, p(t̄)/p(tn) − 1
in μ-measure. For each n, the open mixture arc p (t) can be written as

p (t) = tn − t
tn − t̄

p
(
t̄
) + t − t̄

tn − t̄
p (tn) .
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If tn > t̄ then, under the change of parameter t �→ λ = (t − t̄)/(tn − t̄), the open
mixture arc is

p (λ) = (1 − λ) p
(
t̄
) + λp (t) with λ ∈

]
− α + t̄

tn − t̄
, 1 + 1 + β − tn

tn − t̄

[
.

By (3) of Proposition 15, the ratio p(tn)

p(t̄)
is bounded above and below,

1 + β − tn
1 + β − t̄

≤ p (tn)

p
(
t̄
) ≤ α + tn

α + t̄
.

A similar argument shows that if tn < t̄ then

α + tn
α + t̄

≤ p (tn)

p
(
t̄
) ≤ 1 + β − tn

1 + β − t̄

and e-convergence follows from

∀ a > 1 lim
n→∞ Ep(t̄)

[(
p (tn)

p
(
t̄
)
)a]

= lim
n→∞ Ep(t̄)

[(
p
(
t̄
)

p (tn)

)a]
= 1.


�
The two previous results show that the closed mixture arc between two

densities connected by an open exponential arc is contained in their maximal
exponential model and it is e-continuous in its interior. In general, it is not
continuous the end-points. Regularity and smoothness mixture models can be
obtained only in weaker topologies and manifold structures, as it is done in the
following section.

5 Mixture manifold

Let p ∈ M be a probability density. For each u ∈ Vp and q = eu−Kp(u)p, the
derivative of Kp at u, DKp (u) ∈ B∗

p, is the linear mapping

DKp (u) · v = Ep

[(
q
p

− 1
)

v
]

, v ∈ Bp

and DKp (u) is identified to its gradient q/p − 1 ∈ ∗Bp. Mapping Up � q �→
q/p − 1 ∈ ∗Bp = {

v ∈ L�1(p) | Ep [v] = 0
}

cannot be a chart because its values
are bounded below by −1. We consider the set of all densities p ≥ 0

P≥ :=
{

p ∈ L1 (μ) | p ≥ 0,
∫

pdμ = 1
}
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and the set

P :=
{

p ∈ L1 (μ) |
∫

pdμ = 1
}

.

Observe that M ⊆ P≥ ⊆ P . For each q ∈ P there exists an element q̃ ∈ P≥
defined by

q̃ := |q|∫ |q| dμ
.

For each probability density p ∈ P≥, let us introduce the subset ∗Up of P
defined by

∗Up :=
{

q ∈ P | q
p

∈ L�1 (p)

}
.

Then consider the map ηp defined on ∗Up by

ηp :

{ ∗Up →∗ Bp

q �→ q
p

− 1

Since ηp(q), q ∈ Up ⊂ E(p), can be identified with Eq [v], it could be called
expectation parameter. This mapping is bijective and its inverse is

η−1
p : ∗Bp � u �→ (u + 1) p ∈ ∗Up.

The collection of sets
{∗Up

}
p∈P≥ is a covering of P . In fact, for each q ∈ P we

have q ∈ ∗Uq̃ and q̃ ∈ P≥.
Let us characterize the elements of ∗Up

⋂P≥: they are all the probability
densities with finite divergence with respect to p.

Proposition 31 Let p ∈ M be given. For each q ∈ P , the divergence D
(
q̃ ‖ p

)
of the probability density q̃ with respect to p is finite if and only if q ∈ ∗Up:

D
(
q̃ ‖ p

) = Ep

[
q̃
p

log

(
q̃
p

)]
< ∞ ⇔ q ∈ ∗Up.
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Proof Let q ∈ P . We assume that D
(
q̃ ‖ p

)
< ∞. By the inequality �1 (x) ≤

1 + x log (x) for x > 0 we have

Ep

[
�1

((∫
|q| dμ

)−1 q
p

)]
= Ep

[
�1

(
q̃
p

)]

≤ 1 + Ep

[
q̃
p

log

(
q̃
p

)]

= 1 + D
(
q̃ ‖ p

)
< ∞.

Hence q
p ∈ L�1 (p) and, by definition, q ∈ ∗Up.

Conversely, let q ∈ ∗Up, that is q
p ∈ L�1 (p). Since L�1 (p) is linear, q̃

p =
(∫ |q| dμ

)−1 q
p ∈ L�1 (p) and since

(
1 + q̃

p

)
log

(
1 + q̃

p

)
is p integrable, from

inequality

x log+ (x) ≤ (1 + x) log (1 + x) , x > 0

where log+ (x) := max {0, log (x)}, we have

Ep

[
q̃
p

log

(
q̃
p

)]
≤ Ep

[
q̃
p

log+
(

q̃
p

)]

≤ Ep

[(
1 + q̃

p

)
log

(
1 + q̃

p

)]
< ∞

hence D
(
q̃ ‖ p

)
is finite. 
�

Recall that the divergence D (q ‖ p) of a probability density q ∈ P≥ with

respect to p ∈ M is always well defined and it is finite if and only if log
(

q
p

)
∈

L1 (q).

Proposition 32 Let p ∈ M be given, then Up ⊂ ∗Up.

Proof If q ∈ Up, there exists u ∈ Vp ⊂ Bp such that q = eu−Kp(u)p. Since
L�1 (q) = L�1 (p) the random variable u is q-integrable and we have

Eq

[
log

(
q
p

)]
= Eq [u] − Kp (u) < ∞.


�
Proposition 33 Let p1 and p2 be two positive densities in the same connected
component E (p). Then the linear map

Pm
p1p2

:
{ ∗Bp1 → ∗Bp2

u �→ u p1
p2

is an isomorphism of Banach spaces.
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Proof Pm
p1p2

is the restriction of the Up1p2 of Theorem 22. If u ∈ ∗Bp1 then
Ep2

[
u p1/p2

] = Ep1 [u] = 0 and up1/p2 ∈ ∗Bp2 . 
�
Proposition 34 Let p1 and p2 be a pair of positive densities in the same connected
component E (p) ⊂ M for some density p ∈ M, then ∗Up1 = ∗Up2 .

Proof Let p1, p2 ∈ E (p). First we note that p1, p2 ∈ ∗Up1

⋂ ∗Up2 . In fact, by
Proposition 22(1) we have p1

p2
∈ L�1 (p2) and we conclude that p1 ∈ ∗Up2 .

Similarly, we see that p2 ∈ ∗Up1 .
Every q ∈ ∗Up1 can be written as (u + 1) p1 where u = ηp1 (q) ∈ ∗Bp1 and we

have

q
p2

= u
p1

p2
+ p1

p2
= Pm

p1,p2
(u) + p1

p2
∈ L�1 (p2) .

Hence q ∈ ∗Up2 and ∗Up1 ⊆ ∗Up2 . In the same way we prove the opposite
inclusion. 
�

For each pair p1, p2 ∈ E (p) we can define the overlap map

ηp2 ◦ η−1
p1

:

⎧⎨
⎩

∗Bp1 → ∗Bp2

u �→ u
p1

p2
+ p1

p2
− 1

The function ηp2 ◦ η−1
p1

is a C∞-affine map since it can be written as the sum of
the continuous linear map Pm

p1,p2
and the constant p1

p2
−1 ∈ ∗Bp2 so it a C∞-affine

map.

Definition 35 Let p ∈ M be fixed. ∗E (p) is the subset of P defined by

∗E (p) =
{

q ∈ P | q
p

∈ L�1 (p)

}

Note that ∗E (p) = ∗Upα for each pα ∈ E (p).

∗E (p) has the structure of a manifold modeled on the Banach space ∗Bp.

Theorem 36 Let p ∈ M be given. The collection of charts

{(∗Upα , ηpα

) | pα ∈ E (p)
}

is an affine C∞-atlas on ∗E (p).

Proof The collection of sets
{∗Upα | pα ∈ E (p)

}
covers ∗E (p). For each pair

p1, p2 ∈ E (p) the set ηp1

(∗Up1

⋂ ∗Up2 = ∗E (p)
) = ∗Bp1 is clearly open in ∗Bp1

and we have just observed that the transition mapping ηp2 ◦ η−1
p1

is an C∞-affine
function. 
�
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We conclude this section with the derivation of a local Pythagorean-type
relation in our framework.

Let p ∈ M be given and let sp : Up → Vp and ηp : ∗Up → ∗Bp be charts
respectively in E (p) and ∗E (p). Let q ∈ Up, u = sp (q) and 0 ≤ r ∈ ∗Up be given.
Consider the duality

〈
ηp (r) , sp (q)

〉 = Ep
[
ηp (r) sp (q)

] = Ep

[(
r
p

− 1
)

u
]

= Er [u] .

As

u = log

(
q
p

)
− Ep

[
log

(
q
p

)]
= log

(
q
p

)
+ D (p ‖ q) ,

we have

Er [u] = Er

[
log

(
q
p

)]
+ D (p ‖ q)

= Er

[
log

(q
r

)
+ log

(
r
p

)]
+ D (p ‖ q)

= −D (r ‖ q) + D (r ‖ p) + D (p ‖ q) .

In particular,
〈
ηp (r) , sp (q)

〉 = 0 implies the relation

D (r ‖ q) = D (r ‖ p) + D (p ‖ q) .

6 Regularity of some maps

The regularity of the divergence function and of the Fisher information follows
naturally from our framework and does not require any ad-hoc assumption.

Proposition 37 For each density p ∈ M, the divergence

D ( · ‖ · ) : E (p) × E (p) → R

is of class C∞.

Proof The proof uses the local atlas B. Given a pair of charts
(Up1 , sp1

)
and(Up2 , sp2

)
of E (p), we consider the local representative Dp1,p2 = D ◦ (ep1 , ep2

)
:

Vp1 × Vp2 → R.
The cumulant generating functionals Kpi ∈ C∞ (Vpi

)
, i = 1, 2, and, for each

ui ∈ Vpi and vi ∈ Bpi ,

DKpi (ui) · vi = Epi

[
vieui−Kpi (ui)

]
.
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We shall write Dp1,p2 as a linear combination of smooth functions. For all
(q1, q2) ∈ Up1 × Up2 , if qi = epi (ui), then

D (q1 ‖ q2) = Dp1,p2 (u1, u2)

= Ep1

[
log

(
eu1−Kp1 (u1)p1

eu2−Kp2 (u2)p2

)
eu1−Kp1 (u1)

]

= Ep1

[(
u1 − u2 − log

p2

p1
+ Ep1

[
u2 + log

p2

p1

])
eu1−Kp1 (u1)

]

− Kp1 (u1) + Kp2 (u2) − Ep1

[
u2 + log

p2

p1

]

= Ep1

[(
u1 − sp1 ◦ ep2 (u2)

)
eu1−Kp1 (u1)

]

− Kp1 (u1) + Kp2 (u2) − Ep1

[
u2 + log

p2

p1

]

= DKp1 (u1) · (u1 − sp1 ◦ ep2 (u2)
)

− Kp1 (u1) + Kp2 (u2) − Ep1

[
u2 + log

p2

p1

]
.


�

The partial derivatives DiDp1,p2 : Vp1 × Vp2 → (
Bpi

)∗ at (u1, u2) ∈ Vp1 × Vp2

applied, respectively, to w1 ∈ Bp1 and w2 ∈ Bp2 are

D1Dp1,p2 (u1, u2) · w1 = D2Kp1 (u1) · (u1 − sp1 ◦ ep2 (u2) , w1
)

(5)

and

D2Dp1,p2 (u1, u2) · w2

= −DKp1 (u1) · (w2 − Ep1 [w2]
) + DKp2 (u2) · w2 − Ep1 [w2] .

If we assume q1, q2 ∈ Upα with, as usual, ui = spα (qi) for i = 1, 2, then

D (q1 ‖ q2) = DKpα (u1) · (u1 − u2) − Kpα (u1) + Kpα (u2) (6)

When q2 = pα , which is equivalent to u2 = 0, Eq. (6) reduces to

D (q1 ‖ pα) = DKpα (u1) · u1 − Kpα (u1)

and when q1 = pα , which is equivalent to u1 = 0, it reduces to

D (pα ‖ q2) = Kpα (u2) .
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Since Kpα ∈ Cω
(Vpα

)
, Eq. (6) allows us to write D (q1 ‖ q2) as

D (q1 ‖ q2) = DKpα (u1) · (u1 − u2) − Kpα (u1)

+
∑
n≥0

1
n!DnKpα (u1) · (u2 − u1)

n

=
∑
n≥2

1
n!DnKpα (u1) · (u2 − u1)

n .

(7)

From (7), it is easy to see that for all u ∈ Vp1 and (w1, w2) ∈ Bpα × Bpα

D2
22Dpαpα (u, u) · (w1, w2) = D2Kpα (u) · (w1, w2) .

Taking the derivative of (5) with respect to the first variable, we obtain also

D2
11Dpαpα (u, u) · (w1, w2) = D2Kpα (u) · (w1, w2) . (8)

In particular, these derivatives are the covariance

D2
iiDpα ,pα (u, u) · (w1, w2) = Eq

[(
w1 − Eq [w1]

) (
w2 − Eq [w2]

)]

with q = epα (u).
We shall show that we can take the bilinear form D2Kpα (u) ∈ L2 (Bq

)
as the

extension to the non-parametric case of the Fisher metric.
Let S = {

pθ = p (x, θ) : θ = (
θ1, . . . , θn

) ∈ � ⊆ R
n
}

be a parametric
n-dimensional statistical model on (X, X , μ). Given a point pθ , the Fisher infor-
mation matrix G (θ) = [

gij (θ)
]

of S at pθ is defined by

gij (θ) = Epθ

[
∂ log p (x, θ)

∂θ i

∂ log p (x, θ)

∂θ j

]
.

We assume that gij (θ) is finite for all i, j and θ and that G is positive definite
so it determines a Riemannian metric, the so called Fisher metric. The Fisher
matrix gives the second order approximation of the divergence:

D
(
pθ1 ‖ pθ0

) = 1
2

gij (θ0)
(
θ i

1 − θ i
0
) (

θ
j
1 − θ

j
0

)
+ o

(
‖θ1 − θ0‖2

)
. (9)

If we fix θ0 and we consider the function D
( · ‖ pθ0

)
: S → R, Eq. (9) means

∂2

∂θi∂θj
D
(
pθ ‖ pθ0

)∣∣∣∣
θ=θ0

= gij (θ0)

which can be compared with (8).
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The next proposition is a technical result on Orlicz spaces to be applied to
the proof of the regularity on the inclusion of the exponential manifold into the
mixture manifold.

Proposition 38 For each density p ∈ M, the injection α of ∗Bp into
(
Bp

)∗

α : ∗Bp � ∗u �→ Ep
[∗u · ] ∈ (

Bp
)∗

has closed range im α, therefore im α is a subspace of
(
Bp

)∗ and α is a isomor-
phism of ∗Bp into its range in

(
Bp

)∗.

Proof From the general theory of Orlicz spaces, see Rao and Ren (2002) the
dual space of L�1(p) is L�1(p) and there is a continuous injection of L�1(p) into
the dual of L�1(p). The proposition follows by checking the effect of considering
centered random variables. 
�
Proposition 39 For each density p ∈ M, the inclusion j : E (p) ↪→ ∗E (p) is of
class C∞.

Proof For each p1 ∈ E (p) the local representative of j relative to the pair of
charts

(Up1 , sp1

)
of E (p) and

(∗Up1 , ηp1

)
of ∗E (p) is

jp1 = ηp1 ◦ j ◦ ep1 : Vp1 � u �→ eu−Kp1 (u) − 1 ∈ ∗Bp.

Observe that, for all u ∈ Vp1 , jp1 (u) = ∇Kp1 (u) = α−1 (DKp1 (u)
)
, that is the

following diagram

is commutative. This shows that the map jp1 = α−1 ◦ DKp1 belongs to C∞ (Vp1

)
.

We shall show that the derivative of jp1 is the mapping

Djp1 = D∇Kp1 : Vp1 � u → q
p

( · − Eq [ · ]
) ∈ L (

Bp1 ,
(∗Bp1

))
,

where q = ep1 (u). In fact, employing the chain rule and the linearity of α−1, we
evaluate the derivative at u applied to w ∈ Bp1 :

Djp1 (u) · w = α−1
(

D2Kp1 (u) · (w, · )
)

= α−1
(

Ep

[
q
p

(
w − Eq [w]

) ·
])

= q
p

(
w − Eq [w]

)
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(
(
w − Eq [w]

)
q/p ∈ ∗Bp1 , see Pistone and Rogantin (1999, Proposition. 16-f)).


�

7 Discussion

In this paper we are following a specific track to the development of Informa-
tion Geometry, i.e. the construction of a classical manifold structure. This is
done by developing in the natural way the original suggestion of Efron to look
at the exponential structure. Other options are present in the literature.

The most classical and most successful non-parametric construction of Infor-
mation Geometry is based on the embedding p �→ 2

√
p from the probability

density simplex into the L2 sphere or radius 2, followed by the pull-back of the
geometry of the sphere to the probability density simplex. The L2-sphere is a
Riemannian manifold, but the embedding cannot define an atlas because the
co-domain of the embedding has empty interior. Variants of this basic Hilbert
embedding were used, see e.g. Burdet, Combe and Nencka (2001). In the same
vein, Eguchi (2005) has a different L2

0 representation based on the mapping
u �→ 1

2 − 1
2σ 2(u) + 1

2 (1 − u)2 = g which is defined on the unit L2
0 open ball and

takes its values in the set of densities which are bounded below by a positive
constant. If u is bounded, then g is bounded above and away from zero. The
choice of the mentioned Authors to look for an hilbertian structure is actually
the best from the point of view of Statistics, because it is grounded on the
original idea due to Rao of looking to Fisher information as a metric tensor.

The discovery of the duality between the exponential and the manifold struc-
ture by Nagaoka together with our approach to the m-manifold , could lead to
an other intermediate option, i.e. to define a manifold were the regularity of
the maps is defined in a weak sense. See also the discussion in Zhang and Hästö
(2006).

The real need for Statistics of the manifold structure we insist on is of course
questionable. Our construction will eventually be fully justified only if all the
basic structures of interest in Statistics will be embedded in the framework we
propose, which is not fully done at this stage.
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