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Abstract Let X be a random variable taking values in a function space F , and
let Y be a discrete random label with values 0 and 1. We investigate asymptotic
properties of the moving window classification rule based on independent copies
of the pair (X, Y ). Contrary to the finite dimensional case, it is shown that the
moving window classifier is not universally consistent in the sense that its proba-
bility of error may not converge to the Bayes risk for some distributions of (X, Y ).
Sufficient conditions both on the space F and the distribution of X are then given
to ensure consistency.

Keywords Classification · Consistency · Kernel rule · Metric entropy · Universal
consistency

1 Introduction

In many experiments, scientists and practitioners often collect samples of curves
and other functional observations. For instance, curves arise naturally as observa-
tions in the investigation of growth, in climate analysis, in food industry or in speech
recognition; Ramsay and Silverman (1997) discuss other examples. The aim of the
present paper is to investigate whether the classical nonparametric classification
rule based on kernel (as discussed, for example, in Devroye et al. 1996) can be
extended to classify functions.
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Classical classification deals with predicting the unknown nature Y , called a
label, of an observation X with values in R

d (see Boucheron et al. 2005, for a recent
survey). Both X and Y are assumed to be random, and the distribution of (X, Y )
just describes the frequency of encountering particular pairs in practice. We require
for simplicity that the label only takes two values, say 0 and 1. If we denote by F0
(resp. F1) the conditional distribution of X given Y = 0 (resp. Y = 1), then the
distribution of X is given by πF0 + (1 − π)F1, where π = P{Y = 0}. Note that,
in this framework, the label Y is random, and this casts the classification problem
into a bounded regression problem.

The statistician creates a classifier g : R
d → {0, 1} which represents her guess

of the label of X. An error occurs if g(X) �= Y , and the probability of error for a
particular classifier g is

L(g) = P{g(X) �= Y } .

It is easily seen that the Bayes rule

g∗(x) =
{

0 if P{Y = 0|X = x} ≥ P{Y = 1|X = x},
1 otherwise, (1)

is the optimal decision, in the sense that, for any decision function g : R
d → {0, 1},

P{g∗(X) �= Y } ≤ P{g(X) �= Y } .

Unfortunately, the Bayes rule depends on the distribution of (X, Y ), which is un-
known to the statistician. The problem is thus to construct a reasonable classifier
gn based on independent observations (X1, Y1), . . . , (Xn, Yn) with the same dis-
tribution as (X, Y ).

Among the various ways to define such classifiers, one of the most simple and
popular is probably the moving window rule given by

gn(x) =
⎧⎨
⎩

0 if
n∑

i=1
1{Yi=0,Xi∈Bx,hn } ≥

n∑
i=1

1{Yi=1,Xi∈Bx,hn },

1 otherwise,
(2)

where hn is a (strictly) positive real number, depending only on n and called the
smoothing factor, and Bx,hn

denotes the closed ball of radius hn centered at x. It
is possible to make the decision even smoother using a kernel K (that is, a non-
negative and monotone function decreasing along rays starting from the origin)
by giving more weights to closer points than to more distant ones, deciding 0 if∑n

i=1 1{Yi=0}K
(
(x − Xi)/hn

) ≥ ∑n
i=1 1{Yi=1}K

(
(x − Xi)/hn

)
and 1 otherwise,

but that will not concern us here. Kernel-based rules are derived from the ker-
nel estimate in density estimation originally studied by Akaike (1954), Rosenblatt
(1956), and Parzen (1962); and in regression estimation, introduced by Nadaraya
(1964, 1970) and Watson (1964). For particular choices of K , statistical analyses of
rules of this sort and/or the corresponding regression function estimates have been
studied by many authors. For a complete and updated list of references, we refer
the reader to the monograph by Devroye et al. (1996, Chapter 10). Now, if we are
given any classification rule gn based on the training data (X1, Y1), . . . , (Xn, Yn),
the best we can expect from the classification function gn is to achieve the Bayes
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error probability L∗ = L(g∗). Generally, we cannot hope to obtain a function that
exactly achieves the Bayes error probability, and we rather require that the error
probability

Ln = P {gn(X) �= Y |(X1, Y1), . . . , (Xn, Yn)}
gets arbitrarily close to L∗ with large probability. More precisely, a classification
rule gn is called consistent if

ELn = P{gn(X) �= Y } → L∗ as n → ∞ ,

and strongly consistent if

lim
n→∞ Ln = L∗ with probability one.

A decision rule can be consistent for a certain class of distributions of (X, Y ), but
may not be consistent for others. On the other hand, it is clearly desirable to have a
rule that gives good performance for all distributions. With this respect, a decision
rule is called universally (strongly) consistent if it is (strongly) consistent for any
distribution of the pair (X, Y ). When X is R

d -valued, it is known from Devroye and
Krzyżak (1989) that the classical conditions hn → 0 and nhd

n → ∞ as n → ∞
ensure that the moving window rule (2) is universally strongly consistent.

In this paper, we wish to investigate consistency properties of the moving win-
dow rule (2) in the setting of random functions, that is when X takes values in
a metric space (F, ρ) instead of R

d . The scope of applications is vast, including
disciplines such as medicine (discriminate electrocardiograms from two different
groups of patients), finance (sell or buy stocks regarding their evolution in time),
biometrics (discern pertinent fingerprint patterns), or image recognition on the
Internet.

In this general framework, the infinite dimensional version of the classification
rule (2) under study reads

gn(x) =
⎧⎨
⎩

0 if
n∑

i=1
1{Yi=0,Xi∈Bx,hn } ≥

n∑
i=1

1{Yi=1,Xi∈Bx,hn },

1 otherwise,
(3)

where Bx,hn
is now a ball in (F, ρ) – the optimal decision remains the Bayes

one g∗: F → {0, 1} as in (1). Probably due to the difficulty of the problem, and
despite nearly unlimited applications, the theoretical literature on regression and
classification in infinite dimensional spaces is relatively recent. Key references
on this topic are Rice and Silverman (1991), Kneip and Gasser (1992), Kulkarni
and Posner (1995), Ramsay and Silverman (1997), Bosq (2000), Ferraty and Vieu
(2000, 2002, 2003), Diabo-Niang and Rhomari (2001), Hall et al. (2001), Abra-
ham et al. (2003), Antoniadis and Sapatinas (2003), and Biau et al. (2005). We also
mention that Cover and Hart (1965) consider classification of Banach space valued
elements as well, but they do not establish consistency.

As pointed out by an Associate Editor, the classification rule (3) is feeded with
infinite dimensional observations as inputs. In particular, it does not require any
preliminary dimension reduction or model selection step. On the other hand, in the
so-called “filtering approach”, one first reduces the infinite dimension of the obser-
vations by considering only the first d coefficients of the data on an appropriate
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basis, and then perform finite dimensional classification. For more on this alterna-
tive approach, we refer the reader to Hall et al. (2001), Abraham et al. (2003), Biau
et al. (2005) and the references therein.

As a first important contribution, we show in Sect. 2 that the universal consis-
tency result valid for the rule (2) in the finite dimensional case breaks down as soon
as X is allowed to take values in a space of functions. More precisely, we are able to
exhibit a normed function space and a distribution of (X, Y ) such that the moving
window rule (3) fails to be consistent. This negative finding makes it legitimate to
put some restrictions both on the functional space and the distribution of X in order
to obtain the desired consistency properties. Sufficient conditions of this sort are
given in Sect. 3 (Theorem 3.1 deals with consistency whereas Theorem 3.2 with
strong consistency) along with examples of applications. These conditions both
involve the support of the distribution of X and the way this distribution locally
spreads out. For the sake of clarity, proofs are gathered in Sect. 4.

2 Non-universal consistency of the moving window rule

Let (hn)n≥1 be a given sequence of smoothing factors such that hn → 0 as n → ∞.
Our purpose in this section is to show that there exists a normed function space(F, ‖.‖), a random variable X taking values in this space and a distribution of
(X, Y ) such that the moving window rule (3) fails to be consistent. For any pair
(X, Y ), we denote by η(x) the conditional probability that Y is 1 given X = x, i.e.,

η(x) = P{Y = 1|X = x} = E[Y |X = x] .

Good candidates may be designed as follows.

Preliminaries Define the space
(F, ‖.‖) as the space of functions from ]0, 1] to

[0, 1] endowed with the supremum norm ‖.‖ = ‖.‖∞, and let X be a random var-
iable (to be specified later) taking values in F . Choose finally a label Y which is
1 with probability one, and thus η(x) = 1 and L∗ = 0. Following the lines of the
proof of Theorem 2.2 in Devroye et al. (1996, Chapter 2, page 16) it is easily seen
that

P{gn(X) �= Y } − L∗ = E
[|2η(X) − 1|1{gn(X)�=g∗(X)}

]
= E

[
1{gn(X)�=g∗(X)}

]
,

where the last equality follows from our choice of η. We emphasize that gn pre-
dicts the label 0 when there are no data falling around x, i.e., setting N(x) =∑n

i=1 1{Xi∈Bx,hn }, when N(x) = 0. When x belongs to R
d , the conditions hn → 0

and nhd
n → ∞ as n → ∞ ensure that the misspecification when N(x) = 0 is not

crucial for consistency (see Devroye and Krzyżak, 1989). The remainder of the
paragraph shows that things are different when x is a function. Observe first that

1{gn(X) �=g∗(X)} ≥ 1{g∗(X)=1,gn(X)=0}
≥ 1{η(X)>1/2,N(X)=0}
= 1{N(X)=0}



On the kernel rule for function classification 623

since η(X) = 1. Therefore, we are led to

P{gn(X) �= Y } − L∗ ≥ E
[
1{N(X)=0}

]
= E

[
E
[
1{N(X)=0}|X

]]
.

Clearly, the distribution of N(X) given X is binomial Bin(n, PX), with

PX = P
{‖X′ − X‖ ≤ hn|X

}
,

where X′ is an independent copy of X. It follows that

P{gn(X) �= Y } − L∗ ≥ E
[
(1 − PX)n

]
≥ E[1 − nPX]

= 1 − nP
{‖X′ − X‖ ≤ hn

}
.

Having disposed of this preliminary step, we propose now to prove the existence
of a F-valued random variable X such that nP

{‖X − X′‖ ≤ hn

}
goes to zero as n

grows.

Example Take U0, U1, U2, . . . to be an infinite sequence of independent random
variables uniformly distributed on [0, 1] and let X be the random function from
]0, 1] to [0, 1] constructed as follows: for t = 2−i , i = 0, 1, 2, . . ., set X(t) =
X(2−i ) = Ui , and for t ∈ ]2−(i+1), 2−i[, define X(t) by linear interpolation.
We thus obtain a continuous random function X which is linear on each interval
[2−(i+1), 2−i]. Denote by X′ an independent copy of X derived from U ′

0, U
′
1, U

′
2, . . .

Attention shows that, with probability one, the following equality holds:

‖X − X′‖ = sup
i≥0

|Ui − U ′
i | = 1 .

Therefore, for all n large enough,

P{gn(X) �= Y } − L∗ ≥ 1 ,

what shows that the moving window rule cannot be consistent for the considered
distribution of (X, Y ).

Note that the same result holds if U0, U1, . . . are chosen independently with a
standard Gaussian distribution. In this case, X is a continuous Gaussian process.

One can argue that our example is rather pathological, as the distance between
two random functions X and X′ is almost surely equal to one. Things can be
slightly modified to avoid this inconvenience. To this aim, construct first, for each
integer k ≥ 1, a random function Xk as above with the Ui’s uniformly distributed
on [0, k−1], and denote by (X′

k)k≥1 an independent copy of the sequence (Xk)k≥1.
A trivial verification shows that, with probability one, for k, k′ ≥ 1,

‖Xk − X′
k′ ‖ = max{k−1, k′ −1} .

Second, denote by K a discrete random variable satisfying P{K = k} = wk , where
(wk)k≥1 is a sequence of positive weights adding to one. Define the conditional
distribution of X given {K = k} as the distribution of Xk and denote by X′ an
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independent copy of X associated with K ′ (independent of K). Then it is a simple
exercise to prove that for any sequence of smoothing factors (hn)n≥1 verifying
hn → 0 as n → ∞, one can find a sequence of weights (wk)k≥1 and thus a random
variable X such that

lim inf
n→∞ P{gn(X) �= Y } − L∗ ≥ 1 .

Thus, the moving window rule is not universally consistent, whatever the choice
of the sequence (hn)n≥1.

3 Consistent classification in function spaces

3.1 Notation and assumptions

In view of the results of Sect. 2, we are now interested in finding sufficient condi-
tions ensuring consistency of the moving window rule (3).

Let us first introduce the abstract mathematical model. Let X be a random
variable taking values in a metric space (F, ρ) and let Y be a random label with
values 0 and 1. The distribution of the pair (X, Y ) is completely specified by μ,
the probability measure of X and by η, the regression function of Y on X. That is,
for any Borel-measurable set A ⊂ F ,

μ(A) = P{X ∈ A}
and, for any x ∈ F , η(x) = P{Y = 1|X = x} .

Given independent copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ), the goal is to clas-
sify a new random element from the same distribution μ, independent of the training
data, using the moving window rule. Let us now recall the important and well-
known notions of covering numbers and metric entropy which characterize the
massiveness of a set. Following Kolmogorov and Tihomirov (1961), these quanti-
ties have been extensively studied and used in various applications. Denote by Sx,ε

the open ball of radius ε about a point x ∈ F .

Definition 3.1 Let G be a subset of the metric space (F, ρ). The ε-covering num-
ber N (ε)

( = N (ε, G, ρ)
)

is defined as the smallest number of open balls of radius
ε that cover the set G. That is

N (ε) = inf

{
k ≥ 1 : ∃x1, . . . , xk ∈ F with G ⊂

k⋃
i=1

Sxi,ε

}
.

The logarithm of the ε-covering number is often referred to as the metric entropy
or ε-entropy. A set G ⊂ F is said to be totally bounded if N (ε) < ∞ for all ε > 0.
In particular, every relatively compact set is totally bounded and all totally bounded
sets are bounded.

Our first basic assumption in the present paper is that there exists a sequence
(Fk)k≥1 of totally bounded subsets of F such that

Fk ⊂ Fk+1 for all k ≥ 1 and μ

(⋃
k≥1

Fk

)
= 1 (H1) .
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Various examples will be discussed below. It is worth pointing out that this condition
is mild. It is for example satisfied whenever (F, ρ) is a separable metric space.
Note also that a similar requirement is imposed by Kulkarni and Posner (1995)
who study the problem of nearest neighbor estimation under arbitrary sampling in
a general separable metric space.

Our second assumption asks that the following differentiation result holds:

lim
h→0

1

μ(Bx,h)

∫
Bx,h

η dμ = η(x) in μ-probability, (H2)

which means that for every ε > 0,

lim
h→0

μ

⎧⎪⎨
⎪⎩x ∈ F :

∣∣∣ 1

μ(Bx,h)

∫
Bx,h

η dμ − η(x)

∣∣∣ > ε

⎫⎪⎬
⎪⎭ = 0 .

If F is a finite dimensional vector space, this differentiation theorem turns to be
true (Rudin, 1987, Chapter 8). There have been several attempts to generalize this
kind of results to general metric spaces (see Mattila, 1980; Preiss and Tiser, 1982;
Tiser, 1988; and the references therein for examples, counterexamples and discus-
sions). The general finding here is that equality (H2) holds in typically infinite
dimensional spaces if we ask conditions both on the structure of the space F (such
as to be an Hilbert) and the measure μ (such as to be Gaussian) – see the examples
below.

We draw attention on the fact that condition (H2) holds as soon as the regres-
sion function η is μ-a.e. continuous. In particular, when μ is nonatomic, (H2) holds
for a piecewise continuous function η. Piecewise continuous η’s in R

d are associ-
ated with the so-called “change-set problem” – an interesting problem of spatial
statistics, which is undoubtedly no less interesting in functional spaces.

Before we present our consistency results, we illustrate the generality of the
approach by working out several examples for different classes.

3.2 Examples

As a first example, just take F = R
d endowed with any norm ‖.‖. In this case,

condition (H1) is obviously true and (H2) holds according to the classical differ-
entiation theorem (Rudin, 1987, Chapter 8).

Consider now the less trivial situation where the regression function η is μ-a.e.
continuous – so that (H2) is superfluous – and where the random elements to be
classified are known to be bounded and Hölder functions of some order α > 0
defined on a bounded, convex subset � of R

d with nonempty interior. Note that the
standard Brownian paths on [0, 1] satisfy this condition with α > 1/2, and that in
the important case where X is a Gaussian process, the Hölder parameter α may be
estimated using an Hölder property of the covariance function of X, see Ciesielski
(1961). The natural balls

Fk = {all continuous functions f : � → R with ‖f ‖∞ ≤ k}
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are not totally bounded in F endowed with the supremum norm ‖.‖∞. However, a
slight change in the definition of the balls leads to a tractable model. That is, take

F = {all bounded continuous functions f : � → R}
and, for each k ≥ 1,

Fk = {all continuous functions f : � → R with ‖f ‖α ≤ k}
with

‖f ‖α = sup
t

∣∣f (t)
∣∣+ sup

s �=t

∣∣f (s) − f (t)
∣∣

‖s − t‖α
,

where the suprema are taken over all points in the interior of � and ‖.‖ denotes
the norm on R

d . Bounds on the metric entropy of the classes Fk with respect to
the supremum norm were among the first known after the introduction of covering
numbers. In the present context, it can be shown (see, for example, Van der Vaart
and Wellner, 1996, Chapter 2.7) that there exists a constant A depending only on
α, d, k and � such that

log N (
ε, Fk, ‖.‖∞

) ≤ A
(1

ε

) d
α

for every ε > 0.
Now, if we do not suppose that the regression function η is μ-a.e. continuous,

then we have to ask a bit more both on the underlying space F and the measure
μ to ensure that assumption (H2) holds. Assume for example that F is a Hil-
bert space and that μ is a centered Gaussian measure with the following spectral
representation of its covariance operator:

Rx =
∑
i≥1

ci(x, ei)ei ,

where (., .) is the scalar product and (ei)i≥1 is an orthonormal system in F . If the
sequence (ci)i≥1 satisfies

0 <
ci+1

ci

≤ q, i ≥ 1, (4)

where q < 1, then (H2) holds (Preiss and Tiser, 1982). As an illustration, keep F
and the Fk’s defined as in the previous example, and still assume that μ(∪k≥1Fk) =
1. Let Q be a probability measure on �. Consider the L2(Q) norm defined by

‖f ‖2
2,Q =

∫
|f |2 dQ

and the Hilbert space
(F, ‖.‖2,Q

)
. Then it can be shown (Van der Vaart and Wellner,

1996, Chapter 2.7) that there exists a constant B, depending only on α, d, k and �
such that

log N (
ε, Fk, ‖.‖2,Q

) ≤ B
(1

ε

) d
α

for every ε > 0. Thus, any Gaussian measure – or any mixture of two Gaussian
measures – whose covariance operator satisfies requirement (4) above and meeting
the condition μ(∪k≥1Fk) = 1 can be dealt with the tools presented in the present
paper.
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3.3 Results

Following the notation of the introduction for the finite dimensional case, we let L∗
and Ln be the probability of error for the Bayes rule and the moving window rule,
respectively. In this paragraph, we establish consistency (Theorem 3.1) and strong
consistency (Theorem 3.2) of the moving window rule gn under assumptions (H1),
(H2) and general conditions on the smoothing factor hn. The notation Gc stands
for the complement of any subset G in F . For simplicity, the dependence of hn on
n is always understood and we write Nk(ε) instead of N (ε, Fk, ρ).

Theorem 3.1 (consistency) Assume that (H1) and (H2) hold. If h → 0 and, for
every k ≥ 1, Nk(h/2)/n → 0 as n → ∞, then

lim
n→∞ ELn = L∗ .

Theorem 3.2 (strong consistency) Assume that (H1) and (H2) hold. Let (kn)n≥1
be an increasing sequence of positive integers such that∑

n≥1

μ(F c
kn

) < ∞ .

If h → 0 and
n

(log n)N 2
kn

(h/2)
→ ∞ as n → ∞ ,

then

lim
n→∞ Ln = L∗ with probability one.

Remark 1 Practical applications exceed the scope of this paper. However, the ap-
plied statistician should be aware of the following two points.

First, for a particularn, asymptotic results provide little guidance in the selection
of h. On the other hand, selecting the wrong value of h may lead to catastrophic
error rates – in fact, the crux of every nonparametric estimation problem is the
choice of an appropriate smoothing factor. The question of how to select auto-
matically and optimally a data-dependent smoothing factor h will be addressed in
a future work. Note however that one can always find a sequence of smoothing
factors satisfying the conditions of Theorem 3.1 and Theorem 3.2.

Second, in practice, the random elements are always observed at discrete sam-
pling times only (deterministic or random) and are possibly contaminated with
measurement errors. The challenge then is to explore properties of classifiers based
on estimated functions rather than on true (but unobserved) functions.

4 Proofs

4.1 Preliminary results

Define

ηn(x) =
∑n

i=1 Yi1{Xi∈Bx,h}
nμ(Bx,h)

,
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and observe that the decision rule can be written as

gn(x) =
{

0 if
∑n

i=1 Yi1{Xi∈Bx,h}
nμ(Bx,h)

≤
∑n

i=1(1−Yi)1{Xi∈Bx,h}
nμ(Bx,h)

,

1 otherwise.

Thus, by Theorem 2.3 in Devroye et al. (1996, Chapter 2, page 17) – whose exten-
sion to the infinite dimensional setting is straightforward – Theorem 3.1 will be
demonstrated if we show that

E
[ ∫ ∣∣η(x) − ηn(x)

∣∣μ(dx)

]
→ 0 as n → ∞

and Theorem 3.2 if we prove that∫ ∣∣η(x) − ηn(x)
∣∣μ(dx) → 0 with probability one as n → ∞ .

Proofs of Theorem 3.1 and Theorem 3.2 will strongly rely on the following three
lemmas. Proof of Lemma 4.1 is a straightforward consequence of assumption (H2)
and the Lebesgue dominated convergence theorem.

Lemma 4.1 Assume that (H2) holds. If h → 0, then

∫ ∣∣η(x) − Eηn(x)
∣∣μ(dx) =

∫ ∣∣∣∣η(x) −
∫
Bx,h

η(t)μ(dt)

μ(Bx,h)

∣∣∣∣μ(dx) → 0

as n → ∞.

Lemma 4.2 Let k be a fixed positive integer. Then, for every h > 0,∫
Fk

1

μ(Bx,h)
μ(dx) ≤ Nk

(h

2

)
.

Proof Since, by assumption, Fk is totally bounded, there exist a1, . . . , aNk(h/2)

elements of F such that

Fk ⊂
Nk(h/2)⋃

j=1

Baj ,h/2 .

Therefore,

∫
Fk

1

μ(Bx,h)
μ(dx) ≤

Nk(h/2)∑
j=1

∫
Baj ,h/2

1

μ(Bx,h)
μ(dx) .

Then x ∈ Baj ,h/2 implies Baj ,h/2 ⊂ Bx,h and thus

∫
Fk

1

μ(Bx,h)
μ(dx) ≤

Nk(h/2)∑
j=1

∫
Baj ,h/2

1

μ(Baj ,h/2)
μ(dx) = Nk

(h

2

)
. ��
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Lemma 4.3 Let k be a fixed positive integer. Then, for all n ≥ 1,

E
[ ∫

Fk

∣∣ηn(x) − Eηn(x)
∣∣μ(dx)

]
≤
(

1

n
Nk

(h

2

))1/2

.

Proof According to Devroye et al. (1996, Chapter 10, page 157) one has, for every
x ∈ F and n ≥ 1:

E
[∣∣ηn(x) − Eηn(x)

∣∣] ≤ 1√
nμ(Bx,h)

.

Consequently,

E
[ ∫

Fk

∣∣ηn(x) − Eηn(x)
∣∣μ(dx)

]
≤
∫
Fk

1√
nμ(Bx,h)

μ(dx)

≤
(∫

Fk

1

nμ(Bx,h)
μ(dx)

)1/2

(by Jensen’s inequality)

≤
(

1

n
Nk

(h

2

))1/2

(by Lemma 4.2). ��

4.2 Proof of Theorem 3.1

We have, for every k ≥ 1,

E
[ ∫ ∣∣η(x) − ηn(x)

∣∣μ(dx)

]

= E
[ ∫

Fk

∣∣η(x) − ηn(x)
∣∣μ(dx)

]
+ E

[ ∫
F c

k

∣∣η(x) − ηn(x)
∣∣μ(dx)

]

≤
∫
Fk

∣∣η(x) − Eηn(x)
∣∣μ(dx) + E

[ ∫
Fk

∣∣ηn(x) − Eηn(x)
∣∣μ(dx)

]
+ 2μ(F c

k ) ,

where in the last inequality we used the fact that η(x) ≤ 1 and Eηn(x) ≤ 1 for
every x ∈ F and n ≥ 1. As a consequence, using Lemma 4.3,

E
[ ∫ ∣∣η(x) − ηn(x)

∣∣μ(dx)

]
≤
∫ ∣∣η(x) − Eηn(x)

∣∣μ(dx) +
(

1

n
Nk

(h

2

))1/2

+2μ(F c
k ) .

Therefore, according to Lemma 4.1 and the assumptions on h, for every k ≥ 1,

lim sup
n→∞

E
[ ∫ ∣∣η(x) − ηn(x)

∣∣μ(dx)

]
≤ 2μ(F c

k ) .

The conclusion follows under (H1) if we let k converge to infinity.
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4.3 Proof of Theorem 3.2

Let (kn)n≥1 be the sequence defined in Theorem 3.2. We first proceed to show that∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) → 0 with probability one as n → ∞ . (5)

According to Lemma 4.3, we have

E
[ ∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]

≤
∫ ∣∣η(x) − Eηn(x)

∣∣μ(dx) + E
[ ∫

Fkn

∣∣ηn(x) − Eηn(x)
∣∣μ(dx)

]

≤
∫ ∣∣η(x) − Eηn(x)

∣∣μ(dx) +
(

1

n
Nkn

(h

2

))1/2

.

Therefore, applying Lemma 4.1 and the assumptions on h, we obtain

E
[ ∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]
→ 0 as n → ∞ .

Consequently, (5) will be proved if we show that∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) − E

[ ∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]
→ 0

with probability one as n → ∞. To do this, we use McDiarmid’s inequality (1989)
for ∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) − E

[ ∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]
.

Fix the training data at (x1, y1), . . . , (xn, yn) and replace the i-th pair (xi, yi) by
(x̂i , ŷi), changing the value of ηn(x) to η∗

ni(x). Clearly,∣∣∣∣
∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) −

∫
Fkn

∣∣η(x) − η∗
ni(x)

∣∣μ(dx)

∣∣∣∣

≤
∫

Fkn

∣∣ηn(x) − η∗
ni(x)

∣∣μ(dx)

≤ 2

n

∫
Fkn

1

μ(Bx,h)
μ(dx)

≤ 2

n
Nkn

(h

2

)
,
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where the last inequality arises from Lemma 4.2. So, by McDiarmid’s inequality
(1989), for every α > 0,

P
{∣∣∣∣
∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) − E

[ ∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]∣∣∣∣ ≥ α

}

≤ 2 exp

(
− ρ n

N 2
kn

(h/2)

)
,

for some positive constant ρ depending only on α. Thus, using the assumption on
h and the Borel-Cantelli lemma, we conclude that

∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) − E

[ ∫
Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)

]
→ 0

with probability one as n → ∞. This proves (5).
To finish the proof, let us denote for all n ≥ 1 and i = 1, . . . , n,

Zn
i =

∫
F c

kn

1{Xi∈Bx,h}
μ(Bx,h)

μ(dx) .

Observe that

E

[
1

n

n∑
i=1

Zn
i

]
= μ(F c

kn
) .

Applying the Borel-Cantelli Lemma together with the condition
∑

n≥1 μ(F c
kn

) <
∞ yields

1

n

n∑
i=1

Zn
i → 0 with probability one as n → ∞ . (6)

Write finally
∫ ∣∣η(x) − ηn(x)

∣∣μ(dx)=
∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx)+

∫
F c

kn

∣∣η(x) − ηn(x)
∣∣μ(dx)

≤
∫

Fkn

∣∣η(x) − ηn(x)
∣∣μ(dx) + μ(F c

kn
) + 1

n

n∑
i=1

Zn
i ,

and this last term goes to 0 according to (H1), (5) and (6). This completes the proof
of Theorem 3.2.
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vectoriels semi-normés. Comptes Rendus de l’Académie des Sciences de Paris, 330, 139–142.

Ferraty, F., Vieu, P. (2002). The functional nonparametric model and application to spectrometric
data. Computational Statistics, 17, 545–564.

Ferraty, F., Vieu, P. (2003). Curves discrimination: a nonparametric functional approach. Com-
putational Statistics and Data Analysis, 44, 161–173.

Hall, P., Poskitt, D., Presnell, B. (2001). A functional data-analytic approach to signal discrimi-
nation. Technometrics, 43, 1–9.

Kneip, A., Gasser, T. (1992). Statistical tools to analyse data representing a sample of curves.
The Annals of Statistics, 20, 1266–1305.

Kolmogorov, A. N., Tihomirov, V. M. (1961). ε-entropy and ε-capacity of sets in functional
spaces. American Mathematical Society Translations, Series 2, 17, 277–364.

Kulkarni, S. R., Posner, S. E. (1995). Rates of convergence of nearest neighbor estimation under
arbitrary sampling. IEEE Transactions on Information Theory, 41, 1028–1039.

Mattila, P. (1980). Differentiation of measures on uniform spaces. Lecture Notes in Mathematics,
vol. 794, pp. 261–283. Berlin: Springer–Verlag.

McDiarmid, C. (1989). On the method of bounded differences. Surveys in Combinatorics 1989
(pp. 148–188). Cambridge: Cambridge University Press.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9,
141–142.

Nadaraya, E.A. (1970). Remarks on nonparametric estimates for density functions and regression
curves. Theory of Probability and its Applications, 15, 134–137.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of
Mathematical Statistics, 33, 1065–1076.

Preiss, D., Tiser, J. (1982). Differentiation of measures on Hilbert spaces. Lecture Notes in
Mathematics, vol. 945, pp. 194–207. Berlin: Springer–Verlag.

Ramsay, J. O., Silverman, B. W. (1997). Functional data analysis. New York: Springer–Verlag.
Rice, J. A., Silverman, B. W. (1991). Estimating the mean and covariance structure nonpara-

metrically when the data are curves. Journal of the Royal Statistical Society, Series B, 53,
233–243.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The
Annals of Mathematical Statistics, 27, 832–837.

Rudin, W. (1987). Real and complex analysis (3rd ed.). New York: McGraw-Hill.



On the kernel rule for function classification 633

Tiser, J. (1988). Differentiation theorem for Gaussian measures on Hilbert space. Transactions
of the American Mathematical Society, 308, 655–666.

Van der Vaart, A. W., Wellner, J. A. (1996). Weak convergence and empirical processes – with
applications to statistics. New York: Springer–Verlag.

Watson, G. S. (1964). Smooth regression analysis. Sankhyā, Series A, 26, 359–372.
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