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Abstract We propose a score statistic to test the null hypothesis that the two-com-
ponent density functions are equal under a semiparametric finite mixture model.
The proposed score test is based on a partial empirical likelihood function under
an I -sample semiparametric model. The proposed score statistic has an asymptotic
chi-squared distribution under the null hypothesis and an asymptotic noncentral
chi-squared distribution under local alternatives to the null hypothesis. Moreover,
we show that the proposed score test is asymptotically equivalent to a partial empir-
ical likelihood ratio test and a Wald test. We present some results on a simulation
study.

Keywords Biased sampling problem · Chi-squared · Consistency · Local
alternative · Maximum likelihood · Mixture model · Partial empirical likelihood ·
Power · Score function · Score statistic · Semiparametric selection bias model ·
Wald test

1 Introduction

Finite mixture models have been used extensively in a wide variety of impor-
tant practical situations where data can be viewed as arising from two or more
populations mixed in varying proportions and have become the most widely used
statistical tool in the analysis of heterogeneous data; see for example Titterington
et al. (1985), McLachlan and Basford (1988), Titterington (1990), Lindsay (1995),
and McLachlan and Peel (2001). In the literature, the component density functions
of a finite mixture model are usually assumed either to be completely specified so
that mixing proportions are the only parameters to be estimated or to be specified
up to a number of unknown parameters that have to be estimated along with mixing
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proportions; see for example Hosmer (1973) and Murray and Titterington (1978).
In the context of nonparametric estimation of mixture proportions without any para-
metric assumptions on component density functions, Hall and Titterington (1984)
proposed efficient nonparametric estimation of mixture proportions by construct-
ing a sequence of multinomial approximations and related maximum likelihood
estimators. In a different approach using the logistic method, Anderson (1979)
proposed a semiparametric finite mixture model in which the log ratio of the two-
component density functions h and g is linear in data so that

h(x) = exp(α + βτx)g(x), (1)

where α is a scale parameter and β is a p×1 vector parameter. Here, the component
density functiong is unspecified.Anderson (1979) and Qin (1999) discussed several
attractive features of this model, including connections to the logistic regression
discrimination and case-control studies, and also considered the maximum semi-
parametric likelihood estimation of the underlying parameters and distribution
functions. In a more general setup, Zou et al. (2002) and Zou and Fine (2002) con-
sidered an I -component semiparametric finite mixture model with known mixing
proportions and component density functions g and h satisfying (1). Specifically,
let Xi1, . . . , Xini

be independent and identically distributed p-dimensional random
vectors from the ith mixture with density function

fi(x) = πih(x) + (1 − πi)g(x), i = 1, . . . , I, (2)

where the component density functions g and h satisfy (1) and the mixing pro-
portions πi are assumed to be known and satisfy 0 ≤ πi ≤ 1, π1 �= · · · �= πI .
Assume that {(Xi1, . . . , Xini

), i = 1, . . . , I } are jointly independent. Nagelkerke
et al. (2001) applied model (2) to estimate tuberculous prevalence based on a tuber-
culosis infection data collected from several populations with different mixes of
tuberculosis infection. As pointed out by Zou et al. (2002), model (2) is noniden-
tifiable when I = 1, so we assume that I ≥ 2 throughout this paper.

Let w(x) = exp(α + βτx) and ui(x) = πiw(x) + (1 − πi) for i = 1, . . . , I.
Then the semiparametric finite mixture model (2) is equivalent to the following
I -sample semiparametric model in which {(Xi1, . . . , Xini

), i = 1, . . . , I } are
jointly independent and Xi1, . . . , Xini

are independent with density function

fi(x) = ui(x)g(x), i = 1, . . . , I. (3)

Throughout this paper, let G(x) be the corresponding cumulative distribution func-
tion of g(x). Note that model (3) is an I -sample semiparametric selection bias
model with weight functions ui(x) depending on the unknown vector parameter
(α, β). The s-sample semiparametric selection bias model was proposed by Vardi
(1985) and was further developed by Gilbert et al. (1999).

Zou et al. (2002) proposed to employ the semiparametric finite mixture model
(2) in genetic quantitative trial loci analysis, where the component density func-
tions g and h are associated with the possible genotypes and the mixing proportions
are determined by the recombination fractions between a locus and the flanking
markers. They showed that a constrained empirical likelihood has an irregularity
when g = h or β = 0 under model (2) and further proposed a partial empirical
likelihood which allows for unconstrained estimation of the underlying parameters
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and distribution functions. To test the null hypothesis that a locus has no genetic
influence or H0 : β = 0 under model (2), Zou et al. (2002) proposed to use a log
partial empirical likelihood ratio statistic and proved that its asymptotic null dis-
tribution is chi-squared. Our focus of attention in this paper is to propose a partial
empirical likelihood-based score statistic for testing H0 : β = 0 under model (2) or
(3). We provide a different, yet equivalent construction of the log partial empirical
likelihood �(α, β) of Zou et al. (2002). The proposed score test is based on the
slope and expected curvature of �(α, β) under model (2) at the null value β = 0. It
makes use of the size of the score function ∂�

(
α̂, 0

)
/∂β evaluated at

(
α̂, 0

)
with

α̂ being the maximum partial empirical likelihood estimator of α subject to β = 0
under model (2). The discrepancy between ∂�

(
α̂, 0

)
/∂β and a p-dimensional zero

vector indicates evidence against H0 : β = 0 under model (2). The proposed score
statistic is a quadratic form based on ∂�

(
α̂, 0

)
/∂β and is shown to have an asymp-

totic chi-squared distribution under H0 : β = 0 and an asymptotic noncentral
chi-squared distribution under local alternatives to H0 : β = 0. Compared to the
partial empirical likelihood ratio test and the Wald test, one advantage of the pro-
posed score test is that it does not need to calculate the maximum partial empirical
likelihood estimator of (α, β) under model (2).

This paper is organized as follows. In Sect. 2, we propose our partial empiri-
cal likelihood-based score statistic and establish its asymptotic distribution under
model (2). In Sect. 3, we demonstrate the asymptotic equivalence among the score
test, the partial empirical likelihood ratio test, and the Wald test under model (2).
In Sect. 4, we discuss the consistency of the score test and investigate the power of
the score statistic theoretically and via simulation by considering local alternatives
to H0 : β = 0 under model (2). Proofs of the main theoretical results are provided
in the Appendix.

2 Construction of score statistics

We consider the problem of testing H0 : β = 0 versus H1 : β �= 0 under the
semiparametric finite mixture model (2). To this end, let n = ∑I

i=1 ni, ρi = ni/n

for i = 1, . . . , I, and π = ∑I
i=1 ρiπi. We assume that the ρi remain fixed as

min(n1, . . . , nI ) → ∞. Following Qin (1999) and Zou et al. (2002), the log pro-
file empirical likelihood function of (α, β) under model (2) is given by

�p(α, β) = −n log n −
I∑

i=1

ni∑

j=1

log
[
1 + λ{exp(α + βτxij ) − 1}]

+
I∑

i=1

ni∑

j=1

log[πi exp(α + βτxij ) + (1 − πi)], (4)

where λ = λ(α, β) is the Lagrange multiplier determined by the constrained equa-
tion

1

n

I∑

i=1

ni∑

j=1

exp(α + βτxij ) − 1

1 + λ[exp(α + βτxij ) − 1]
. (5)
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As shown by Zou et al. (2002), the constrained empirical likelihood �p(α, β) has
an irregularity under the null hypothesis H0 : β = 0. By taking the first-order
partial derivative of �p(α, β) with respect to α, it follows from (4) and (5) that

∂�p(α, β)

∂α
= −nλ +

I∑

i=1

ni∑

j=1

πi exp(α + βτxij )

πi exp(α + βτxij ) + (1 − πi)
·

Setting ∂�p(α, β)/∂α = 0 yields

λ = 1

n

I∑

i=1

ni∑

j=1

πi exp(α + βτxij )

πi exp(α + βτxij ) + (1 − πi)
· (6)

It is seen that the Lagrange multiplier λ is not a constant. However, by taking the
expectation on both sides of (6) under model (2), we have that

E(λ) = 1

n

I∑

i=1

niπiE

[
w(Xi1)

ui(Xi1)

]
=

I∑

i=1

ρiπi

∫
w(t)dG(t) =

I∑

i=1

ρiπi = π.

Here, we have used the fact that
∫

w(t)dG(t) = ∫
exp(α + βτ t)dG(t) = 1 since

h(t) = w(t)g(t) is a density function. Note that E(λ) = π is a known con-
stant under model (2) with known mixing proportions π1, . . . , πI . Replacing λ
with E(λ) = π in �p(α, β) of (4), we obtain the log partial empirical likelihood
function of (α, β) Zou et al. (2002):

�(α, β) = −n log n −
I∑

i=1

ni∑

j=1

log[π exp(α + βτxij ) + (1 − π)]

+
I∑

i=1

ni∑

j=1

log[πi exp(α + βτxij ) + (1 − πi)]. (7)

It is easy to verify that �(α, β) is equivalent to �2(β) of Zou et al. (2002) and Zou
and Fine (2002). Throughout this paper, let (α̃, β̃) = arg max(α,β) �(α, β) be the
maximum partial empirical likelihood estimator of (α, β) under model (2).

Suppose that α̂ maximizes �(α, β) with respect to α subject to β = 0. Then it
can be shown that α̂ satisfies

∂�(α, 0)

∂α
= exp(α)

π exp(α) + (1 − π)

I∑

i=1

ni(πi − π)

πi exp(α) + (1 − πi)
= 0, (8)

where the partial derivative notation reflects derivatives with respect to α that are
evaluated at β = 0. It is seen that α̂ = 0 is a solution to (8). Let

Un(α, β) = 1

n

∂�(α, β)

∂β
= 1

n

I∑

i=1

ni∑

j=1

[
πi

πi exp(α + βτxij ) + (1 − πi)

− π

π exp(α + βτxij ) + (1 − π)

]
exp(α + βτxij )xij
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be the partial empirical likelihood-based vector score function corresponding to β
and let

Un = Un(α̂, 0) = Un(0, 0) = 1

n

∂�(0, 0)

∂β
= 1

n

I∑

i=1

ni∑

j=1

(πi − π)xij . (9)

The values of the components in Un tend to be larger in absolute value when β̃
is farther from 0. Although the score function Un is based on a partial empirical
likelihood function rather than on a parametric likelihood function under a para-
metric model, it is the fact that E(Un) = 0 under H0 : β = 0 in model (2) that
allows construction of a score statistic for testing H0 : β = 0 under model (2). As
indicated in the following theorem, the asymptotic null distribution of Un depends
on the nonparametric part G in model (2). Write η = ∑I

i=1 ρi(πi − π)2 and


 = η

[∫
t t τ dG(t) −

(∫
tdG(t)

)(∫
tdG(t)

)τ]
. (10)

Theorem 1 Suppose that model (2) holds and that 
 is positive definite. Then as
n → ∞,

√
nUn → Np(0, 
) in distribution under H0 : β = 0.

The proof of Theorem 1 is given in the Appendix. According to Zou et al.
(2002), the maximum partial empirical likelihood estimator of G under model (2)
for fixed (α, β) is given by

G(α,β)(t) = 1

n

I∑

i=1

ni∑

j=1

I (xij ≤ t)

1 + π [exp(α + βτxij ) − 1]
.

Under H0 : β = 0, we propose to estimate G by

Ĝ(t) = Ĝ(α̂,0)(t) = 1

n

I∑

i=1

ni∑

j=1

I (xij ≤ t),

the standard empirical distribution function based on {(xi1, . . . , xini
), i = 1, . . . , I }.

Let 
̂ be the empirical version of 
 with G replaced by Ĝ, yielding


̂ = η



1

n

I∑

i=1

ni∑

j=1

xij x
τ
ij −



1

n

I∑

i=1

ni∑

j=1

xij







1

n

I∑

i=1

ni∑

j=1

xij





τ

 . (11)

It can then be shown that the estimated asymptotic covariance matrix 
̂ is a con-
sistent estimator of 
 under H0 : β = 0 in model (2). According to Theorem 1,
a partial empirical likelihood-based score statistic for testing H0 : β = 0 under
model (2) is given by

Vn = nUτ
n 
̂−1Un. (12)

Clearly, large observed values of Vn indicate evidence against H0 : β = 0 under
model (2). If 
−1 exists, then it follows from Theorem 1 that Vn → χ2

p in distri-

bution under H0 : β = 0 as n → ∞. On the other hand, if 
̂ is singular, we can
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replace 
̂−1 by the Moore–Penrose generalized inverse 
̂+ of 
̂ in (11). According
to Theorem 9.2.2 of Rao and Mitra (1971, p 173), Vn = nUτ

n 
̂+Un → χ2
r in

distribution under H0 : β = 0 as n → ∞, where r is the rank of 
̂, whether or not

̂+ converges.

Remark 2.1 Theorem 1 also forms the basis of constructing a score confidence re-
gion for β under model (2). Specifically, let χ2

p(ν) be such that P {χ2
p ≤ χ2

p(ν)} = ν.

When 
 is positive definite, C1−ν = {β : Vn(β) ≤ χ2
p(1 − ν)} is an approxi-

mate level 1 − ν score confidence region for β under model (2), where Vn(β) =
nUτ

n

(
α̂(β), β

)

̂−1

(
α̂(β), β

)
Un

(
α̂(β), β

)
with α̂(β) maximizing �(α, β) with re-

spect to α for fixed β and 
̂
(
α̂(β), β

)
is an estimated asymptotic covariance

matrix of Un

(
α̂(β), β

)
for fixed β. When p = 1, a level 1 − ν score con-

fidence interval for β can be constructed from Un

(
α̂(β), β

)
and is given by

I1−ν = {β :
√

nUn

(
α̂(β), β

)

̂−1/2

(
α̂(β), β

) ≤ z1−ν/2}, where z1−ν/2 satisfies
P(Z ≤ z1−ν/2) = 1 − ν/2 with Z ∼ N(0, 1).

Remark 2.2 The proposed construction of the partial empirical likelihood-based
score test may be extended to the case of unknown mixing proportions πi in model
(2). Nevertheless, since the πi are unknown, the partial empirical likelihood func-
tion �(α, β) = �(α, β, π1, . . . , πI ) in (7) depends on parameters (α, β) as well as
(π1, . . . , πI ). Consequently, the partial empirical likelihood-based score statistic
for testing H0 : β = 0 with unknown mixing proportions πi in model (2) is based
on the partial derivatives �(α, 0, π1, . . . , πI )/∂α and �(α, 0, π1, . . . , πI )/∂πi for
i = 1, . . . , I in that we need to maximize �(α, β, π1, . . . , πI ) with respect to
(α, π1, . . . , πI ) subject to β = 0.

3 Equivalence among the score, empirical likelihood ratio, and Wald tests

According to Theorem 2 of Zou et al. (2002), we have that

√
n

(
α̃ − α

β̃ − β

)
→ Np+1(0, 
) (13)

in distribution under model (2), where


 = S−1 − η

π2(1 − π)2
S−1

(
S0 + C0

S1 + C1

)
(S0 + C0, Sτ

1 + Cτ
1 )S−1, (14)

with

C0 =
I∑

i=1

ρiπi(1 − πi)

∫
exp(α + βτ t)

πi exp(α + βτ t) + (1 − πi)
dG(t),

C1 =
I∑

i=1

ρiπi(1 − πi)

∫
exp(α + βτ t)

πi exp(α + βτ t) + (1 − πi)
tdG(t),

S0 =
∫

π(1 − π) exp(α + βτ t)

π exp(α + βτ t) + (1 − π)
dG(t) − C0,

S1 =
∫

π(1 − π) exp(α + βτ t)

π exp(α + βτ t) + (1 − π)
tdG(t) − C1,
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S2 =
∫

π(1 − π) exp(α + βτ t)

π exp(α + βτ t) + (1 − π)
ttτ dG(t)

−
I∑

i=1

∫
ρiπi(1 − πi) exp(α + βτ t)

πi exp(α + βτ t) + (1 − πi)
ttτ dG(t),

S =
(

S0 Sτ
1

S1 S2

)
, S22·1 = S2 − S1S

−1
0 Sτ

1 . (15)

It follows from (13), (14), and (15) that
√

n(β̃ − β) → Np(0, 
β̃) (16)

in distribution under model (2), where


β̃ = S−1
22·1 − η

π2(1 − π)2
S−1

22·1(C1 − S1S
−1
0 C0)(C1 − S1S

−1
0 C0)

τ S−1
22·1.

Let

G̃(t) = 1

n

I∑

i=1

ni∑

j=1

I (xij ≤ t)

π exp(α̃ + β̃τ xij ) + (1 − π)

be the maximum partial empirical likelihood estimator of G(t) under model (2).
Then the partial empirical likelihood based Wald test of H0 : β = 0 under model
(2) has test statistic Wn = nβ̃τ 
̃−1

β̃
β̃, where 
̃β̃ is the empirical version of 
β̃ with

(α, β, G) replaced by (α̃, β̃, G̃). It can be shown that 
̃β̃ → 
−1 in probability
under the null hypothesis H0 : β = 0 in model (2). The asymptotic multivariate
normal distribution for β̃ in (16) implies that Wn has the same asymptotic χ2

p distri-
bution under H0 : β = 0 as does Vn. Moreover, it is seen from Theorem 1 and (16)
that the random vectors

√
nUn and

√
n
β̃ have the same asymptotic distribution

namely Np(0, 
) under H0 : β = 0. In fact, there holds a stronger relationship
between these two random vectors, as described below.

According to the proof of Theorem 2 of Zou et al. (2002), one can write

(
α̃

β̃

)
= 1

n
A−1

( ∂�(0,0)

∂α

∂�(0,0)

∂β

)
+ op

(
n−1/2

)
(17)

under H0: β = 0 in model (2), where

A =
(

A0 Aτ
1

A1 A2

)
,

A0 = η, A1 = η

∫
tdG(t), A2 = η

∫
t t τ dG(t). (18)

Equation (17) implies the following asymptotic expression for
√

nβ̃ under H0 :
β = 0 :

√
nβ̃ = √

n
−1Un + op(1). (19)
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It now follows from (19) that
√

n(Un − 
β̃) = op(1) under H0 : β = 0. This
asymptotic equivalence between

√
nUn and

√
n
β̃, along with the consistency of


̃β̃ , implies that Vn − Wn = op(1) under H0 : β = 0 in model (2). Consequently,
the score statistic Vn and the Wald statistic Wn are asymptotically equivalent for
testing the null hypothesis H0 : β = 0 under model (2).

It follows from the proof of Theorem 2 of Zou et al. (2002) and (7) that the
partial empirical likelihood ratio statistic for testing H0 : β = 0 has the following
asymptotic expression:

Rn = 2[�(α̃, β̃) − �(0, 0)]

= 2




I∑

i=1

ni∑

j=1

log[πi exp(α̃ + β̃τ xij ) + (1 − πi)] .

−
I∑

i=1

ni∑

j=1

log[π exp(α̃ + β̃τ xij ) + (1 − π)]





= 1

n

(
∂�(0, 0)

∂α
,

∂�(0, 0)

∂β

)
A−1

( ∂�(0,0)

∂α

∂�(0,0)

∂β

)
+ op(1)

= n(0, Un)A
−1

(
0

Un

)
+ op(1)

= nUτ
n 
−1Un + op(1). (20)

This implies that Rn−Vn = op(1) under H0 : β = 0 in model (2). Hence, the score
statistic Vn, the Wald statistic Wn, and the partial empirical likelihood ratio statistic
Rn are asymptotically equivalent for testing the null hypothesis H0 : β = 0 under
the semiparametric finite mixture model (2). Note, however, that one advantage
of the score statistic Vn over the partial empirical likelihood ratio statistic Rn and
the Wald statistic Wn is that according to (9), (11), and (12), the score statistic Vn

has a closed-form expression dependent only on the data and the mixing propor-
tions π1, . . . , πI ; thus it does not need to calculate the maximum partial empirical
likelihood estimator (α̃, β̃) of (α, β) under model (2), making the calculation of
Vn straightforward without the need to solve a system of equations. By contrast,
both the partial empirical likelihood ratio test and the Wald test depend on (α̃, β̃)

and are thus in need of seeking (α̃, β̃) by solving the following system of p + 1
equations:
(

∂�(α,β)

∂α
∂�(α,β)

∂β

)

=
I∑

i=1

ni∑

j=1

[
πi

πi exp(α + βτxij ) + (1 − πi)

− π

π exp(α + βτxij ) + (1 − π)

]
exp(α + βτxij )

(
1

xij

)
.

In all applications, one needs to use the Newton–Raphson method or some variant
to obtain Rn and Wn, but this is unnecessary for Vn. Consequently, the proposed
score test is computationally easier to implement than the partial empirical likeli-
hood ratio test and the Wald test.
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4 Power considerations

In this section, we investigate the power of the proposed score statistic Vn theoret-
ically and via simulation. We first discuss the consistency of Vn. For β �= 0 under
model (2), let α be the true α-value corresponding to β under model (2). Then it
can be shown after some algebra that Un → η(µh − µg) in probability, where

µg =
∫

tdG(t), µh =
∫

exp(α + βτ t)tdG(t).

It then follows that when 
 is positive definite and µg �= µh, the proposed score
test based on Vn in (12) is consistent against any fixed alternative β �= 0 under
model (2).

We now consider the local asymptotic power of the proposed score test under
local alternatives H1 : βn = n−1/2γ {1 + o(1)} under model (2), where γ ∈ Rp.
Let αn be the true value of α when β = βn under model (2). Then it can be shown
under model (2) that αn = n−1/2λ{1+o(1)} with λ = − ∫ γ τ tdG(t) = −A−1

0 Aτ
1γ,

where A0 and A1 are defined in (18). The following theorem establishes the large-
sample distribution of the proposed score statistic Vn for testing H0 : β = 0 under
the sequence of parameter values (αn, βn), where βn = n−1/2γ {1 + o(1)} and
αn = n−1/2λ{1 + o(1)} as n → ∞ for fixed γ ∈ Rp.

Theorem 2 Suppose that model (2) holds and that 
 is positive definite. Then
under model (2) with (α, β) = (αn, βn), Vn → χ2

p(δ2) in distribution as n → ∞,

where δ2 = γ τ
γ with 
 defined in (10) and χ2
p(δ2) is a noncentral chi-squared

random variable with p degrees of freedom and noncentrality parameter δ2.

The proof of Theorem 2 is given in the Appendix. According to the asymptotic
equivalence among the score test, the Wald test, and the empirical likelihood ratio
test, it follows from Theorem 2 and Eqs. (9), (19), and (20) that Wn → χ2

1 (δ2) in dis-
tribution and Rn → χ2

1 (δ2) in distribution under model (2) with (α, β) = (αn, βn)
as n → ∞.

The asymptotic null and alternative distributions of Vn, presented in Theorems
1 and 2, can be employed to obtain critical values of the proposed score test and
power against various local alternatives βn �= 0 by numerical integration, although
explicit computation is unfortunately somewhat complicated.

In the following, we present a small simulation study to compare the per-
formance of the proposed score statistic Vn with those of the partial empirical
likelihood ratio statistic Rn and the Wald statistic Wn, by examining their powers
against some local alternatives H1 : β �= 0 under the semiparametric finite mixture
model (2). We consider the genetic experiment discussed by Zou et al. (2002), in
which (π1, π2, π3) = (0.99, 0.5, 0.01) and (ρ1, ρ2, ρ3) = (0.418, 0.164, 0.418).
Moreover, we consider both continuous and discrete mixture distributions under
model (2) with p = 1. Since p = 1, all three test statistics—Vn, Wn, and Rn—have
an asymptotic chi-squared distribution with one degree of freedom.

In our simulation study, we first assume that g(x) is the standard normal density
function, h(x) = g(x − µ) is the density function of a N(µ, 1) distribution, and
fi(x) = πih(x) + (1 − πi)g(x) is the density function of a πiN(µ, 1) + (1 − πi)
N(0, 1) distribution for i = 1, 2, 3. Then model (2) holds with α = −µ2/2 and
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Table 1 Achieved significance levels and powers of Wn, Vn, and Rn in the case of normal mixture
distributions

γ n βn Nominal level Power
Wn Vn Rn

0 100 0 0.10 0.095 0.095 0.100
0 100 0 0.05 0.049 0.048 0.050
0 100 0 0.01 0.009 0.008 0.012
2 100 0.2 0.10 0.224 0.230 0.234
2 100 0.2 0.05 0.135 0.137 0.139
2 100 0.2 0.01 0.046 0.046 0.051
4 100 0.4 0.10 0.580 0.583 0.585
4 100 0.4 0.05 0.441 0.445 0.451
4 100 0.4 0.01 0.192 0.198 0.211
0 250 0 0.10 0.105 0.110 0.107
0 250 0 0.05 0.050 0.051 0.050
0 250 0 0.01 0.007 0.007 0.007
2 250 0.126 0.10 0.230 0.232 0.230
2 250 0.126 0.05 0.152 0.152 0.154
2 250 0.126 0.01 0.046 0.046 0.048
4 250 0.253 0.10 0.570 0.571 0.574
4 250 0.253 0.05 0.455 0.461 0.460
4 250 0.253 0.01 0.213 0.214 0.218

β = µ. Let βn = n−1/2γ. Then it is easy to see that under model (2), αn = 0 for all
n ≥ 1. Our aim is to compare the performance of Vn with those of Wn and Rn by
examining their powers against some local alternatives H1 : β = βn under model
(2). In our simulations, we considered γ = 0, 2.0, 4.0 and n = 100, 250. Note
that for γ = 0, 2.0, 4.0, we have that βn = 0, 0.2, 0.4 when n = 100 and βn =
0, 0.126, 0.253 when n = 250. For each value of n and γ, we generated 1,000 inde-
pendent sets of combined random samples from the 0.99N(βn, 1) + 0.01N(0, 1),
0.5N(βn, 1)+0.5N(0, 1), and 0.01N(βn, 1)+0.99N(0, 1) distributions. The sim-
ulation results are summarized in Table 1.

Next, we study how the proposed score statistic Vn performs when the data
is discrete under the same sample sizes considered in Table 1. To this end, we
assume that g(x) = (e−1/x!)I (x ∈ N ) is the standard Poisson P(1) frequency
function with mean 1, h(x) = (µx/x!)e−µI (x ∈ N ) is the frequency function of
a Poisson P(µ) distribution with mean µ, and fi(x) = πih(x) + (1 − πi)g(x)
is the density function of a πiP (µ) + (1 − πi)P (1) distribution for i = 1, 2, 3,
where N = {0, 1, . . . , }. Then model (2) holds with α = 1 − µ and β = log µ.
Let βn = n−1/2γ and µn = exp(βn) = exp

(
n−1/2γ

)
. Then it is easy to see that

under model (2), αn = −βn = −n−1/2γ for n ≥ 1. Again, our objective is to
compare the performances of Vn, Wn, and Rn by examining their powers against
some local alternatives H1 : β = βn under model (2). In our simulations, we
considered γ = 0, 2.0, 4.0 and n = 100, 250. Note that for γ = 0, 2.0, 4.0, we
have that µn = 1, 1.221, 1.492 when n = 100 and µn = 1, 1.135, 1.288 when
n = 250. For each value of n and γ, we generated 1,000 independent sets of com-
bined random samples from the 0.99P(µn) + 0.01P(1), 0.5P(µn) + 0.5P(1),
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Table 2 Achieved significance levels and powers of Wn, Vn, and Rn in the case of Poisson mixture
distributions

γ n βn µn Nominal level Power
Wn Vn Rn

0 100 0 1 0.10 0.101 0.100 0.103
0 100 0 1 0.05 0.053 0.053 0.059
0 100 0 1 0.01 0.010 0.009 0.011
2 100 0.2 1.221 0.10 0.252 0.255 0.256
2 100 0.2 1.221 0.05 0.160 0.162 0.165
2 100 0.2 1.221 0.01 0.053 0.054 0.060
4 100 0.4 1.492 0.10 0.600 0.608 0.605
4 100 0.4 1.492 0.05 0.477 0.480 0.487
4 100 0.4 1.492 0.01 0.239 0.242 0.252
0 250 0 1 0.10 0.103 0.101 0.106
0 250 0 1 0.05 0.046 0.048 0.048
0 250 0 1 0.01 0.009 0.010 0.009
2 250 0.126 1.135 0.10 0.215 0.219 0.217
2 250 0.126 1.135 0.05 0.143 0.146 0.147
2 250 0.126 1.135 0.01 0.046 0.047 0.047
4 250 0.253 1.288 0.10 0.618 0.617 0.620
4 250 0.253 1.288 0.05 0.496 0.501 0.498
4 250 0.253 1.288 0.01 0.241 0.254 0.250

and 0.01P(µn) + 0.99P(1) distributions. The simulation results are summarized
in Table 2.

It is seen from Tables 1 and 2 that the achieved significance levels of Vn, Wn,
and Rn are quite close to the corresponding nominal significance levels, and the
powers of Vn, Wn, and Rn are getting larger as γ moves away from 0. Our sim-
ulation results also reveal that the powers of Vn are all greater than or equal to
those of Wn except for the case in Table 2 with γ = 4, n = 250, and the nominal
significance level equal to 0.10, and that the powers of Rn are slightly larger than
those of Vn in most of the cases. In summary, our simulation study indicates that
the proposed score statistic Vn is superior to the Wald statistic Wn and is quite
comparable to the partial empirical likelihood ratio statistic Rn, in terms of their
power performances.

Appendix

Proof of Theorems 1 and 2

Under model (2) with (α, β) = (αn, βn) as n → ∞, we have

E(
√

nUn) = √
n

I∑

i=1

ρi(πi − π)

∫
[πi exp(αn + βτ

n t) + (1 − πi)]tdG(t)

= √
n

I∑

i=1

ρi(πi − π)

∫ [
πi(1 + αn + t τ βn) + (1 − πi)

]
tdG(t) + o(1)
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= √
n

I∑

i=1

ρi(πi − π)

∫ [
πi

(
1 + λ√

n
+ t τ

γ√
n

)
+ (1 − πi)

]
tdG(t)

+o(1)

=
I∑

i=1

ρi(πi − π)πi

∫
(λ + t τ γ )tdG(t) + o(1)

= ηλ

∫
tdG(t) + η

(∫
t t τ dG(t)

)
γ + o(1)

= A1λ + A2γ + o(1) = (A2 − A1A
−1
0 Aτ

1)γ + o(1)

= 
γ + o(1). (21)

Moreover, it can be shown that

Var(
√

nUn) = 
 + o(1) (22)

under model (2) with (α, β) = (αn, βn) as n → ∞. It now follows from (21), (22),
the multivariate central limit theorem, and Slutsky’s theorem that under (αn, βn),

√
nUn = 1√

n

I∑

i=1

ni∑

j=1

(πi − π)xij → Np(
γ, 
)

in distribution as n → ∞.Taking γ = 0 so that (αn, βn) = (0, 0) yields Theorem 1.
Since it can be shown that 
̂ is a consistent estimator of 
 under (αn, βn) as n → ∞,
it follows from Slutsky’s theorem and the well-known results on the distribution
of quadratic forms of normal random variables that Vn = nUτ

n 
̂−1Un → χ2
p(δ2)

in distribution under (αn, βn) as n → ∞, thus establishing Theorem 2. The proof
is completed. 	
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