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Abstract The EM algorithm is a sophisticated method for estimating statistical
models with hidden variables based on the Kullback–Leibler divergence. A nat-
ural extension of the Kullback–Leibler divergence is given by a class of Breg-
man divergences, which in general enjoy robustness to contamination data in
statistical inference. In this paper, a modification of the EM algorithm based
on the Bregman divergence is proposed for estimating finite mixture models.
The proposed algorithm is geometrically interpreted as a sequence of pro-
jections induced from the Bregman divergence. Since a rigorous algorithm
includes a nonlinear optimization procedure, two simplification methods for
reducing computational difficulty are also discussed from a geometrical view-
point. Numerical experiments on a toy problem are carried out to confirm
appropriateness of the simplifications.

Keywords Bregman divergence · EM algorithm · Finite mixture models

1 Introduction

In information geometry, discrepancy measures between distributions play a
key role. There are many candidates for such measures, and the Bregman
divergence is one of them. The Bregman divergence is a class of divergences
derived from an arbitrary convex functions and includes the Kullback–Leibler
(KL) divergence as a special case.
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The Bregman divergence has some interesting properties when it is applied
to statistical inferences. One of those properties is its duality. The Bregman
divergence is associated with two representations of distributions: the mixture
representation, and a specific representation derived from the convex function.
Like the α-divergences (Amari and Nagaoka, 2000), these two representations
are related to geometrical duality, and one of its interesting and important char-
acteristics is simply expressed by Pythagorean relation (Murata et al. 2004).

Another interesting property is its robustness. Estimators based on the Breg-
man divergence is not Fisher efficient in general, but it shows good robust
properties to outliers and noises (see for example, Minami and Eguchi, 2002;
Takenouchi and Eguchi, 2004; Fujisawa and Eguchi, 2005; Takenouchi, 2005).
Robustness of estimators can be discussed by using influence functions (Hampel
et al., 1986), and certain estimators derived from some Bregman divergences
are shown to have bounded influence functions, and therefore they are tolerant
of outliers and noises.

In this paper, we propose a modification of the EM algorithm as an appli-
cation of the Bregman divergence, which can be used for robust estimation of
mixture models. For example, random variables with many categories are dealt
with in Bayesian networks or graphical models, and for describing such random
variables with many categories, statistical models with numerous parameters
are required. Also, the number of collectable samples is sometimes insufficient
compared with the number of parameters, and some of cells in contingency
tables lack data. As a consequence, estimates of the parameters become less
reliable. To overcome these problems, restricted mixture models such as aspect
models (Hoffmann, 1999) or latent class models (Agresti, 2002, Chap. 13) are
used, in which certain constraints among cells are imposed and the number of
modifiable parameters are reduced. The EM algorithm is utilized to estimate
the parameters of such mixture models, however, it sometimes fails to give
a good estimate due to lacks of data in contingency tables. To avoid such an
instability, we focus on the robust property of the Bregman divergence and
geometrical flat structure of mixture models, and propose a variation of the EM
algorithm based on the Bregman divergence.

This manuscript is organized as follows. In Sect. 2, the definition of the Breg-
man divergence is stated as a preliminary, and in Sect. 3, some geometrical
properties of the Bregman divergence are discussed, then two projections and
mixture models associated with the Bregman divergence are defined. The defi-
nition of the UM algorithm, which is a modified EM algorithm proposed in
this paper, is given in Sect. 4, and two approximations of the optimizing pro-
cedure for practical implementations are discussed. Some illustrative examples
with numerical experiments are shown in Sect. 5, and Sect. 6 is devoted to
concluding remarks.

2 Bregman divergence

The Bregman divergence is a pseudo-distance for measuring discrepancy
between two functions. Let U be a strictly convex function on R, then
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discrepancy between two values f and g is defined by

d(f , g) = U(g)− U(f )− U′(f )(g − f ),

where U′ is the derivative of U. Note that d is non-negative due to the convexity
of U and not symmetric with respect to f and g (see Fig. 1a). The integral of d
under a certain measureμ over the domain of x gives total discrepancy between
two functions f (x) and g(x),

D(f , g) =
∫

d(f (x), g(x))dμ(x).

If x takes a discrete value on a certain space X , total discrepancy is given by the
weighted sum over X as

D(f , g) =
∑
x∈X

d(f (x), g(x))μ(x).

Note that D is non-negative, asymmetric, and equal to zero if and only if
f = g (a.e.). In this paper, we deal with the case that x is continuous, but it
can be extended to the discrete case in a straightforward way.

To use the empirical distribution, we consider a slightly modified version of
the Bregman divergence as follows. Let us consider the space of positive finite
measures over x ∈ X under a carrier measure μ(x)

F =
{

m(x)
∣∣∣ m : X → R+,

∫

x∈X

m(x)dμ(x) < ∞
}

. (1)

Note that probability densities belong to a subspace of F ,

P =
{

m(x)
∣∣∣ m : X → R+,

∫

x∈X

m(x)dμ(x) = 1
}

⊂ F . (2)

We define the Bregman divergence as follows (see Fig. 1b).

Definition 1 (Bregman divergence) Let U be a strictly convex function on R,
and u = U′ be the derivative of U, which has the inverse function ξ = u−1. For
p(x) and q(x) in F , the Bregman divergence is defined as

DU(p, q) =
∫

dU(p(x), q(x))dμ(x),

where dU(p, q) = U(ξ(q))− U(ξ(p))− p
[
ξ(q)− ξ(p)

]
.

(3)
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Fig. 1 An intuitive interpretation of the Bregman divergence. a Ordinary form. b Modified form

The above form is convenient when the empirical distribution is plugged into
the divergence directly. To see this, let us define the cross entropy associated
with U as

HU(p, q) =
∫ [

U(ξ(q(x)))− p(x)ξ(q(x))
]

dμ(x), (4)

then the Bregman divergence is written with two cross entropies as

DU(p, q) = HU(p, q)− HU(p, p). (5)

This relation leads the equivalence of minimizing the Bregman divergence and
minimizing the cross entropy for fixed p:

argmin
q

DU(p, q) = argmin
q

HU(p, q).

For given samples {xi; i = 1, . . . , N}, let

p̃(x) = 1
N

N∑
i=1

δ(x − xi) (6)

be the empirical probability density of x, where δ is Dirac’s delta function. The
minimizer of the Bregman divergence for given samples is obtained by plugging
the empirical distribution p̃ directly into the cross entropy as

argmin
q

HU(p̃, q) = argmin
q

[∫
U(ξ(q(x)))dμ(x)− 1

N

N∑
i=1

ξ(q(xi))

]
.

Some typical examples of the convex function U are listed in Table 1 and
their shapes are shown in Fig. 2.
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Table 1 Examples of U
functions U(z) u(z) ξ(z) = u−1(z)

KL exp(z) exp(z) log(z)

β-type
(βz + 1)(β+1)/β

β + 1
(βz + 1)1/β

zβ − 1
β

η-type exp(z)+ ηz exp(z)+ η log(z − η)

Fig. 2 Examples of U functions

3 Geometrical properties and mixture models

The Bregman divergence is closely related with the potential duality. Let us
consider the Legendre transformation of U

U∗(ζ ) = sup
z

{ζz − U(z)} , (7)

and define two representations as

m-representation: p,

u-representation: p∗ = ξ(p) (ξ = u−1 = U′−1),

then the Bregman divergence is written with a potential form as

dU(p, q) = U∗(p)+ U(q∗)− pq∗,

DU(p, q) =
∫

dU(p(x), q(x))dμ(x).
(8)

It is possible to discuss detailed differential geometrical aspects of parametric
models, however, here we focus on the following simple property of so-called
Pythagorean relation. For any three points p, q, r ∈ F , and for any function U,
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Fig. 3 Pythagorean relation

it is easy to check the following equation holds:

DU(p, r)− DU(p, q)− DU(q, r) =
∫

{p(x)− q(x)} {ξ(r(x))− ξ(q(x))} dμ(x).

The right-hand side is regarded as an inner product of p − q and ξ(r) − ξ(q),
therefore, Pythagorean relation for the Bregman divergence is stated as follows
(see Fig. 3).

Theorem 1 (Pythagorean relation) (Murata et al., 2004) Let p, q and r be in F .
If p − q and ξ(r)− ξ(q) are orthogonal at q, the relation

DU(p, r) = DU(p, q)+ DU(q, r) (9)

holds.

From above-mentioned Pythagorean relation, we can derive the dualistic struc-
ture of two different optimization problems. First we define two flat subspaces
associated with m- and u-representations.

Definition 2 (flatness) Let p and q be in F , then the m-geodesic between p and
q is defined as a set of interior divisions of p and q with m-representation

r(x; t) = (1 − t) · p(x)+ t · q(x), 0 ≤ t ≤ 1,

and the u-geodesic is a set of interior divisions of p and q with u-representation

ξ(r(x; t)) = (1 − t) · ξ(p(x))+ t · ξ(q(x)), 0 ≤ t ≤ 1.

Subspaces are called m-flat or u-flat if m-geodesics or u-geodesics of any two
points in the subspaces are included in the subspaces themselves.
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Fig. 4 Orthogonal foliation
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As shown in Fig. 4, with the notion of m- and u-flat subspaces, F is sliced into
a set of disjoint m-flat subspaces T ’s which are orthogonal to a certain u-flat
subspace Q, ⋃

q∈Q
T (q) = F ,

where T (q) is an m-flat subspace which includes a point q. This sliced structure
is called the orthogonal foliation of F (for more detailed definitions, see Murata
et al., 2004). In the following, we mainly consider a specific u-flat parametric
model as a base space of the orthogonal foliation, which is called a u-model
defined by

QU =
{

q(x; θ) = u(θ · t(x)+ s(x)− b(θ)), θ ∈ 	 ⊂ Rd
}

,

where s(x) is a function of x which does not depend on θ . Especially a u-flat
subspace which includes a point q is denoted by QU(q).

On T and QU , two kinds of projections are defined as follows (see Fig. 5).

Definition 3 (projections) When the m-geodesic from a point p0 is orthogonal to
the u-flat subspace QU at the point q∗ ∈ QU, that is, the m-geodesic is orthogonal
to any u-geodesic in QU, q∗ is called the m-projection from p0 onto QU. On
the other hand, when the u-geodesic from a point q0 is orthogonal to the m-flat
subspace T at the point q∗ ∈ T , q∗ is called the u-projection from q0 onto T .

In Fig. 5, two kinds of projections are given as follows:

argmin
q∈QU

DU(p0, q) (m-projection),

argmin
p∈T

DU(p, q0) (u-projection).
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Fig. 5 Equivalence of two
optimization problems

Particularly, in the case of the KL divergence, the u-projection is called the
e-projection.

The following important duality is naturally derived from the orthogonal
foliation and two kinds of projections (Fig. 5).

Theorem 2 (Murata et al., 2004) Two optimization problems

• minimize DU(p, q0) with respect to p ∈ T (p0) for fixed q0,
(find an optimum in the m-flat subspace),

• minimize DU(p0, q) with respect to q ∈ QU(q0) for fixed p0,
(find an optimum in the u-flat subspace),

give the same solution

q∗ = argmin
p∈T (p0)

DU(p, q0) = argmin
q∈QU (q0)

DU(p0, q).

Based on the notion of flatness, two important mixture models are introduced
as follows.

Definition 4 (finite mixture models) Let Pk(x;φk) be a point in P where φk is
the parameter set of Pk. Then the mixture of K components P1, . . . , PK is called a
finite mixture model. In the case that components are in m-representation, that is

p(x; θ) =
K∑

k=1

πkPk(x;φk), (10)

where πk ≥ 0 and
∑K

k=1 πk = 1, the model is called an m-mixture, and in the
case that components are in u-representation, that is

p(x; θ) = u

(
K∑

k=1

πkξ(Pk(x;φk))− c

)
,

where c is a normalization constant, the model is called a u-mixture.
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4 UM algorithm

4.1 EM algorithm with Bregman divergence

The EM algorithm is a popular method to estimate parameters of finite
m-mixture models (McLachlan and Krishnan, 1997). In the finite m-mixture
model with K components, given by Eq. (10), the observed data x is generated
from one of the components. We introduce a hidden variable z in a space Z,
that is

Z = {z ∈ {1, . . . , K}} ,

where z indicates from which component of the mixture the observation arose.
Let hk(z) be an indicator function, that is

hk(z) =
{

0 if z 
= k,

1 if z = k.
(11)

Then, the joint distribution of x and z is given by

q(x, z; θ) =
K∑

k=1

hk(z)πkPk(x;φk), (12)

where θ = {π1, . . . ,πK,φ1, . . . ,φK}, and on the condition that is z = k holds,
q(x, k; θ) is especially given by,

q(x, k; θ) = πkPk(x;φk). (13)

In the EM estimation of finite mixture models, we define the Q-function with
an estimate θ(t) at the t-th step, which is given by

Q(θ ; θ(t)) = 1
N

N∑
i=1

∑
z∈Z

q(z|xi; θ(t)) log q(xi, z; θ)

= 1
N

N∑
i=1

K∑
k=1

q(k|xi; θ(t)) log(πkPk(xi;φk)),

where q(k|xi; θ(t)) is a conditional probability given by

q(k|xi; θ(t)) = π
(t)
k Pk(xi;φ

(t)
k )∑K

m=1 π
(t)
m Pm(xi;φ

(t)
m )

. (14)

The E-step and the M-step are defined as follows.
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Fig. 6 A geometrical
interpretation of the EM
algorithm

EM algorithm

input data set {xi; i = 1, . . . , N}
initialize choose an initial parameter θ(0)

repeat from t = 0, until some conditions are satisfied
E-step calculate the Q-function from the previous estimate θ(t):

Q(θ ; θ(t)) = 1
N

N∑
i=1

∑
z∈Z

q(z|xi; θ(t)) log q(xi, z; θ).

M-step maximize the Q-function with respect to θ :

θ(t+1) = argmax
θ

Q(θ , θ(t)).

output converged parameter vector θ

From a geometrical viewpoint, the dynamics of the EM algorithm is inter-
preted as shown in Fig. 6.

Let p be a probability density from which the data set is generated. We
introduce a hidden variable z to p as well as the model q, that is

p(x, z;ψ) = p̃(x)p(z|x;ψ),

whereψ={π̌ , φ̌} gives the conditional probability p(z|x;ψ). Especially p(k|x;ψ)
is given by

p(k|x;ψ) = π̌kPk(x; φ̌k)∑K
m=1 π̌mPm(x; φ̌m)

.

For a geometrical interpretation, let us introduce a model manifold

M = {q(x, z; θ)} ⊂ P ,
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and a data manifold
D = {p(x, z;ψ)} ⊂ P .

The parameter θ specifies the point on the model manifold M, and ψ spec-
ifies the point on the data manifold D. Then the E-step and the M-step are
interpreted as the e-projection and the m-projection between D and M in the
function space, and the sequence of projections is called the em algorithm (In
general, the EM algorithm and the em algorithm are not equivalent: an example
where the EM and em algorithms do not coincide and the condition for their
equivalence are presented in Amari (1995), Watanabe and Yamaguchi (2004)).
Based on this geometrical interpretation, we generalize the EM algorithm with
the Bregman divergence instead of the KL divergence as follows.

UM algorithm

input data set {xi; i = 1, . . . , N}
initialize choose an initial parameter θ(0)

repeat from t = 0, until some conditions are satisfied
u-step apply the u-projection from the previous estimate θ(t) to D,

and obtain ψ(t+1):

ψ(t+1) = argmin
ψ

DU(p(ψ), q(θ(t))).

m-step apply the m-projection from ψ(t+1) to M, and obtain θ(t+1):

θ(t+1) = argmin
θ

DU(p(ψ(t+1)), q(θ))

= argmin
θ

HU(p(ψ(t+1)), q(θ)).

output converged parameter vector θ

The algorithm is composed by a sequence of the u- and the m-projections as

q(t) ∈ M −→ p(t+1) ∈ D (u-projection),

p(t+1) ∈ D −→ q(t+1) ∈ M (m-projection).

Due to the alternative optimization by the u-projection and the m-projection
associated with the Bregman divergence, we call this algorithm UM algorithm.

With Theorem 2, every u-step satisfies the following condition

DU(p(ψ(t+1)), q(θ(t))) ≤ DU(p(ψ(t)), q(θ(t))),

and every m-step satisfies the following condition

DU(p(ψ(t+1)), q(θ(t+1))) ≤ DU(p(ψ(t+1)), q(θ(t))),
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then DU(p(ψ), q(θ)) decreases monotonously as t increases. A monotonously
decreasing sequence with a lower bound is guaranteed its convergence, there-
fore DU(p(ψ), q(θ)) converges to its minimum, or at least its local minima, with
the UM algorithm.

At the u-step, the u-projection is given by

ψ(t+1) = argmin
ψ

∫ ∑
z∈Z

(
U(ξ(q(x, z; θ(t))))− U(ξ(p(x, z;ψ)))

− p(x, z;ψ)
(
ξ(q(x, z; θ(t)))− ξ(p(x, z;ψ))

))
dμ(x).

The minimizer ψ(t+1) is the solution of

∂DU(p(ψ), q(θ(t)))
∂ψ

=
N∑

i=1

p̃(xi)
∑
z∈Z

∂p(z|xi;ψ)
∂ψ

(
ξ(q(xi; θ(t))q(z|xi; θ(t)))− ξ(p̃(xi)p(z|xi;ψ))

)

= 0,

and a sufficient condition is given by

ξ(p̃(xi)p(z|xi;ψ(t+1))) = ξ(q(xi; θ(t))q(z|xi; θ(t))) where p̃(xi) > 0, (15)

which leads to the condition

p(z|xi;ψ(t+1)) = q(xi; θ(t))
p̃(xi)

q(z|xi; θ(t))

∝ q(z|xi; θ(t)).

Knowing that conditional probabilities p and q satisfy the condition

∑
z∈Z

p(z|xi;ψ(t+1)) =
∑
z∈Z

q(z|xi; θ(t)) = 1,

if p and q are described with the same model, then the u-projection in the u-step
results in

p(z|xi;ψ(t+1)) = q(z|xi; θ(t)) (16)

where q(z|xi; θ(t)) is given by Eq. (14), which is the same as ψ(t+1) = θ(t) in
this case. Note that in the case that the minimizer ψ(t+1) is not lead from the
condition Eq. (15), that is conditional probabilities p and q are different models,
then Eq. (16) is not appropriate.
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On the other hand, the m-step for the estimation of the finite mixture model
is written as

θ(t+1) = argmin
θ

∫ ∑
z∈Z

(
U(ξ(q(x, z; θ)))

− p(x, z;ψ(t+1))ξ(q(x, z; θ))
)

dμ(x)

= argmin
π ,φ

K∑
k=1

∫ (
U(ξ(πkPk(x;φk)))

− p(x, k;ψ(t+1))ξ(πkPk(x;φk))

)
dμ(x), (17)

by using Eq. (13). Since simultaneous optimization of π and φ is highly nonlin-
ear and generally difficult, we adopt the following two-step optimization as an
approximation of Eq. (17)

φ
(t+1)
k = argmin

φk

∫ (
U(ξ(π(t)k Pk(x;φk)))

− p(x, k;ψ(t+1))ξ(π
(t)
k Pk(x;φk))

)
dμ(x), (18)

π(t+1) = argmin
π

K∑
k=1

∫ (
U(ξ(πkPk(x;φ(t+1)

k )))

− p(x, k;ψ(t+1))ξ(πkPk(x;φ(t+1)
k ))

)
dμ(x). (19)

This approximation is the same as the Expectation/Conditional Maximization
algorithm (see Meng and Rubin 1993). Moreover, the estimation of π(t+1) in
Eq. (19) is approximated and simplified based on the geometrical structure of
models as discussed in the next subsection.

4.2 Simplification in m-step

4.2.1 Simplification with P method

In Eq. (19) at the m-step,π(t+1)
k is given by the solution of the following Lagrange

equation,
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∂(HU(p(ψ(t+1)), q(θ))+ λπ(1 − ∑K
m=1 πm))

∂πk

=
∫
πkPk(x;φ(t+1)

k )2ξ ′(πkPk(x;φ(t+1)
k ))dμ(x)

−
∫

p(x, k;ψ(t+1))ξ ′(πkPk(x;φ(t+1)
k ))Pk(x;φ(t+1)

k )dμ(x)− λπ

= 0, (20)

where λπ is a Lagrange multiplier. From Eq. (20), π(t+1)
k is given by

π
(t+1)
k =

∫
Pk(x;φ(t+1)

k )ξ ′(π(t+1)
k Pk(x;φ(t+1)

k ))p(x, k;ψ(t+1))dμ(x)+ λπ∫
Pk(x;φ(t+1)

k )2ξ ′(π(t+1)
k Pk(x;φ(t+1)

k ))dμ(x)
K∑

m=1

π(t+1)
m = 1. (21)

On the right-hand side of Eq. (21), π(t+1)
k is required to derive itself, then to

solve Eq. (21), a recursive procedure is needed. A simple approximation to
obtain π(t+1)

k is made by replacing π(t+1)
k with π(t)k on the right-hand side, that

is given by

π
(t+1)
k =

∫
Pk(x;φ(t+1)

k )ξ ′(π(t)k Pk(x;φ(t+1)
k ))p(x, k;ψ(t+1))dμ(x)+ λπ∫

Pk(x;φ(t+1)
k )2ξ ′(π(t)k Pk(x;φ(t+1)

k ))dμ(x)
K∑

m=1

π(t+1)
m = 1.

(22)

In general, we have to solve Eq. (22) with respect to both π and λπ , here
we furthermore propose the following simplification instead of the complete
optimization. Let MF be a subspace in F , defined as

MF =
{

qF (x, z; θF ) =
K∑

k=1

hk(z)wkPk(x;φk)

}
⊂ F ,

where θF = {w,φ} and w = {w1, . . . , wK} be the mixture weight instead of π
which satisfies wk ≥ 0 for all k. In general, MF is not in P because

∑K
k=1 wk = 1

is not assumed. As mentioned before, the Bregman divergence is defined as a
pseudo-distance to measure discrepancy between two functions in F , therefore
the calculation in the m-step can be modified by applying the m-projection from
p on D ⊂ P to qF on MF ⊂ F . By this modification, the calculation in Eq. (22)
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is replaced by

w(t+1)
k =

∫
Pk(x;φ(t+1)

k )ξ ′(w(t)k Pk(x;φ(t+1)
k ))p(x, k;ψ(t+1))dμ(x)∫

Pk(x;φ(t+1)
k )2ξ ′(w(t)k Pk(x;φ(t+1)

k ))dμ(x)
,

which does not include λπ . Therefore the weight parameter w is obtained with-
out solving the minimization problem. To proceed to the next u-step, qF on
MF ⊂ F should be projected to an appropriate point on M ⊂ P . This is
simply achieved by applying a projection from qF ∈ F to q ∈ P .

For example, π(t+1) is estimated from w(t+1) by applying the u-projection,
given by

π(t+1) = argmin
π

DU(π , w(t+1))

= argmin
π

[
K∑

k=1

(
U(ξ(w(t+1)

k ))− U(ξ(πk))− πk

{
ξ(w(t+1)

k )− ξ(πk)
})

+λ
(

1 −
K∑

k=1

πk

)]
,

and π(t+1) is given by the solution of

∂DU(π , w(t+1))

∂πk
= ξ(πk)− ξ(w(t+1)

k )− λ = 0,

therefore
π
(t+1)
k = u(ξ(w(t+1)

k )+ λ), (23)

and λ is determined so as to satisfy the normalization condition

K∑
m=1

π(t+1)
m = 1.

In this procedure, we only have to solve the one-dimensional minimization
problem with respect to λ.

Another way of estimating π(t+1) is applying the m-projection, that is

π(t+1) = argmin
π

DU(w(t+1),π) = argmin
π

HU(w(t+1),π)

= argmin
π

[
K∑

k=1

(
U(ξ(πk))− w(t+1)

k ξ(πk)
)

+ λ

(
1 −

K∑
k=1

πk

)]
,
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Fig. 7 A geometrical
interpretation of the UM
algorithm with P method.
Note that M ⊂ MF holds

and π(t+1) is given by the solution of

∂HU(w(t+1),π)
∂πk

= πkξ
′(πk)− w(t+1)

k ξ ′(πk)− λ = 0,

therefore

π
(t+1)
k = w(t+1)

k + λ

ξ ′(π(t+1)
k )

. (24)

In this case, a recursive procedure is required to obtain π
(t+1)
k , because the

equation has π(t+1)
k on the right-hand side.

In either case, q is able to be estimated from qF . The simplified algorithm is
composed of a sequence of projections as follows.

q(t) ∈ M −→ p(t+1) ∈ D (u-projection to P)
p(t+1) ∈ D −→ q(t+1)

F ∈ MF (m-projection to F)
q(t+1)

F ∈ MF −→ q(t+1) ∈ M (normalization by projection to P)

And this approximation is also interpreted geometrically as shown in Fig. 7.
In the following, this approximation is denoted by “P method”.

4.2.2 Simplification with F method

In P method, a projection from MF to M is applied every step. When the
drastic approximations which are
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argmin
p∈D

DU(p, q(t)) � argmin
p∈D

DU(p, q(t)F ) (25)

argmin
q∈M

DU(p(t), q) �

⎧⎪⎪⎨
⎪⎪⎩

argmin
q∈M

DU(q, q(t)F ) (P method w. u-proj.),

argmin
q∈M

DU(q
(t)
F , q) (P method w. m-proj.),

(26)

hold for q and qF , the algorithm can be simplified by ignoring a projection from
MF to M in P method. Roughly speaking, the above conditions Eqs. (25) and
(26) mean q and qF are close each other,

At the u-step of this simplification, the posterior of the hidden variable z,
that is denoted by qF (z|xi; θ

(t)
F ), is needed for obtaining the u-projection from

MF to P . It is defined by

qF (k|xi; θ
(t)
F ) = w(t)k Pk(xi;φ

(t)
k )∑K

m=1 w(t)m Pm(xi;φ
(t)
m )

at the u-step

and we can simply use

p(z|xi;ψ(t+1)) = qF (z|xi; θ
(t)
F ),

instead of Eq. (16).
In this approximation, a sequence of projections is written as follows:

q(t)F ∈ MF −→ p(t+1) ∈ D (u-projection to P),

p(t+1) ∈ D −→ q(t+1)
F ∈ MF (m-projection to F),

and like the discussion of the convergence of the UM algorithm, qF converges
to local minima in MF ⊂ F by this sequence of projections. This approximation
is called “F method”.

In F method, we do not have to normalize the model qF ∈ MF ⊂ F to
M ⊂ P before u-steps every time. Once the converged qF ∈ MF is found by
using F method, the convergence point q ∈ M can be found by the u-projection
or the m-projection from MF to M like m-step in P method. And the con-
vergence of this drastic approximation is expected to be faster than P method
because the extended model manifold MF is less restricted than M ⊂ P .

The geometrical interpretation of this approximation is shown in Fig. 8.
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Fig. 8 A geometrical
interpretation of the UM
algorithm with F method.
Note that M ⊂ MF holds

4.2.3 Special case of simplification

As for the conventional EM algorithm, the approximation Eq. (22) is not
required for calculating π(t+1)

k , and π(t+1)
k is simply given by

π
(t+1)
k =

∫
p̃(x)p(k|x;ψ(t+1))dμ(x)

= 1
N

N∑
i=1

p(k|xi;ψ(t+1)).

This is because that ξ ′(πkPk(x;φk)) is decomposed as follows,

ξ ′(πkPk(x;φk)) = 1
πkPk(x;φk)

= 1
πk

· 1
Pk(x;φk)

,

and all π(t+1)
k on the right-hand side in Eq. (21) is eliminated in the case of

ξ(·) = log(·). With this fact, Eq. (21) can be calculated without recursive pro-
cedures when ξ ′(πkPk(x;φk)) is decomposed into the product of two functions
f1(·) and f2(·) as

ξ ′(πkPk(x;φk)) = f1(πk)f2(Pk(x;φk)).

From the commutativity of f1(·) and f2(·), and with taking the case of πk = 1
into consideration, the condition that the right-hand side of Eq. (21) does not
include π(t+1)

k is given by

ξ ′(πkPk(x;φk)) = ξ ′(πk)ξ
′(Pk(x;φk)). (27)
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The β-divergence is a concrete case that satisfies Eq. (27), that is

(πkPk(x;φk))
β−1 = π

β−1
k Pk(x;φk)

β−1.

Additionally, if the extended model manifold MF is u-flat, then P method
with the m-projection from qF to q is equivalent to the complete minimization
of Eq. (19). Because Pythagorean relation

DU(p(t+1), q(t+1)) = DU(p(t+1), q(t+1)
F )+ DU(q

(t+1)
F , q(t+1))

holds from Theorem 1, and p(t+1) and q(t+1) satisfies the conditions

p(t+1) = argmin
p∈D

DU(p, q(t)), (28)

q(t+1) = argmin
q∈M

DU(q
(t+1)
F , q) = argmin

q∈M
DU(p(t+1), q), (29)

P method with the m-projection from qF to q is exactly equivalent to the
complete optimization of Eq. (19).

However P method with the m-projection is as difficult as the complete
optimization of Eq. (18) because Eq. (19) also requires the optimization with
respect to both π and λ to obtain π(t+1). On the other hand, P method with the
u-projection which is given by Eq. (23) requires the optimization with respect
to λ only. Moreover, the u-projection is a natural way to normalize a u-model.
Therefore, P method with the u-projection is applied in our experiments shown
in the following section.

These exact cases in P method also holds for the β-divergence: P method
with the m-projection is exactly equivalent to the complete optimization which
is given by Eq. (19). We explain that the β-divergence satisfies the condition of
Eq. (27) in the next section.

5 Example: UM algorithm with β-divergence

Let A and B be two categorical variables, A with I categories, and B with J
categories. An independency between A and B is denoted by

p(ai, bj) = p(ai)p(bj), (30)

where p(ai, bj) is the joint probability of the event (A, B) = (ai, bj) on a contin-
gency table.

Let K be the number of prepared independent tables to express the joint
probability distribution between A and B. The joint probability p(ai, bj) is
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described as

p(ai, bj) =
K∑

k=1

πkPk(ai, bj;φk)

=
K∑

k=1

πkPk(ai)Pk(bj),

where Pk(ai) and Pk(bj) are marginal probability distributions on the k-th inde-
pendent table. This mixture model is called the aspect model (Hoffmann, 1999),
or the latent class model (Agresti, 2002, Chap. 13). To estimate the mixture of
independent tables, we can apply the UM algorithm with the Bregman diver-
gence. Here we apply the UM algorithm with the β-divergence, given by

Dβ(p, q) =
I∑

i=1

J∑
j=1

(
q(ai, bj)

β+1

β + 1
− p(ai, bj)q(ai, bj)

β

β
+ p(ai, bj)

β+1

β(β + 1)

)

as an actual example of Eq. (3). With the β-divergence, all π(t+1) on the right-
hand side in Eq. (21) is canceled, because

ξ ′(πkPk(x;φk)) = π
β−1
k Pk(x;φk)

β−1

= ξ ′(πk)ξ
′(Pk(x;φk)),

and Eq. (27) holds. Moreover, the extended model manifold with respect to w
is given by

qF (x, z; wk) = u

(
ξ

(
K∑

k=1

hk(z)wkPk(x)

))

= u

(
K∑

k=1

hk(z)

(
wβkPk(x)β

β
− 1
β

))

= u

(
K∑

k=1

wβk
β

hk(z)Pk(x)
β − 1

β

)

= u

(
K∑

k=1

ẃktk(x, z)− b

)

where ẃk = wβk
β

, tk(x, z) = hk(z)Pk(x)β and b = 1
β

. Note that this model qF is
u-flat.

In this experiment, the distance between the mixture model q(A, B) with
K = 10 and the empirical probability distribution p̃(A, B) where I = 20 and



A modified EM algorithm for mixture models 23

(a) (b)

Fig. 9 The β-divergence Dβ(p̃, q) with β = 0.1 against the number of um-steps

Table 2 Average CPU time
in m-step calculations

Normal P method F method

CPU time (s) 0.6749 0.0091 0.0074

J = 20, was measured based on the β-divergence Dβ(p̃, q)with β = 0.1 in order
to compare the estimating methods.

At first, 20 × 20 contingency table was generated subject to a randomly gen-
erated distribution p, which is the mixture model with 10 independent tables.

The total sample size in a contingency table is 4000, and initial values of
parameters to be estimated are chosen at random from the uniform distri-
bution on [0, 1], and normalized such as

∑K
k=1 πk = 1,

∑I
i=1 Pk(ai) = 1 and∑J

j=1 Pk(bj) = 1 respectively. Figure 9a compares Dβ(p̃, q) for the first 5
steps of the normal UM method with two methods. In P method, qF was
normalized by the u-projection. For F method, qF was normalized to q ∈ M
by the u-projection at every m-step in order to evaluate Dβ(p̃, q), while the
algorithm is executed in MF . The graph shows the decrease of Dβ(p̃, q) for all
the methods. P method with the β-divergence shows almost the same result as
the normal method. In addition, F method converges slightly faster than the
other methods. This property comes from the fact that minimizers are searched
in F with less restriction at each step than in P . These results show that P and F
methods are working appropriately. Figure 9b depicts the evolution of Dβ(p̃, q)
for 100 steps, and it shows P and F methods converge almost equivalently after
100 steps.

Table 2 summarizes the average time for calculation of π (or w, in the case
of F method) of 100 m-steps .

The models were estimated on a Power Mac G5 which has 2 GHz PowerPC
G5 dual processors with 512 KB caches for each, and the time spent for I/O
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Fig. 10 Boxplots of the KL
divergence DKL(p, q) which
evaluates discrepancy
between the true distribution
p and the model q estimated
with small samples. The left
boxplot is the result of the
conventional EM estimation
with the KL divergence. The
right one is that of the UM
estimation with the
β-divergence (β = 0.1)

KL beta
0.

5
1.

0
1.

5
2.

0
2.

5

Type of divergence

D
(p

,q
)

is excluded from CPU time. To obtain π(t+1) at the m-step in the normal UM
estimation, we use the “L-BFGS-B” method by using “optim” routine equipped
in R-language version 2.1.1 (see R Development Core Team, 2005) with lower
bound πk ≥ 0, and minimize the objective function

Dβ(p, q)+ 104 ×
(

1 −
K∑

k=1

πk

)2

.

From the table, F method is more effective than the normal method with the
undevised optimization in view of computational cost. The average CPU time
of F method is about 1.2 times faster than that of P method. This difference
is important for estimation of probability tables especially in huge graphical
models.

The β-divergence possesses robustness to outliers in several situations
(Minami and Eguchi, 2002). In our experiments, the UM estimation with the
β-divergence shows the robustness to the small sample data set (for detail, see
Fujimoto and Murata, 2006). For example, on the same experimental setup
with the sample size is 400 which is very small compared with the number
of the parameters, the conventional EM algorithm (with the KL divergence)
shows over-fits to the sample though the UM algorithm with the β-divergence
(β = 0.1) does not show over-fits remarkably. We evaluated the same proce-
dure 20 times with different small sample sets. In the UM algorithm, the m-step
is also achieved by P method with the u-projection. Figure 10 shows boxplots
of the KL divergence DKL(p, q) which evaluates discrepancy between the true
distribution p and the model q estimated with small samples. The estimation
result with the β-divergence is much better than that with the KL divergence
as shown in the figure.
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6 Conclusion

In this paper, we have generalized the EM algorithm with the Bregman
divergence from a geometrical viewpoint. In the UM estimation of finite m-
mixture models, the m-step for estimating the mixture ratio parameter tends to
be complicated with the Bregman divergence. We have proposed two methods
to simplify the calculation at the m-step, and compared their computational
costs and estimation results on a toy example, and the results show appro-
priateness of the proposed methods. We have also explained the relationship
between P method and the undevised UM procedure in the particular situation.
The β-divergence applied in our experiments is a particularly convenient case.

In this paper, we focused on the m-mixture model, but there is another model,
the u-mixture model, which is closely related with the Bregman divergence. In
the case of the u-mixture model which is the other mixture model derived from
the Bregman divergence, the parameter set is not estimated simply with the
UM algorithm, this is because data generated from u-mixtures are not sim-
ply interpreted by introducing hidden variables like m-mixtures. Instead of
using the UM algorithm, we can estimate the u-mixture model with alternative
approaches, though this remains as a future work.
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