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Abstract We consider parameter estimation in parametric regression models with
covariates missing at random. This problem admits a semiparametric maximum
likelihood approach which requires no parametric specification of the selection
mechanism or the covariate distribution. The semiparametric maximum likelihood
estimator (MLE) has been found to be consistent. We show here, for some specific
models, that the semiparametric MLE converges weakly to a zero-mean Gauss-
ian process in a suitable space. The regression parameter estimate, in particular,
achieves the semiparametric information bound, which can be consistently esti-
mated by perturbing the profile log-likelihood. Furthermore, the profile likelihood
ratio statistic is asymptotically chi-squared. The techniques used here extend to
other models.

Keywords Asymptotic normality · Efficiency · Infinite-dimensional M-estima-
tion · Missing at random · Missing covariates · Parametric regression · Profile
likelihood · Semiparametric likelihood

1 Introduction

Parametric regression models such as generalized linear models are commonly
used to assess the effect of a vector X of covariates on an outcome variable Y .
Under such a model, the conditional distribution of Y given X is known up to a
Euclidean regression parameter θ . Suppose a random sample is taken from the
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distribution of (X, Y ). If the sample is fully observed, then θ is usually estimated
by maximizing the likelihood. The maximum likelihood estimator (MLE) is con-
sistent, asymptotically normal and efficient, under regularity conditions.

A challenge for the statistical analysis arises when X is unobserved for some
subjects, either by design or by happenstance. Assume that X is missing at random
(MAR) in the sense of Rubin (1976), that is, the conditional probability given
(X, Y ) that a subject is selected for full observation depends only on Y and not on
X. Available methods to estimate θ from this data include complete case analysis,
pseudolikelihood (Carroll and Wand, 1991; Pepe and Fleming, 1991), mean score
(Reilly and Pepe, 1995), pseudoscore (Chatterjee et al. 2003), the method of Robins
et al. (1995a) and maximum likelihood (Ibrahim et al. 1999).

Recently, Zhang and Rockette (2005a) proposed a semiparametric maximum
likelihood method which extends the methods of Wild (1991), Roeder et al. (1996)
and Lawless et al. (1999) for related problems. This approach requires no paramet-
ric specification of the selection mechanism or the covariate distribution. Sufficient
conditions are given in Zhang and Rockette (2005a) for the existence and consis-
tency of the semiparametric MLE. Here we show, for specific models, that the semi-
parametric MLE is asymptotically Gaussian and efficient. Furthermore, the profile
likelihood for θ shares many properties with its parametric analogue. The semipara-
metric MLE can be implemented with an EM algorithm; see Zhang and Rockette
(2005b) for computational details and numerical results.

The main results of this paper are deduced from the Z-theorem (van der Vaart
and Wellner, 1996, theorem 3.3.1) and the profile likelihood theory (Murphy and
van derVaart 2000). The key arguments are parallel to those of van derVaart (1994),
van der Vaart and Wellner, (1996, example 3.3.10) and Murphy and van der Vaart
(2001). The last three references essentially dealt with regression problems with
covariates missing completely at random (MCAR), and the present paper can be
viewed as an extension to the MAR situation. Even for the MCAR problem, it
appears difficult to formulate a single set of conditions that cover most examples
of interest. Likewise, we shall focus on specific models but indicate how different
models may be treated by a similar argument. Despite this lack of generality, the
results of this paper shed light on the large-sample performance of the semipara-
metric MLE and suggest practical inferential procedures.

The proposed semiparametric MLE is also considered in a recent, independent
work of Chen (2004), who also proposed modeling strategies for more general pat-
terns of missing covariates. Chen suggests using the profile likelihood for variance
estimation, but offers no theoretical justification; a relevant result is established in
the present paper. Chen’s proof of asymptotic normality is remarkably concise, and
here we hope to make the theory accessible to a broader audience of statisticians.

The rest of the paper is organized as follows. In Sect. 2, we formulate the
problem, define the semiparametric MLE and review the key results of Zhang and
Rockette (2005a). In Sect. 3, we calculate the efficient score for estimating θ with
the covariate distribution unspecified. Then, in Sect. 4, a system of likelihood equa-
tions is constructed, which forms the basis for a linearization argument. In Sect. 5,
we explore a quadratic expansion of the profile log-likelihood. Extensions to more
general models are discussed in Sect. 6. Some technical details are omitted but can
be found in a technical report.
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2 Semiparametric MLE

Let X and Y be random vectors taking values in X and Y , respectively. The dis-
tribution of X is denoted by G and is unspecified. The conditional distribution of
Y given X = x is specified through f (·|x; θ), a regular conditional density with
respect to some fixed measure µ on Y . Here f is a known function and θ is an
unknown Euclidean regression parameter. Let (Xi, Yi), i = 1, . . . , n, be indepen-
dent copies of (X, Y ). If the (Xi, Yi) are completely observed, G can be estimated
by the empirical distribution of X and θ by the maximizer of

∏n
i=1 f (Yi |Xi; θ). This

can also be seen as the result of jointly maximizing the semiparametric likelihood

n∏

i=1

f (Yi |Xi; θ)G{Xi}, (1)

where G{x} := G({x}). The MLE of (θ, G) is asymptotically efficient.
Now suppose that X is unobserved for some subjects. (More general patterns

of missing covariates will be considered later in Sect. 6.2.) Let R = 1 if X is
observed; 0 otherwise. We require that X be missing at random with a certain
amount of observability. To be precise, assume that almost surely,

�(Y) := E(R|Y ) = E(R|X, Y ) > 0, (2)

�X(X) := E[�(Y)|X] = E(R|X) ≥ δ > 0. (3)

The function � will be referred to as the selection mechanism. As before, assume
that (Xi, Yi, Ri), i = 1, . . . , n, are independent copies of (X, Y, R). However, we
only observe (RiXi, Yi, Ri), i = 1, . . . , n.

Analogous to (1), a semiparametric likelihood for this reduced data may be
defined as

Ln(θ, G) =
n∏

i=1

[f (Yi |Xi; θ)G{Xi}]Ri [f (Yi; G, θ)]1−Ri , (4)

where f (y; G, θ) := ∫
X f (y|x; θ)dG(x). Note that θ and G are no longer “sep-

arated” from each other as they are in (1). Note also that (4) does not involve the
selection mechanism, by the MAR assumption (2). Let (θ0, G0, �0) denote the
true value of (θ, G, �). It is natural to estimate (θ0, G0) by maximizing Ln over
� × G, where � ⊂ R

d is the parameter set for θ and G the set of all probability
measures on X . This turns out to be asymptotically equivalent to a simpler maximi-
zation with the restriction that G be supported by the observed values of X (Zhang
and Rockette, 2005a, theorem 10). Computationally, the global maximization is
infinite-dimensional, whereas the restricted maximization is finite-dimensional.
Therefore in this paper we focus on the restricted MLE:

(θ̂n, Ĝn) = arg max
(θ,G):G{Xi :Ri=1}=1

Ln(θ, G),

although the arguments apply equally well to the true MLE.
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Under (2), (3) and some regularity conditions on the regression model, Zhang
and Rockette (2005a) show that almost surely, θ̂n → θ0 and ‖Ĝn −G0‖H → 0 for
every L1(G0)-bounded Glivenko-Cantelli class H. Here and in the sequel,

‖G‖H := sup
h∈H

∣
∣
∣
∣

∫

hdG

∣
∣
∣
∣ (5)

for a signed measure G and a class H of real-valued functions on X , provided
the integral exists for every h ∈ H. This consistency result follows from a lengthy
Wald-type argument, which requires a compact parameter set or a suitable compac-
tification of it. The main difficulty arises from the point mass of G in the likelihood
(4), for which we substitute an alternative expression. The proof relies heavily
on the empirical process theory, and the regularity conditions (mostly integrabil-
ity conditions) are driven by the desired Glivenko-Cantelli properties of certain
classes of functions. The result of Zhang and Rockette (2005a) applies to several
important models.

Example (Logistic regression). Suppose Y is a binary variable taking values in
{0, 1}. Write θ = (β0, β1) and assume that

f (1|x; θ) = P(Y = 1|X = x; θ) = [1 + exp(−β0 − βT
1 x)]−1.

Under this model, the problem of covariates missing at random can also be viewed
as one of two-phase sampling, studied by Wild (1991) and Lawless et al. (1999)
among others. More generally, the two problems overlap when Y is finitely dis-
crete. In that case the semiparametric MLE considered here is equivalent to the
one for two-phase sampling. The semiparametric MLE for two-phase sampling is
unavailable (without specifying the selection mechanism) in the next two examples.

Example (Linear regression). Y = R and µ is Lebesgue measure. With θ =
(β0, β1, σ ), assume that

f (y|x; θ) = 1√
2πσ

exp

[
(y − β0 − βT

1 x)2

−2σ 2

]

,

that is, given X = x, Y is normally distributed with mean β0 + βT
1 x and variance

σ 2.

Example (Poisson regression). Y = {0} ∪ N and µ is the counting measure. With
θ = (β0, β1), assume that

f (y|x; θ) = exp[y(β0 + βT
1 x) − exp(β0 + βT

1 x)]/y!,

that is, given X = x, Y follows a Poisson distribution with mean exp(β0 + βT
1 x).

In the next few sections we develop asymptotic distributional results for (θ̂n, Ĝn).
Although our strategy is quite general, different models may require different tech-
niques, making it difficult to formulate a general result with simple conditions. To
fix ideas, we shall work with specific models but indicate how different models
may be handled. The first example above, a special case of the two-phase sampling
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problem, is covered by the results of van der Vaart and Wellner (2001) and Bres-
low et al. (2003). We focus instead on the last two examples under the following
assumptions:

X is a compact interval in R, (6)

G0 is nondegenerate, (7)

� is compact, (8)

θ0 is interior to �. (9)

That X is one-dimensional is assumed for simplicity; higher dimensions can be
treated similarly. In practice, covariates can often be considered as bounded and
thus admit a compact support. Assumption (7) is necessary for identifiability. The
compactness of � is assumed to ensure consistency and may be relaxed with a
more sophisticated argument.

A linear/Poisson regression model along with assumptions (2), (3) and (6,7,8,9)
is implicitly assumed in Sects. 3–5. Wherever the two models admit a unified treat-
ment, general notations will be used to emphasize the main ideas and to facilitate
future generalizations to other models. Where necessary, the two models will be
treated separately.

3 Information calculation

In this semiparametric model with G and � unspecified, Robins et al. (1995a) have
derived an integral equation representation of the efficient score for θ , and Breslow
et al. (2003) have noted a minor correction to their formula. Here we derive an
alternative representation of the efficient score for θ which is convenient to use in
our arguments.

In the present setting, a general observation can be written as

V = V (X, Y, R) =
{

(Y, R) if R = 0,
(X, Y, R) if R = 1,

which takes values in (Y ×{0})∪ (X ×Y ×{1}) and is distributed under (θ, G, �)
as Qθ,G,� , defined by

Qθ,G,� (BY × {0}) =
∫

BY

(1 − �(y))f (y; G, θ)dµ(y),

Qθ,G,� (BXY × {1}) =
∫∫

BXY

�(y)f (y|x; θ)dG(x)dµ(y),

for Borel subsets BY , BX,Y of Y and X × Y , respectively. Define a measure λ on
the same space by

λ(BY × {0}) = µ(BY ),

λ(BXY × {1}) = (G0 × µ)(BXY ).
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With (G, �) fixed at (G0, �0), the class of probabilities Qθ,G0,�0 is dominated
by λ, with densities

dQθ,G0,�0

dλ
(x, y, r)= [�0(y)f (y|x; θ)]r [(1−�0(y))f (y; G0, θ)]1−r . (10)

The submodel θ �→ Qθ,G0,�0 is regular in the sense of Bickel et al. (1993, chapter
2) with score 	̇θ0,G0 at θ0, where

	̇θ,G(x, y, r) := r	̇XY
θ (x, y) + (1 − r)	̇Y

θ,G(y),

	̇XY
θ (x, y) := ∂ log f (y|x; θ)/∂θ,

	̇Y
θ,G(y) := ∂ log f (y; G, θ)/∂θ = Eθ,G[	̇XY

θ (X, Y )|Y = y].

Let Pθ,G denote the distribution of (X, Y, R) under (θ, G, �0), P Y
θ,G that of Y

under (θ, G), and similarly for P XY
θ,G , etc. Define the operators �Y

θ,G : L2(Pθ,G) →
L2(P

Y
θ,G), �X

θ : L2(Pθ,G) → L2(G) and Aθ,G : L2(Pθ,G) → L2(Pθ,G) by

�Y
θ,Gh(y) = Eθ,G,�0 [h(X, Y, R)|Y = y]

= f (y; G, θ)−1
∫

[�0(y)h(x, y, 1)

+(1 − �0(y))h(x, y, 0)] f (y|x; θ)dG(x), (11)

�X
θ h(x) = Eθ [h(X, Y, R)|X = x]

=
∫

[�0(y)h(x, y, 1)

+(1 − �0(y))h(x, y, 0)] f (y|x; θ)dµ(y), (12)

Aθ,Gh(x, y, r) = rh(x, y, r) + (1 − r)�Y
θ,Gh(y).

It is easy to see that �Y
θ,G, �X

θ and Aθ,G as Hilbert space operators are linear
and continuous. In what follows we use the subscript 0 to denote either θ0 or
(θ0, G0), depending on the context. Thus 	̇Y

0 = 	̇Y
θ0,G0

= �Y
θ0,G0

	̇XY
θ0

= �Y
0 	̇XY

0 and
	̇0 = 	̇θ0,G0 = Aθ0,G0 	̇

XY
θ0

= A0	̇
XY
0 , where the operators act componentwise. We

also use operator notation for integrals, so that P0	̇
XY
0 = P0	̇

Y
0 = P0	̇0 = 0.

The efficient score function for θ at θ0 is given by 	̇0 minus its projection into
the tangent space � for (G, �) at (G0, �0). Recall that � is defined as the closed
linear span of the set of scores at (G0, �0) in all regular one-dimensional submod-
els passing through (G0, �0) with θ fixed at θ0. For reasons that will become clear
later, it suffices to consider regular one-dimensional submodels passing through
G0 with (θ, �) fixed at (θ0, �0). Such a submodel can be constructed as follows.
Let h : X → R be measurable, bounded and nonconstant under G0. For a (small)
real number t , define Gt by

dGt

dG0
= 1 + t (h − G0h).
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Note that when t = 0, Gt as defined above is just G0, so that no ambiguity arises.
Clearly, with |t | sufficiently small, Gt is a probability measure on X . The proba-
bilities Qθ0,Gt ,�0 are again dominated by λ, with densities

dQθ0,Gt ,�0

dλ
(x, y, r) = {�0(y)f (y|x; θ0)[1 + t (h(x) − G0h)]}r

×[(1 − �0(y))f (y; Gt, θ0)]
1−r . (13)

The submodel t �→ Qθ0,Gt ,�0 is regular and has score B0h − G0h at t = 0, where
B0 = Bθ0,G0 and Bθ,G is the restriction of Aθ,G to L2(G). The collection of such
functions h is dense in L2(G0), and the map h �→ B0h − G0h is L2-continuous.
In view of the closedness of �, we now have

� ⊃ {B0h − G0h : h ∈ L2(G0)} = B0L
0
2(G0) = rge(B0) ∩ L0

2(P0), (14)

where rge(·) denotes the range of an operator, L0
2(G0) := {h ∈ L2(G0) : G0h =

0}, and similarly for L0
2(P0).

Let A∗
0 and B∗

0 denote the respective Hilbert adjoint operators of A0 and B0.
Then A∗

0 : L2(P0) → L2(P0) is given by

A∗
0h(x, y, r) = rh(x, y, r) + E0[(1 − R)h(X, Y, R)|Y = y]

= rh(x, y, r) + f (y; G0, θ0)
−1

×
∫

(1 − �0(y))h(z, y, 0)f (y|z; θ0)dG0(z), (15)

and B∗
0 = �X

0 A∗
0.

Remark 3.1 It is readily verified that B∗
0 = �X

0 A0 = �X
0 A0A0 = B∗

0 A0 on
L2(P

XY
0 ) and, in particular, B∗

0 = B∗
0 B0 on L2(G0).

Lemma 3.1 (a) A0 restricted to L2(P
XY
0 ) is one-to-one. (b) B∗

0 B0 is coutinuously
invertible. (c) rge(B0) is closed in L2(P0).

Proof Let A0h = 0 with h ∈ L2(P
XY
0 ). In random variable notation, this means

A0h(X, Y, R) = 0 almost surely. It follows that 0 = RA0h(X, Y, R) = Rh(X, Y )
almost surely, whence 0 = E0[Rh(X, Y )|X, Y ] = �0(Y )h(X, Y ) almost surely.
By assumption (2), this further implies that h(X, Y ) = 0 almost surely, i.e., h = 0
in L2(P

XY
0 ). Thus (a) is established; in particular, B0 is one-to-one. It follows

that the self-adjoint operator B∗
0 B0 is positive-definite, proving (b). In particular,

rge(B∗
0 ) = L2(G0), which is closed. By Theorem 4.14 of Rudin, (1973, page 96),

this implies that rge(B0) is closed in L2(P0). �
Lemma 3.1 says that the projection of 	̇0 into rge(B0) exists; by a standard result

in functional analysis, it is given by B0(B
∗
0 B0)

−1B∗
0 	̇0. This can also be written as

B0(B
∗
0 B0)

−1B∗
0 A0	̇

XY
0 = B0(B

∗
0 B0)

−1B∗
0 	̇XY

0 by Remark 3.1. It is verified that B0,
B∗

0 and hence B∗
0 B0 and (B∗

0 B0)
−1 are all mean-preserving, i.e., P0B0h = P0h.

Therefore B0(B
∗
0 B0)

−1B∗
0 	̇0 is in L0

2(P0) and is also the projection of 	̇0 into the
right side of (14) (an intersection of two closed subspaces). Denote

	̇e = 	̇0 − B0(B
∗
0 B0)

−1B∗
0 	̇0.
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It is not yet clear that 	̇e is the efficient score for θ . The right side of (14) is in
general smaller than �, and Ie := P0(	̇e	̇

T
e ) is larger than the efficient Fisher infor-

mation in the sense of nonnegative definiteness. If, however, we can demonstrate
the existence of a regular estimator of θ with asymptotic variance I−1

e , then 	̇e

must be the efficient score and Ie the efficient information (Bickel et al. 1993, page
76–77). This will be done for the semiparametric MLE in the next section.

4 Asymptotic normality and efficiency

In this section we show that (θ̂n, Ĝn) is asymptotically normal and that θ̂n achieves
the semiparametric information bound. These results are deduced from the infinite-
dimensional Z-theorem (van der Vaart and Wellner, 1996, theorem 3.3.1). Under
this approach, the parameter set � × G is identified with a subset of some Banach
space to be specified later. In the present context, the Z-theorem may be stated as
follows.

Z-Theorem Let n and  be random maps and a fixed map, respectively, from
� × G into a Banach space such that  is Fréchet-differentiable at (θ0, G0) with
a continuously invertible derivative ̇, that

√
n(n − )(θ̂n, Ĝn) − √

n(n − )(θ0, G0)

= o∗
p(1 + √

n‖(θ̂n − θ0, Ĝn − G0)‖), (16)

and that the sequence
√

n(n − )(θ0, G0) converges weakly to a tight random
element W . If (θ0, G0) = 0, n(θ̂n, Ĝn) = o∗

p(n−1/2), and θ̂n converges in outer
probability to θ0, then

√
ṅ(θ̂n − θ0, Ĝn − G0) = −√

n(n − )(θ0, G0) + o∗
p(1).

Consequently,
√

n(θ̂n − θ0, Ĝn − G0) converges weakly to −̇−1W .

In the rest of this section, we shall construct maps n and , verify the desired
properties and derive the asymptotic distribution of

√
n(θ̂n − θ0, Ĝn − G0) explic-

itly. These will draw on the arguments of van derVaart and Wellner, (1996, example
3.3.10) and van der Vaart (1994).

Since θ̂n is strongly consistent for θ0, which is interior to �, θ̂n eventually lies
in the interior of �. This and the definition of (θ̂n, Ĝn) as a maximizer together
imply that

0 = ∂

∂θ

1

n
log Ln(θ, Ĝn)

∣
∣
∣
∣
θ=θ̂n

= Pn	̇θ̂n,Ĝn
(17)

for large n, almost surely, where Pn denotes the empirical distribution of (X, Y, R).
A similar “differentiation” with respect to G can be carried out as in Sect. 3. For
a bounded measurable function h : X → R and a small real number t , define a
probability measure Ĝn,t by

dĜn,t

dĜn

= 1 + t (h − Ĝnh).
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Then Ĝn,0 = Ĝn and Ĝn,t is concentrated on {Xi : Ri = 1}. By the definition
of Ĝn, the map t �→ log Ln(θ̂n, Ĝn,t ) is maximized at t = 0. Differentiating with
respect to t and setting the derivative equal to 0 at t = 0, we obtain

Ĝnh = PnBθ̂n,Ĝn
h, (18)

in the operator notation defined in the last section.
We now define a system of likelihood equations. Let H be a uniformly bounded

Glivenko-Cantelli class of real functions on X , and let 	∞(H) denote the collection
of bounded real functions on H. The latter is a Banach space under the uniform
norm:

‖T ‖H = sup
h∈H

|T h|, T ∈ 	∞(H).

The product space R
d × 	∞(H) is a Banach space too, under the product norm:

‖(a, T )‖ = |a| ∨ ‖T ‖H, a ∈ R
d, T ∈ 	∞(H),

where ∨ denotes maximum and | · | the Euclidean norm. Let the random maps
n : � × G → R

d × 	∞(H) be defined by n(θ, G) = (n1(θ, G), n2(θ, G)),
where

n1(θ, G) = Pn	̇θ,G and n2(θ, G)h = PnBθ,Gh − Gh.

Note that Bθ,G preserves boundedness, so that n2(θ, G) is indeed in 	∞(H). It
follows from (17) and (18) that n(θ̂n, Ĝn) = 0 for large n, almost surely.

For the two examples we consider, it seems convenient to take H to be the col-
lection of real functions on X that are uniformly bounded by 1 and are Lipschitz
with Lipschitz norm at most 1. This is a Donsker class and hence a Glivenko-Can-
telli class (van der Vaart and Wellner, 1996, corollary 2.7.2), so that the consistency
result described in Sect. 2 applies. With this choice of H, ‖ · ‖H defined in (5) gen-
erates the weak topology on G (van der Vaart and Wellner, 1996, theorem 1.12.4).
For h : X → R, define

‖h‖1 = sup
x∈X

|h(x)| ∨ sup
x1,x2

|h(x1) − h(x2)|
|x1 − x2| .

Let C1(X ) denote the set of functions h with ‖h‖1 < ∞. Then H is the unit ball
of the Banach space C1(X ) under the 1-norm.

Each G ∈ G defines an element of 	∞(H) by h �→ Gh. Furthermore, for the
chosen H we have that G1 = G2 whenever ‖G1 − G2‖H = 0 (van der Vaart and
Wellner, 1996, lemma 1.3.12). Thus G is identified with a subset of 	∞(H), and
the n can be regarded as maps from R

d × 	∞(H) into itself whose domain is
the product of � with the set of probability measures in 	∞(H) under the given
identification.

The population version of n is given by  = (1, 2), where

1(θ, G) = P0	̇θ,G and 2(θ, G)h = P0Bθ,Gh − Gh. (19)

Simple algebra shows that (θ0, G0) = 0. Under the Z-theorem,  is required
to be Fréchet-differentiable at (θ0, G0), with derivative ̇ defined on the linear
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span of � × G − (θ0, G0). Heuristically, this can be seen as follows. First, for
(θ, G) ≈ (θ0, G0),

1(θ, G) − 1(θ0, G0) = P0(	̇θ,G − 	̇0) = P0(	̇θ,G − 	̇θ0,G) + P0(	̇θ0,G − 	̇0)

≈ P0	̈0(θ − θ0) +
∫∫

[1 − �0(y)][	̇XY
0 (x, y) − 	̇Y

0 (y)]

×f (y|x; θ0)dµ(y)d(G − G0)(x), (20)

where

	̈θ,G(x, y, r) := ∂

∂θT
	̇θ,G(x, y, r) = r	̈XY

θ (x, y) + (1 − r)	̈Y
θ,G(y)

	̈XY
θ (x, y) := ∂

∂θT
	̇XY

θ (x, y) = ∂2

∂θ∂θT
log f (y|x; θ),

	̈Y
θ,G(y) := ∂

∂θT
	̇Y

θ,G(y) = ∂2

∂θ∂θT
log f (y; G, θ).

In our (and many other) examples, the first term on the right side of (20) is equal
to −I0(θ − θ0), where I0 := P0(	̇0	̇

T
0 ) is the Fisher information for θ when G

is known to be G0. In operator notation, the second term can be rewritten as
−(G − G0)B

∗
0 	̇XY

0 . The derivative of the second component of  can be obtained
in a similar fashion. Uniformly over h ∈ H,

2(θ, G)h − 2(θ0, G0)h = (P0 − Pθ,G)Bθ,Gh = (P0 − Pθ,G0)Bθ,Gh

+(Pθ,G0 − Pθ,G)Bθ,Gh

≈ −(P0B0h	̇T
0 )(θ − θ0) − (G − G0)B

∗
0 B0h.

The foregoing discussion suggests that ̇ is given by the map
(

θ − θ0
G − G0

)

�→
(

̇11 ̇12

̇21 ̇22

) (
θ − θ0
G − G0

)

, (21)

where

̇11(θ − θ0) = −I0(θ − θ0), (22)

̇12(G − G0) = −(G − G0)B
∗
0 	̇0, (23)

̇21(θ − θ0)h = −(P0B0h	̇T
0 )(θ − θ0), (24)

̇22(G − G0)h = −(G − G0)B
∗
0 B0h. (25)

For this derivation to be valid, an intermediate set of sufficient conditions is given
in Sect. 6, which can be verified for our specific examples.

It is apparent from the block form (21) of ̇ that the continuous invertibility of
̇ would follow from the same property of both ̇11 and �̇ := ̇22 − ̇21̇

−1
11 ̇12.

Recall that I0 = P0[A0	̇
XY
0 (A0	̇

XY
0 )T]. Lemma 3.1 and assumption (7) together

then imply that I0 is positive definite, hence invertible. The second operator has
the form

�̇(G − G0)h = (G − G0)[(P0B0h	̇T
0 )I−1

0 B∗
0 	̇0 − B∗

0 B0h], h ∈ H, G ∈ G.
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�̇ is continuously invertible if and only if there exists c > 0 such that

‖�̇(G1 − G2)‖H ≥ c‖G1 − G2‖H, G1, G2 ∈ G.

The latter certainly would follow from the existence of c > 0 such that
{
(P0B0h	̇T

0 )I−1
0 B∗

0 	̇0 − B∗
0 B0h : h ∈ H} ⊃ cH. (26)

Remark 4.1 Actually, objects like B∗
0 	̇0 and B∗

0 B0h are originally defined as vec-
tors in L2(G0) and therefore represent equivalence classes of functions. Rather
than redefine these operators, we shall simply take the “natural” versions given by
(11), (12) and (15). So it is understood that

B∗
0 	̇0(x) = B∗

0 	̇XY
0 (x)

=
∫

Y

[

�0(y)	̇XY
0 (x, y)+(1−�0(y))

∫
X 	̇XY

0 (z, y)f (y|z; θ0)dG0(z)

f (y; G0, θ0)

]

×f (y|x; θ0)dµ(y),

B∗
0 B0h(x) = B∗

0 h(x)

=
∫

Y

[

�0(y)h(x) + (1 − �0(y))

∫
X h(z)f (y|z; θ0)dG0(z)

f (y; G0, θ0)

]

×f (y|x; θ0)dµ(y).

Clearly, (26) will hold if the operator C defined by

Ch = (P0B0h	̇T
0 )I−1

0 B∗
0 	̇0 − B∗

0 B0h (27)

maps C1(X ) into itself and is continuously invertible. To this end we write C =
C1 − C2 − C3, with

C1h = (P0B0h	̇T
0 )I−1

0 B∗
0 	̇0,

C2h = �X
0 h,

C3h = �X
0 [(1 − �0)�

Y
0 h],

and examine each component separately. (Recall that �X
0 (x) = ∫

�0(y)f (y|x; θ0)
dµ(y).)

Lemma 4.1 (a) C1 is compact. (b) C2 is continuously invertible. (c) C3 is compact.

Proof (a) It is elementary to check that all components of B∗
0 	̇0 are in C1(X ), so

that C1 indeed maps into C1(X ). It is linear and continuous, the latter due to
the fact that C1(X ) has a norm stronger than the uniform norm. Furthermore,
it has finite rank and therefore is compact.

(b) It can be shown that �X
0 is Lipschitz and bounded. For every h ∈ C1(X ), we

have
∣
∣�X

0 (x1)h(x1) − �X
0 (x2)h(x2)

∣
∣ ≤ 2

∥
∥�X

0

∥
∥

1

∥
∥h

∥
∥

1

∣
∣x1 − x2

∣
∣, x1, x2 ∈ X ,

so that �X
0 h ∈ C1(X ) . Hence C2 : C1(X ) → C1(X ) is linear and continu-

ous. By (3), C2 is one-to-one and onto. By the inverse mapping theorem, it is
continuously invertible.
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(c) The map h ∈ C1(X ) �→ (1 − �0)�
Y
0 h ∈ 	∞(Y) is linear and continuous

because ‖ · ‖∞ ≤ ‖ · ‖1. By Lemma 5.1 of van der Vaart (1994), �X
0 maps

	∞(Y) into C1(X ) and is compact. As a composition, C3 : C1(X ) → C1(X ) is
compact. �
The difference of two compact operators is again compact, so C is the differ-

ence of a compact operator and a continuously invertible one. By the theory of
Fredholm operators, it is onto and has a continuous inverse if and only if it is one-
to-one (Rudin, 1973, pages 99–103). The latter in fact follows from the positivity
of the efficient information Ie, which in turn follows from (7).

Lemma 4.2 (a) Ie is positive definite. (b) C : C1(X ) → C1(X ) is one-to-one.

Proof (a) Let aTIea = 0. Then, almost surely, 0 = aT	̇e = A0[aT	̇XY
0 −(B∗

0 B0)
−1

B∗
0 (aT	̇XY

0 )]. By Lemma 3.1, A0 is one-to-one on L2(P
XY
0 ), so that aT	̇XY

0 =
(B∗

0 B0)
−1B∗

0 (aT	̇XY
0 ) ∈ L2(G0). By (7), this implies a = 0.

(b) Let h ∈ C1(X ) be such that Ch = 0 in C1(X ) (i.e., pointwise). Simple algebraic
manipulation then yields

(P0B0h	̇T
0 ){I−1

0 P0[B0(B
∗
0 B0)

−1B∗
0 	̇0	̇

T
0 ] − I } = 0,

where I is the identity matrix.This can be written in a simpler form: IeI
−1
0 P0(B0

h	̇0) = 0. It follows from the positivity (invertibility) of Ie that P0(B0h	̇0) = 0.
Substituting this into the definition of C gives that B∗

0 B0h = 0 pointwise. By
Lemma 3.1, h = 0 G0-almost everywhere, whence �Y

0 h = 0P Y
0 -almost every-

where. Since f is positive everywhere, µ � P Y
0 and we have that �Y

0 h = 0
µ-almost everywhere. This shows that C3h = 0 pointwise, whence C2h = 0
pointwise. By the strict positivity of �X

0 , h = 0 pointwise (i.e., in C1(X )). �
Remark 4.2 A slight rearrangement of the foregoing discussion yields that B∗

0 B0 :
C1(X ) → C1(X ) is continuously invertible.

It follows from this discussion that C, �̇ and hence ̇ are continuously invert-
ible, with

�̇−1T h = T C−1h, h ∈ H, T ∈ rge(�̇),

̇−1 =
(

̇−1
11 (̇11 + ̇12�̇

−1̇21)̇
−1
11 −̇−1

11 ̇12�̇
−1

−�̇−1̇21̇
−1
11 �̇−1

)

. (28)

In order to apply the Z-theorem, it remains to verify the stochastic conditions
(16) and the weak convergence of

√
n(n − )(θ0, G0). In view of Lemma 3.3.5

of van der Vaart and Wellner (1996), it suffices to show that

P0|	̇θ,G − 	̇0|2 + sup
h∈H

P0[(Bθ,G − B0)h]2 → 0, ‖(θ − θ0, G − G0)‖ → 0

(29)

and that the class of functions

{	̇θ,G, Bθ,Gh − Gh : ‖(θ − θ0, G − G0)‖ < τ, h ∈ H} (30)
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is Donsker for some τ > 0. The uniform L2-convergence (29) essentially follows
from the dominated convergence theorem whereas the Donsker property of (30)
depends on special structures of the model. Both are verified for the two models
we consider.

With all conditions of the Z-theorem satisfied, we have the following asymptotic
representation. Write Gn = √

n(Pn − P0).

Theorem 4.3 We have

√
n

(
θ̂n − θ0

Ĝn − G0

)

= Gn

(
I−1
e 	̇e

B0C
−1h − (P0B0C

−1h	̇T
0 )I−1

0 	̇0 : h ∈ H
)

+ o∗
p(1).

(31)

In particular, θ̂n is asymptotically efficient.

Proof It follows from the Z-theorem and the continuous mapping theorem that

√
n

(
θ̂n − θ0

Ĝn − G0

)

= −̇−1
Gn

(
	̇0

B0h − G0h : h ∈ H
)

+ o∗
p(1).

A term-by-term examination shows that ̇−1 and Gn can be interchanged in the
above display. A direct application of (28) then gives (31), a key observation being
that

C−1(B∗
0 	̇0) = I0I

−1
e (B∗

0 B0)
−1B∗

0 	̇0,

which is easily verified. �

5 Profile likelihood

We now explore a different approach to the analysis of θ̂n (not Ĝn). This is based
on a quadratic expansion of the profile log-likelihood for θ near θ0, established
by Murphy and van der Vaart (2000) for a general semiparametric model. Aside
from the asymptotic normality of θ̂n, the results of this section yield a consistent
estimate of Ie and a profile likelihood ratio test.

At the core of this approach is a well-behaved least favorable submodel. In
what follows we propose a candidate submodel and verify that it satisfies the con-
ditions imposed by Murphy and van der Vaart (2000). For G ∈ G and θ , t in a
neighborhood of θ0, define Gt(θ, G) by

dGt(θ, G)

dG
= 1 − (t − θ)ThG,

where hG := h0 − Gh0, and h0 := (B∗
0 B0)

−1B∗
0 	̇0 is the least favorable direction

for estimation of θ at (θ0, G0). From the last section, all components of h0 are in
C1(X ); in particular, they are bounded, so that Gt(θ, G) ∈ G for |t −θ | sufficiently
small. A parametric submodel can then be defined by t �→ (t, Gt(θ, G)) (for θ ,
t in a small neighborhood of θ0). This submodel clearly passes through (θ, G) at
t = θ :

Gθ(θ, G) = G, every (θ, G).
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Thus condition (8) of Murphy and van der Vaart (2000) is met. Under this sub-
model, the log-density of V with respect to some dominating measure is, up to a
constant,

	t,θ,G(x, y, r) :

= log

{[

f (y|x; t)
dGt(θ, G)

dG
(x)

]r[ ∫

f (y|u; t)dGt(θ, G)(u)

]1−r
}

= r log f (y|x; t) + r log[1 − (t − θ)ThG(x)]

+(1 − r) log
∫

f (y|u; t)[1 − (t − θ)ThG(u)]dG(u). (32)

Remark 5.1 This does not correspond exactly to the semiparametric likelihood
(expression (4)) we use, as no point mass appears in the above display. Adding the
term r log G{x} to the right side would make an exact correspondence with (4).
However, the resulting function would be difficult, if not impossible, to work with,
precisely because of the point mass. Inspection of the proof of Murphy and van der
Vaart (2000)’s Theorem 1 reveals that, in connection with the likelihood, one may
take (in their notation) l(t, θ, η) = log l(t, ηt (θ, η)) + j (θ, η) for any function j
indexed by (θ, η) only. In particular, 	t,θ,G defined above is a legitimate choice,
provided it satisfies the regularity conditions given in their theorem.

Differentiating (32) with respect to t gives

	̇t,θ,G = 	̇t,Gt (θ,G) − Bt,Gt (θ,G)ht,θ,G, (33)

where ht,θ,G := hG/[1−(t−θ)ThG]. The formula for the second derivative 	̈t,θ,G is
more complicated. Clearly, 	̇θ0,θ0,G0 = 	̇e, so that the submodel t �→ (t, Gt(θ0, G0))
is least favorable for estimating θ at (θ0, G0) and condition (9) of Murphy and van
der Vaart (2000) is satisfied. It is elementary to check the continuity, Glivenko-
Cantelli and Donsker properties of the functions 	̇t,θ,G and 	̈t,θ,G at and around
(θ0, θ0, G0).

The profile likelihood for θ is given by

PLn(θ) := max
{
Ln(θ, G) : G ∈ G, G{Xi : Ri = 1} = 1

}
.

Denote by Ĝn(θ) any maximizer in the above display, so that PLn(θ) = Ln(θ,
Ĝn(θ)). Then

θ̂n = arg max
θ∈�

PLn(θ) and Ĝn = Ĝn(θ̂n).

Condition (10) of Murphy and van der Vaart (2000) requires that ‖Ĝn(θ̄n) −
G0‖H

p−→ 0 whenever θ̄n

p−→ θ0. This follows from an argument similar to the
consistency proof for (θ̂n, Ĝn). It only remains to verify condition (11), the no-bias

condition. Let θ̄n

p−→ θ0. We need to show that

P0	̇θ0,θ̄n,Ĝn(θ̄n)
= op(|θ̄n − θ0| + n−1/2).
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In light of the discussion of Murphy and van der Vaart (2000, page 457), this is
equivalent to

P0	̇θ0,θ0,Ĝn(θ̄n)
= op(|θ̄n − θ0| + n−1/2). (34)

Write

P0	̇θ0,θ0,Ĝn(θ̄n)
= P0(	̇θ0,Ĝn(θ̄n)

− Bθ0,Ĝn(θ̄n)
hĜn(θ̄n)

)

= P0(	̇θ0,Ĝn(θ̄n)
− Bθ0,Ĝn(θ̄n)

h0 + Ĝn(θ̄n)h0)

= 1(θ0, Ĝn(θ̄n)) − 2(θ0, Ĝn(θ̄n))h0

= ξ(θ0, Ĝn(θ̄n)), (35)

where the first step follows from (33), the second from the definitions of hG and
Bθ,G, the third from (19), and ξ : R

d × 	∞(H) → R
d is defined by ξ(a, T ) =

a − T h0. Since  is Fréchet-differentiable at (θ0, G0),

(θ0, Ĝn(θ̄n)) = (θ0, Ĝn(θ̄n)) − (θ0, G0)

= ̇(0, Ĝn(θ̄n) − G0) + op(‖Ĝn(θ̄n) − G0‖H).

With ξ linear and continuous, (35) now becomes

P0	̇θ0,θ0,Ĝn(θ̄n)
= ξ̇(0, Ĝn(θ̄n) − G0) + op(‖Ĝn(θ̄n) − G0‖H)

= op(‖Ĝn(θ̄n) − G0‖H), (36)

where the second step is due to the fact that ξ̇(0, G−G0) = 0 for all G. In view
of (36), (34) will follow as soon as

Ĝn(θ̄n) − G0 = Op(|θ̄n − θ0| + n−1/2). (37)

To this end, note that (18) continues to hold with (θ̂n, Ĝn) replaced by (θ̄n, Ĝn(θ̄n)).
In particular, for h ∈ H,

√
n(Ĝn(θ̄n) − G0)h = √

nPnBθ̄n,Ĝn(θ̄n)
h − √

nP0B0h

= GnBθ̄n,Ĝn(θ̄n)
h + √

nP0(Bθ̄n,Ĝn(θ̄n)
− B0)h

= GnBθ̄n,Ĝn(θ̄n)
h + √

n[2(θ̄n, Ĝn(θ̄n))

−2(θ0, G0)]h + √
n(Ĝn(θ̄n) − G0)h. (38)

Applying once again the differentiability of  at (θ0, G0), we obtain
√

n[2(θ̄n, Ĝn(θ̄n)) − 2(θ0, G0)]h = −(P0B0h	̇T
0 )

√
n(θ̄n − θ0)

−√
n(Ĝn(θ̄n) − G0)B

∗
0 B0h

+op(
√

n|θ̄n − θ0|)
+op(

√
n‖Ĝn(θ̄n) − G0‖H) (39)

uniformly in h. It follows from Remark 4.2 that

{B∗
0 B0h : h ∈ H} ⊃ cH (40)
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for some c > 0. Combine (38, 39, 40), take suprema over h, and conclude that
√

n‖Ĝn(θ̄n) − G0‖H ≤ c−1‖GnBθ̄n,Ĝn(θ̄n)
‖H + Op(

√
n|θ̄n − θ0|)

+op(
√

n‖Ĝn(θ̄n) − G0‖H).

From this (37) follows, provided the first term on the right is Op(1). The latter can
be ascertained using the next lemma, which can be argued along the lines of van
der Vaart (1998, lemma 19.24).

Lemma 5.1 Let H be a set, F ⊂ L2(P ) a Donsker class, B : H → F , and
(Bm) a sequence of random maps such that suph∈H ‖(Bm − B)h‖P,2

p−→ 0. Then

suph∈H |Gm(Bm − B)h| p−→0.

The uniform L2-continuity (29) and the weak consistency of (θ̄n, Ĝn(θ̄n)) to-
gether imply that

sup
h∈H

‖(Bθ̄n,Ĝn(θ̄n)
− B0)h‖P0,2

p−→0.

In view of this and the Donsker property of (30), Lemma 5.1 yields

GnBθ̄n,Ĝn(θ̄n)
= GnB0 + op(1) = Op(1)

in 	∞(H). This completes the verification of (37) and hence the no-bias condition.
Thus all conditions of Murphy and van der Vaart (2000)’s Theorem 1 and its

corollaries have been established. In return, we have the following result. Write
pln(θ) = log PLn(θ).

Theorem 5.2 For every sequence θ̄n

p−→ θ0, we have

pln(θ̄n) = pln(θ0) + n(θ̄n − θ0)
T
Pn	̇e − n(θ̄n − θ0)

TIe(θ̄n − θ0)/2

+op(
√

n‖θ̄n − θ0‖ + 1)2.

In particular,
√

n(θ̂n − θ0) = GnI
−1
e 	̇e + op(1), (41)

−2[pln(θ̂n + unvn) − pln(θ̂n)]/(nu2
n) = vTIev + op(1), (42)

2[pln(θ̂n) − pln(θ0)] = n(θ̂n−θ0)
TIe(θ̂n−θ0)+op(1),

(43)

for all sequences vn

p−→v ∈ R
d and un

p−→0 with (
√

nun)
−1 = Op(1).

Expression (41) says that
√

n(θ̂n − θ0) → N(0, I−1
e ), which is not new to us.

What is new here is that, by (42), Ie can be consistently estimated by perturbing the
profile log-likelihood for θ around θ̂n. This makes possible Wald tests and related
confidence statements about θ . Furthermore, (43) implies that the profile likelihood
ratio statistic, like its parametric analogue, is asymptotically chi-squared with d
degrees of freedom. This justifies testing hypotheses about θ using a profile like-
lihood ratio test and constructing confidence sets by inverting this test, just like in
a parametric model.
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6 Generalizations

6.1 Different regression models and higher-dimensional X

The main ideas of this paper apply to more general problems than the two exam-
ples studied here. However, it appears difficult to formulate a general theorem that
covers most problems of interest, because different models may require different
techniques. Some results are obtained more easily by appealing to special struc-
tures of the model. We now consider how the preceding discussion may be adapted
to a different regression model or a higher-dimensional X.

Observe first that the information calculation in Sect. 3 generalizes easily. For
a general regression model, one only needs to check that the submodels considered
therein are regular and that the corresponding scores can be obtained by differenti-
ating the log-density. Lemma 3.1 relies on assumption (2) but no special structures
of the model.

The validity of the likelihood equations requires little more than differentiabil-
ity in θ and holds quite generally. At this point, H can be any uniformly bounded
Glivenko-Cantelli class such that n and  are well defined as maps on a subset of
R

d × 	∞(H). The last condition can often be ascertained by using Lemma 1.3.12
of van der Vaart and Wellner (1996) if H consists of continuous functions.

Another consideration in choosing H is the differentiability of  at (θ0, G0).
The formulas we have derived appear reasonable, but have to be verified rigorously
for a candidate H. The intermediate set of sufficient conditions given below may
be helpful.

Lemma 6.1 Assume that P0	̈
XY
0 + var(	̇XY

0 ) = 0 and that

P0

∣
∣	̇XY

θ − 	̇XY
0 − 	̈XY

0 (θ − θ0)
∣
∣ = o(|θ − θ0|), (44)

P0

∣
∣	̇Y

θ,G − 	̇Y
θ0,G

− 	̈Y
0 (θ − θ0)

∣
∣ = o(|θ − θ0|), (45)

∫∫

[1 − �0(y)](	̇Y
θ0,G

− 	̇Y
0 )(y)f (y|x; θ0)dµ(y)d(G − G0)(x)

= o(‖G − G0‖H), (46)
∫∫

∣
∣f (y|x; θ) − f (y|x; θ0) − ḟ (y|x; θ0)(θ − θ0)

∣
∣ dµ(y)dG0(x)

= o(|θ − θ0|), (47)

sup
h∈H

P0(Bθ,G0h − B0h)2 = o(1), (48)

sup
h∈H

∣
∣(G − G0)(B

∗
θ,GBθ,G − B∗

0 B0)h
∣
∣ = o(‖G − G0‖H), (49)

as ‖(θ − θ0, G − G0)‖ → 0. Then  is differentiable at (θ0, G0), with derivative
̇ given by (21–25).

The proof is elementary and is omitted.
Our verification of the continuous invertibility of ̇ depends crucially on the

fact that H is the unit ball of the Banach space C1(X ). In general, one may take H to
be the unit ball of a Banach space (B, ‖ · ‖) contained in 	∞(X ) with ‖ · ‖ ≥ ‖ ·‖∞.
Then the continuous invertibility of ̇ will follow if C defined by (27) maps B into
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itself and is continuously invertible. Examples of B include Hölder classes (van
der Vaart and Wellner, 1996, section 2.7.1) and the space of bounded functions of
bounded variation. The theory of Fredholm operators may again be useful here.
Suppose that

all components of B∗
0 	̇0 are in B, (50)

B∗
0 B0 : B → B is continuously invertible. (51)

Then C : B → B is linear and continuous. Furthermore, the first component of
C has finite rank and hence is compact. Therefore C is continuously invertible if
and only if it is one-to-one. The latter boils down to the positivity of the efficient
information Ie, which is essentially equivalent to the condition that

a = 0 if aT	̇XY
0 (x, y) depends only on x, (52)

i.e., that the components of 	̇XY
0 as vectors in the quotient space L2(P

XY
0 )

/
L2(G0)

are linearly independent. This discussion is summarized as follows.

Lemma 6.2 (a) If Ie is positive definite, then (52) holds. (b) Conversely, (2) and
(52) together imply the positivity of Ie. (c) Under (2), (51) and (52), C is one-to-one
on B. (d) Under (2) and (50, 51, 52), C : B → B is continuously invertible.

The proof of this consists of repetitions of previous arguments and is omitted.
In verifying the stochastic conditions, it will be convenient if H is a Donsker

class. Thus if a Hölder class Cα(X ) is used as B, one may wish to take α at least
half of the dimension of X (van der Vaart and Wellner, 1996, corollary 2.7.2). This
explains the choice of α = 1 for our examples with one-dimensional covariates.
The Donsker property of (30) is likely to depend on special structures of the model.

If these steps are all successful, one can then deduce the asymptotic normality
result as in Theorem 4.3. Moreover, the arguments of Sect. 5, which are based on
the same elementary facts, require minimal modifications.

6.2 General patterns of missing covariates

In practice, X need not be missing as a whole. Suppose only a portion of X can be
missing. Write X = (W, Z), where W is always observed and Z is possibly miss-
ing. Then the MAR assumption should be interpreted as E(R|X, Y ) = E(R|W, Y)
almost surely. It is straightforward to extend the semiparametric MLE if W is
finitely discrete, taking values in {wj : j = 1, . . . , k}, say. Redefine G(·|wj ) as
the conditional distribution of Z given W = wj . Then a semiparametric likelihood
analogous to (4) can be written as

L(θ, G) =
n∏

i=1

[
f (Yi |Wi, Zi; θ)G({Zi}|Wi)

]Ri
[ ∫

f (Yi |z, Wi; θ)G(dz|Wi)
]1−Ri

,

and a semiparametric MLE can be obtained by maximizing this likelihood. We
expect that an asymptotic theory for this will follow from the same arguments as
in previous sections.
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If W is not discrete or, more generally, if multiple patterns of missing covari-
ates can occur, then it seems difficult to treat the covariate distribution completely
nonparametrically within the maximum likelihood framework. Partial robustness
may be achieved as in Chen (2004), where odds ratio models, rather than condi-
tional distribution models, are specified among the components of X. It should be
noted, however, that the interpretation of the MAR assumption can be subtle in
the presence of arbitrary patterns of missing covariates. It may be of interest to
consider alternative approaches such as estimating equations (e.g., Robins et al.
1994, 1995a,b).

Disclaimer The views expressed in this article are those of the authors and not necessarily of
the United States Food and Drug Administration.
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