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Abstract We propose a discrete version of the skew Laplace distribution. In contrast
with the discrete normal distribution, here closed form expressions are available
for the probability density function, the distribution function, the characteristic
function, the mean, and the variance. We show that this distribution on integers
shares many properties of the skew Laplace distribution on the real line, includ-
ing unimodality, infinite divisibility, closure properties with respect to geometric
compounding, and a maximum entropy property. We also discuss statistical issues
of estimation under this model.

Keywords Discrete Laplace distribution · Discrete normal distribution · Double
exponential distribution · Exponential distribution · Geometric distribution · Geo-
metric infinite divisibility · Infinite divisibility · Laplace distribution · Maximum
entropy property · Maximum likelihood estimation

1 Introduction

Any continuous distribution on R with p.d.f. f admits a discrete counterpart sup-
ported on the set of integers Z = {0, ±1, ±2, . . . }. This discrete variable has p.m.f.
of the form

P(Y = k) = f (k)
∑∞

j=−∞ f (j)
, k ∈ Z. (1)
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Discrete normal (DN) distribution was mentioned in Lisman and van Zuylen (1972)
in connection with maximum entropy property, and studied by Kemp (1997) (see
also Dasgupta 1993; Szablowski 2001). In this paper we study a distribution on Z

defined via Eq. (1), where

f (x) = 1

σ

κ

1 + κ2

{
e− κ

σ
x if x ≥ 0

e
1

κσ
x if x < 0

(2)

is the p.d.f. of the skew Laplace distribution with a scale parameter σ > 0 and the
skewness parameter κ (see Kotz et al. 2001). In the symmetric case (κ = 1) this
leads to a discrete analog of the classical Laplace distribution, studied in detail by
Inusah and Kozubowski (2006). We call this distribution (skew) discrete Laplace
(DL), as it shares many properties of the continuous Laplace law:

• A skew Laplace random variable has the same distribution as the difference of
two exponential variables. A DL variable has the same representation with two
geometric variables.

• Both distributions maximize the entropy within the respective classes of distri-
butions with a given mean and the first absolute moment, which are continuous
and supported on R or discrete and supported on Z.

• Both distributions are unimodal, with explicit forms of the densities, distribu-
tion functions, characteristic functions, and moments.

• Both distributions are infinitely divisible, geometric infinitely divisible, and
stable with respect to geometric compounding.

The simplicity of this model and its connections with the geometric distribu-
tion (which has many applications) and the skew Laplace distribution (which is
becoming prominent in recent years, e.g., Kotz et al. 2001) lead to immediate appli-
cations of DL distributions. In particular, as discussed in Inusah and Kozubowski
(2006), these distributions are of primary importance in analysis of uncertainty in
hydroclimatic episodes such as droughts, floods, and El Niño (whose durations
are often modeled by the geometric distribution). In this connection, the skew DL
distribution is useful in answering the question whether the durations of positive
and negative episodes have the same (geometric) distributions.

Our paper is organized as follows. After definitions and basic properties con-
tained in Sect. 2, we present various representations of DL variables in Sect. 3.
Then in Sect. 4 we present the main properties of DL laws, which include infinite
divisibility, stability with respect to geometric convolutions, and their maximum
entropy property. In Sect. 5 we consider statistical issues of parameter estimation.
Proofs and technical results are collected in Sect. 6.

2 Definition and basic properties

When the Laplace density Eq. (2) is inserted into Eq. (1), the p.m.f. of the resulting
discrete distribution takes on an explicit form in terms of the parameters p = e−κ/σ

and q = e−1/κσ , leading to the following definition.

Definition 2.1 A random variable Y has the discrete Laplace distribution with
parameters p ∈ (0, 1) and q ∈ (0, 1), denoted by DL(p, q), if
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f (k|p, q) = P(Y = k) = (1 − p)(1 − q)

1 − pq

{
pk, k = 0, 1, 2, 3, . . . ,

q |k|, k = 0, −1, −2, −3, . . . .
(3)

The explicit expressions for the cumulative distribution function (c.d.f.) and the
characteristic function (ch.f.) corresponding to the DL distribution follow easily
from the geometric series formula (see Inusah, 2003 for details).

Proposition 2.1 Let Y ∼ DL(p, q). Then the c.d.f. of Y is given by

F(x|p, q) = P(Y ≤ x) =
{

(1−p)q−[x]

1−pq
if x < 0

1 − (1−q)p[x]+1

1−pq
if x ≥ 0,

(4)

where [·] is the greatest integer function, while the ch.f. of Y is

ϕ(t |p, q) = EeitY = (1 − p)(1 − q)

(1 − eitp)(1 − e−it q)
, t ∈ R. (5)

2.1 Special cases

When p = q, we obtain the symmetric DL distribution studied by Inusah and
Kozubowski (2006). When either p or q converges to zero, we obtain the follow-
ing two “one-sided” special cases: Y ∼ DL(p, 0) with p ∈ (0, 1) is a geometric
distribution with the p.m.f.

f (k|p, 0) = P(Y = k) = (1 − p)pk, k = 0, 1, 2, 3, . . . , (6)

while Y ∼ DL(0, q) with q ∈ (0, 1) is a geometric distribution on non-positive
integers with the p.m.f.

f (k|0, q) = P(Y = k) = (1 − q)q−k, k = 0, −1, −2, −3, . . . . (7)

When p and q are both zero, the distribution is degenerate at zero. In contrast, we
do not have limiting distributions when either p → 1− or q → 1−.

2.2 Moments

The moments of Y ∼ DL(p, q) can be easily obtained using Eq. (3) and the
combinatorial identity

∞∑

k=1

knpk =
n∑

k=1

S(n, k)
k!pk

(1 − p)k+1

(see, e.g., formula (7.46), p. 337, of Graham et al. 1989), where

S(n, k) = 1

k!

k−1∑

i=0

(−1)i
(

k

i

)

(k − i)n (8)

is the Stirling number of the second kind (the number of ways of partitioning a set
of n elements into k nonempty subsets, see, e.g., Graham et al. 1989).
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Proposition 2.2 If Y ∼ DL(p, q), then for any integer n ≥ 1 we have

E|Y |n = 1

1−pq

n∑

k=1

k!S(n, k)

(

(1 − q)

(
p

1 − p

)k

+(1 − p)

(
q

1 − q

)k
)

, (9)

EYn = 1

1−pq

n∑

k=1

k!S(n, k)

(

(1 − q)

(
p

1 − p

)k

+(−1)n(1 − p)

(
q

1 − q

)k
)

,

(10)

with S(n, k) as above.

In particular, we have

EY = 1

1 − p
− 1

1 − q
= p

1 − p
− q

1 − q
, E|Y | = q(1 − p)2 + p(1 − q)2

(1 − qp)(1 − q)(1 − p)
,

(11)

and

VarY = 1

(1 − p)2(1 − q)2

(
q(1 − p)3(1 + q)+p(1−q)3(1 + p)

1 − pq
−(p − q)2

)

.

(12)

3 Representations

There are various representations of Y ∼ DL(p, q) r.v. related to the geometric
distribution with parameter u ∈ (0, 1), whose p.m.f. is

g(k) = (1 − u)k−1u, k = 1, 2, 3, . . . . (13)

As shown in Inusah and Kozubowski (2006), in the symmetric case (p = q) we
have

Y
d= X1 − X2, (14)

where the Xi’s are i.i.d. geometric (Eq. 13) with u = 1 −p. Similar representation
holds for the skew case as well.

Proposition 3.1 If Y ∼ DL(p, q) then (Eq. 14) holds, where the Xi’s are inde-
pendent geometric variables (Eq. 13) with u = 1 − p and u = 1 − q, respectively.

Remark 3.1 The skew Laplace distribution Eq. (2) arises as the difference of two
exponential random variables (see, e.g., Kotz et al. 2001). Since the geometric dis-
tribution is a discrete analog of the exponential distribution, it is natural to name
the distribution of the difference of two geometric variables a “discrete Laplace”.

Remark 3.2 A discrete normal random variable Y admits the representation (14)
with i.i.d. Heine variables (see Kemp 1997). If the Xi’s have Poisson distributions,
then the distribution of their difference is rather complicated, see Irwin (1937).
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Remark 3.3 Note that the representation (14) holds if the Xi’s are replaced by the
shifted variables Xi +m. In particular, if they have a shifted geometric distribution
with p.m.f.

P(X = k) = (1 − u)ku, k = 0, 1, 2, . . . . (15)

We now consider representations of the form

Y
d= IX, (16)

where I takes on the values 0 and ±1, X has a discrete distribution on non-neg-
ative integers, and the two variables are independent (if Y has the skew Laplace
distribution (2) then a similar representation holds with an exponentially distrib-
uted X, see, e.g., Kotz et al. 2001). If p = q, then Eq. (16) holds if and only
if α ≥ 2p/(1 + p), where 0 < α ≤ 1 is such that P(I = 0) = 1 − α and
P(I = 1) = P(I = −1) = α/2, in which case

P(X = 0) = 1 − 2p

α(1 + p)
and P(X = k) = 2

α

1 − p

1 + p
pk, k ≥ 1, (17)

see Inusah and Kozubowski (2006). In particular, if α = 2p/(1 + p), then X has
the geometric distribution 13 with u = 1 − p (in which case I takes on the value
of zero with a positive probability). It turns out that the asymmetric case is quite
different, as Eq. (16) does not hold with any X.

Proposition 3.2 Let P(I = 1) = α, P(I = −1) = β, and P(I = 0) = 1 − α − β,
where α and β are positive real numbers satisfying α + β ≤ 1. Then, if Y ∼
DL(p, q) with p �= q then the relation (16) cannot hold with any discrete r.v. X,
which is independent of I and supported on non-negative integers.

Next, we seek representations of the form

Y
d= IX − (1 − I )W, (18)

where I is a Bernoulli random variable with P(I = 1) = 1 −P(I = 0) = α while
X and W have discrete distributions supported on non-negative integers, and all
three variables are mutually independent. Recall that if Y has the skew Laplace
distribution (2) then Eq. (18) holds with the above I and independent, exponen-
tially distributed X and W , see, e.g., Kotz et al. 2001). The following result holds
in the above notation.

Proposition 3.3 If Y ∼ DL(p, q) then the relation (18) holds with I , X, W as
above if and only if

p(1 − q)

1 − pq
≤ α ≤ 1 − q

1 − pq
, (19)

in which case

P(X = 0)=1 − p(1 − q)

α(1 − pq)
, P(W = 0) = 1 − q(1 − p)

(1 − α)(1 − pq)
, (20)

P(X = k)= (1 − p)(1 − q)

α(1 − pq)
pk, P(W = k) = (1 − p)(1 − q)

(1 − α)(1 − pq)
qk, k ≥ 1.

(21)
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Remark 3.4 In order for X or W to have a geometric distribution, α must take one
of the boundary values in Eq. (19). In this case, if α = p(1 − q)/(1 − pq), then
X has the (shifted) geometric distribution (15) with u = 1 − p and W has the
geometric distribution (13) with u = 1 − q. Similarly, if α = (1 − q)/(1 − pq),
then X has the geometric distribution (13) with u = 1 − p and W has the (shifted)
geometric distribution (15) with u = 1 − q.

Our last representation shows that the DL distribution can be obtained by a cer-
tain “discretization” of the skew Laplace distribution. The result below generalizes
the symmetric case p = q discussed in Inusah and Kozubowski (2006).

Proposition 3.4 Let X have a skew Laplace distribution given by the p.d.f. (2),
and let p = e− κ

σ and q = e− 1
κσ . Then,

ε1 =
log

(
q−pq

1−pq

log pq

log p

)

log q
∈ (0, 1), ε2 =

log
(

p−pq

1−pq

log pq

log q

)

log p
∈ (0, 1),

(22)

and the variable

Y =
⎧
⎨

⎩

n ifn − ε1 < X ≤ n + 1 − ε1, n ≤ −1,
0 if − ε1 < X < ε2
n ifn − 1 + ε2 ≤ X < n + ε2, n ≥ 1,

(23)

where n ∈ Z, has the DL(p, q) distribution.

4 Further properties

In this section, we show that DL laws are infinitely divisible, establish their stabil-
ity properties with respect to geometric compounding, and discuss their maximum
entropy property.

4.1 Infinite divisibility

Since the geometric distribution (15) is infinitely divisible, in view of the rep-
resentation (14), it is clear that Y ∼ DL(p, q) is infinitely divisible. Moreover, by
well-known factorization properties of the geometric law (see, e.g., Feller 1957),
Y ∼ DL(p, q) admits a representation involving negative binomial NB(r, u) vari-
ables with the p.m.f.

f (k) =
(

r + k − 1

k

)

ur(1 − u)k, k = 0, 1, 2, · · · , r > 0, u ∈ (0, 1).

(24)

Namely, we have

Y
d= Xn1 + Xn2 + · · · + Xnn, n = 1, 2, 3, . . . , (25)
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where Xni
d= Wn1 − Wn2 are i.i.d. and Wn1, Wn2 are independent, NB(1/n, 1 −

p) and NB(1/n, 1 − q) variables, respectively. A canonical representation of the
DL(p, q) ch.f. follows from the compound Poisson representations of the geomet-
ric variables X1 and X2 appearing in Eq. (14),

X1
d=

Qp∑

i=1

Zi, X2
d=

Qq∑

j=1

Tj , (26)

see, e.g., Feller (1957). Here, the i.i.d. variables Zi and Tj have logarithmic distri-
butions (see, e.g., Johnson et al. 1993) with the p.m.f.’s

P(Z1 = k) = 1

λp

pk

k
, P(T1 = k) = 1

λq

qk

k
, k = 1, 2, 3, . . . , (27)

respectively, where λp = − log(1 − p) and λq = − log(1 − q). The variables
Qp and Qq have Poisson distributions with means λp and λq , respectively, and
the variables appearing in each of the representations in Eq. (26) are independent.
When we write Eq. (26) and (14) in terms of the ch.f.’s, then (after some algebra)
we obtain the following canonical representation of the DL(p, q) ch.f.,

ϕ(t |p, q) = exp {λ(φ(t) − 1)} = exp

⎧
⎨

⎩
λ

∞∫

−∞

(
eitx − 1

)
dG(x)

⎫
⎬

⎭
, t ∈ R,

where λ = λp + λq and φ, G are the ch.f. and the c.d.f. corresponding to a skew
double logarithmic distribution with the p.m.f.

f (k) = 1

λ

{
pk

k
, k = 1, 2, 3, . . . ,

q |k|
|k| , k = −1, −2, −3, . . . .

(28)

We summarize this discussion in the result below.

Proposition 4.1 Let Y ∼ DL(p, q) and let Q have a Poisson distribution with
mean λ = − log(1 − p) − log(1 − q). Then Y is infinitely divisible and admits the
representation

Y
d=

Q∑

j=1

Vj , (29)

where the Vj ’s have the double-logarithmic distribution (28), and are independent
of Q.

4.2 Stability with respect to geometric summation

Let X1, X2, . . . be i.i.d. DL(p, q) variables, and let Nu be a geometric variable
with p.m.f. Eq. (13), and independent of the Xi’s. The quantity
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Y
d=

Nu∑

i=1

Xi (30)

is the geometric convolution (compound) of the Xi’s. It is well known that the class
of Laplace distributions is closed with respect to taking geometric convolutions,
see, e.g., Kotz et al. (2001). Our next result, which extends the symmetric case of
Inusah and Kozubowski (2006), shows that this property is also shared by the class
of skew DL laws.

Proposition 4.2 Let X1, X2, . . . be i.i.d. DL(p, q) variables, and let Nu be a
geometric variable (13), independent of the Xi’s. Then the variable (30) has the
DL(s, r) distribution with

s = 2p

p+q+(1−p)(1−q)u+
√

[p+q+(1−p)(1−q)u]2−4pq
, r = sq

p
. (31)

Next, we study the question whether for each u ∈ (0, 1) a DL(s, r) r.v. Y admits
the representation (30) with some i.i.d. variables Xi , in which case Y is said to be
geometric infinitely divisible (see Klebanov et al. 1984). Our next results, which
an extension of the symmetric case establish by Inusah and Kozubowski (2006),
shows that this is indeed the case, and the variables Xi are DL distributed them-
selves. This shows that skew DL distributions are geometric infinitely divisible,
which is in contrast with the geometric distribution itself (see, e.g., Kozubowski
and Panorska, 2005).

Proposition 4.3 If Y ∼ DL(s, r) and Nu is geometric with p.m.f. (13), then the
representation (30) holds. The Xi’s are i.i.d. and DL(p, q) distributed, where

p= 2su

(r+s)u+(1−s)(1−r)+
√

[(r+s)u+(1−s)(1−r)]2−4sru2
, q = rp

s
.

(32)

4.3 Maximum entropy property

The entropy of a one-dimensional random variable X with density (or proba-
bility function) f is defined as

H(X) = E(− log f (X)). (33)

The principle of maximum entropy states that, of all distributions that satisfy certain
constraints, one should select the one with the largest entropy, as this distribution
does not incorporate any extraneous information other than that specified by the
relevant constrains (see Jaynes, 1957). This concept has been successfully applied
in a many fields, including statistical mechanics, statistics, stock market analysis,
queuing theory, image analysis, reliability estimation (see, e.g., Kapur, 1993). It is
well known that the skew Laplace distribution (2) maximizes the entropy among all
continuous distributions on R with specified mean and the first absolute moment,
see Kotz et al. (2002). Below, we show that the DL(p, q) distribution maximizes
the entropy under the same conditions among all discrete distributions on integers.
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Proposition 4.4 Consider the class C of all discrete distributions on integers with
non vanishing densities such that

EX = c1 ∈ R and E|X| = c2 > 0 for X ∈ C. (34)

Then the entropy Eq. (33) is maximized by Y ∼ DL(p, q), where

q = (c2−c1)(1+c1)

1 + (c2−c1)c1+
√

1 + (c2 − c1)(c2 + c1)
, p= q + c1(1 − q)

1 + c1(1 − q)
(35)

when c1 ≥ 0 and

p= (c2 + c1)(1 − c1)

1 − (c2 + c1)c1+
√

1 + (c2+c1)(c2−c1)
, q = p − c1(1 − p)

1 − c1(1 − p)
(36)

when c1 ≤ 0. Moreover,

max
X∈C

H(X) = H(Y) = − log
(1 − p)(1 − q)

1 − pq

− (1 − p)(1 − q)

1 − pq

(
p log p

(1 − p)2
+ q log q

(1 − q)2

)

. (37)

Remark 4.1 Note that if c1 =0, the DL distribution Y above is symmetric with

p = q = c2

1 +
√

1 + c2
2

∈ (0, 1) (38)

while the maximum entropy is

max
X∈C

H(X) = H(Y) = − log
1 − p

1 + p
− 2p log p

1 − p2
. (39)

The same solution is obtained even if we drop the condition EX = c1 from Eq. (34)
altogether (see Kozubowski and Inusah 2006).

5 Estimation

In this section we derive maximum likelihood and method of moments estimators
of p and q, and establish their asymptotic properties. We begin with the Fisher
information matrix

I (p, q) =
[

−E

(
∂2

∂γi∂γj

log f (Y |γ1, γ2)

)]

i,j=1,2

, (40)

where Y has the DL(p, q) distribution with the vector-parameter γ = (γ1, γ2)
′ =

(p, q)′ and density f given by Eq. (3). Routine albeit lengthy calculations produce

I (p, q) = 1

(1 − pq)2

[
(1−q)(1−qp2)

p(1−p)2 −1

−1 (1−p)(1−pq2)

q(1−q)2

]

. (41)



564 T.J. Kozubowski and S. Inusah

Let X1, . . . , Xn be a random sample from a DL(p, q) distribution with density
Eq. (3), and let x1, . . . , xn be its particular realization. Then the log-likelihood
function is

log L(p, q)=n
(
log(1−p)+log(1−q) − log(1−pq)+x̄+

n log p+x̄−
n log q

)
,

(42)

where

x̄+
n = 1

n

n∑

i=1

x+
i , x̄−

n = 1

n

n∑

i=1

x−
i ,

and x+ and x− are the positive and the negative parts of x, respectively: x+ = x if
x ≥0 and zero otherwise, x− = (−x)+.

Consider first the case x̄+
n = x̄−

n = 0 (all sample values are zero). Then it is easy
to see that the log-likelihood function is maximized by p = q = 0 (corresponding
to a distribution degenerate at zero). Next, when x̄+

n >0 but x̄−
n =0 (all sample values

are non-negative), the log-likelihood function is decreasing in q ∈ [0, 1) for each
fixed p ∈ (0, 1) (as can be verified by taking the derivative). Therefore, for each
p, q ∈ (0, 1) we have

log L(p, q) ≤ log L(p, 0) = n
(
log(1 − p) + x̄+

n log p
)
.

By taking the derivative of the right-hand-side above it is easy to verify that the
maximum likelihood estimators (MLE’s) of p and q are unique values given by

p̂n = X̄+
n

1 + X̄+
n

, q̂n = 0, (43)

corresponding to a geometric distribution with the p.m.f. (6). Similar consider-
ations show that in case x̄+

n =0 but x̄−
n >0 (all sample values are non-positive), the

MLE’s of p and q are unique values given by

p̂n = 0, q̂n = X̄−
n

1 + X̄−
n

, (44)

corresponding to a geometric distribution on non-positive integers Eq. (7).
Finally, consider the case x̄+

n >0 and x̄−
n >0 (at least one positive and one neg-

ative sample value). Since the log-likelihood function (42) is continuous on the
closed unit square (taking negative infinity on its boundary) and differentiable on
the open unit square, it is clear that it takes the maximum value in its interior, at
the point (p, q) where the partial derivatives are zero. This leads to the system of
equations

p

1 − pq
+ x̄−

n

q
= 1

1 − q
,

q

1 − pq
+ x̄+

n

p
= 1

1 − p
. (45)

It turns out that this system of equations is equivalent to Eq. (60) in Proposition 6.2,
where c1 = x̄+

n −x̄−
n = x̄n (the sample mean) and c2 = x̄+

n +x̄−
n = ¯|x|n (the sample

first absolute moment). Indeed, the first of the equations in Eq. (60) is obtained by
multiplying both sides of the two equations in Eq. (45) by q and p, respectively,
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and subtracting the corresponding sides. The second equation arises by solving the
two equations in Eq. (45) for x̄+

n and x̄−
n and adding the corresponding sides of

the resulting expressions. Thus, by Proposition 6.2, the MLE’s of p and q are the
unique values of p and q given in Proposition 4.4 with the above c1 and c2. Note
that we chose the solution (35) or (36) according to whether x̄n≥0 or x̄n≤0, respec-
tively. Further, these solutions include the special cases x̄+

n =0 or x̄−
n =0 discussed

above, so that the MLE’s of p and q are always given by the unique solution of
the system of equations (45), or equivalently, the system Eq. (60) with the above
c1 and c2. The following result summarizes this discussion.

Proposition 5.1 Let X1, . . . , Xn be i.i.d. variables from the DL(p, q) distribu-
tion. Then the MLE’s of p and q are unique values given by Eqs. (35), (36) with
c1 = X̄+

n − X̄−
n and c2 = X̄+

n + X̄−
n , that is

q̂n = 2X̄−
n (1 + X̄n)

1 + 2X̄−
n X̄n +

√
1 + 4X̄−

n X̄+
n

, p̂n = q̂n + X̄n(1 − q̂n)

1 + X̄n(1 − q̂n)
(46)

when X̄n≥0 and

p̂n = 2X̄+
n (1 − X̄n)

1 − 2X̄+
n X̄n +

√
1 + 4X̄−

n X̄+
n

, q̂n = p̂n − X̄n(1 − p̂n)

1 − X̄n(1 − p̂n)
(47)

when X̄n≤0.

Remark 5.1 Equating EY and E|Y | given by Eq. (11) with the corresponding sam-
ple moments results in equations Eq. (60) with the same values of c1 and c2 as
above. Thus, the method of moments estimators of p and q coincide with the
MLE’s. In addition, note that in view of Proposition 4.4 the same estimators are
obtained by using the principle of maximum entropy without assuming any partic-
ular distribution, under the condition that the mean and the first absolute moment
are given (and approximated by their sample counterparts).

Our final result describes asymptotic properties of the maximum likelihood
(and the method of moments) estimators of DL parameters.

Proposition 5.2 The MLE’s of p and q given in Proposition 5.1 are

(i) Consistent;
(ii) Asymptotically bivariate normal, with the asymptotic covariance matrix

�MLE = pq(1 − p)(1 − q)

1 + pq

[
(1−p)(1−pq2)

q(1−q)2 1

1 (1−q)(1−qp2)

p(1−p)2

]

; (48)

(iii) Asymptotically efficient, that is, the above asymptotic covariance matrix coin-
cides with the inverse of the Fisher information matrix (41).
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6 Proofs

Proof of Proposition 3.2 If the relation (16) holds with some discrete r.v. X sup-
ported on non-negative integers, then P(Y = k) = αP(X = k) for k≥1 and
P(Y = k) = βP(X = −k) for k ≤ −1. In view of Eq. (3), we obtain

1

α

(1 − p)(1 − q)

1 − pq
pk = P(X = k) = 1

β

(1 − p)(1 − q)

1 − pq
qk, k ≥ 1. (49)

But this implies α/β = (p/q)k , k≥1, which is clearly impossible (unless p = q).

Proof of Proposition 3.3 Let pk = P(X = k) and qk = P(W = k), where k =
0, 1, 2, . . . . Suppose that Eq. (18) holds. Then α as well as the pk’s and the qk’s
must satisfy the equations

P(Y = 0) = (1 − p)(1 − q)

1 − pq
= αp0 + (1 − α)q0 (50)

and

P(Y =k)=(1−p)(1−q)

1−pq
pk =αpk, P(Y =−k)=(1−p)(1−q)

1−pq
qk =(1−α)qk (k≥1).

(51)

Relations (51) lead to the probabilities (21). In turn, summing these probabilities
from one to infinity and subtracting from 1 leads to the expressions for p0 and
q0 given in Eq. (20). It can be verified by direct substitution that the probabilities
given by Eq. (20) satisfy Eq. (50). The requirement that the probabilities in Eqs.
(20) and (21) be not greater than one and nonnegative, respectively, leads to the
condition on α given in Eq. (19). The other implication is obtained by reversing
these steps.

Proof of Proposition 3.4 First, let us note that ε1, ε2 ∈ (0, 1) whenever p, q ∈
(0, 1). This is equivalent to the following double inequality:

p <
p − pq

1 − pq

log pq

log q
< 1, p, q ∈ (0, 1). (52)

After simple algebra, we find that the first inequality in Eq. (52) is equivalent to
g(p) > q, p, q ∈ (0, 1), where for each q ∈ (0, 1),

g(p) = log p

log q
(1 − q) + pq. (53)

It is easy to see that the function g is decreasing on (0,1], so that g(p) > g(1) = p
for p ∈ (0, 1), as desired. Similarly, the second inequality in Eq. (52) follows by
noting that for each fixed q ∈ (0, 1) the function

h(p) = p − pq

1 − pq

log pq

log q
(54)

is increasing on (0, 1] (which can be verified by differentiation), so that h(p) <
h(1) = 1 for p ∈ (0, 1). Verification that the p.m.f. of Y defined by Eq. (23) is
given by Eq. (3) is straightforward.
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Proof of Proposition 4.2 If Xi’s are i.i.d. with DL(p, q) distribution and character-
istic function ϕ(·|p, q) given by Eq. (5), and Nu is a geometric variable with mean
1/u and p.m.f. (13), then the characteristic function of the geometric compound
on the right-hand-side of Eq. (30) is

ϕY (t) = ϕ(t |p, q)u

1 − (1 − u)ϕ(t |p, q)

= (1 − p)(1 − q)u

(1 − eitp)(1 − e−it q) − (1 − u)(1 − p)(1 − q)
. (55)

We show below that this function coincides with the characteristic function of the
DL(s, r) distribution with s, r given by Eq. (31). Indeed, setting Eq. (55) equal
to ϕ(t |s, r), which is the characteristic function of the DL(s, r) distribution (see
Eq. (5) with p = s and q = r), produces the equation

(1 − p)(1 − q)u(1 − eit s)(1 − e−it r)

= (1 − s)(1 − r)[(1 − eitp)(1 − e−it q)−(1−u)(1−p)(1−q)], (56)

which holds for each t ∈ R. Some algebra shows that this is so whenever the
following two equations hold simultaneously:

r(1−p)(1−q)u=q(1−s)(1−r), s(1−p)(1−q)u=p(1−s)(1−r). (57)

Dividing the corresponding sides of the equations above leads to r = sq/p. Substi-
tuting this term into the first one of these equations results in the following quadratic
equation in s:

h(s) = qs2 − s[p + q + (1 − p)(1 − q)] + p = 0. (58)

Since h(0) = p > 0 and h(1) = −u(1 − p)(1 − q) < 0, it is clear that Eq. (58)
admits a unique root in the interval (0, 1). Applying the quadratic formula leads to
the expression for s given in Eq. (31), and the result follows.

Proof of Proposition 4.3 The proof is analogous to that of Proposition 4.2. Here,
we need to show that Eq. (56) can be solved for p, q ∈ (0, 1) for each u, s, r ∈
(0, 1). This follows if the Eq. (57) hold simultaneously. Substituting q = rp/s into
the first one of these equations results in the following quadratic equation in p:

g(p) = rup2 − p[(r + s)u + (1 − s)(1 − r)] + su = 0. (59)

Since g(0) = su > 0 and g(1) = −(1 − s)(1 − r) < 0, we conclude that Eq. (59)
admits a unique solution in the interval (0, 1), and the quadratic formula produces
Eq. (32).
To prove Proposition 4.4, we need two auxiliary results.

Proposition 6.1 If
∑

ai and
∑

bi are convergent series of positive numbers such
that

∑
ai ≥ ∑

bi then
∑

ai log bi

ai
≤ 0, with equality if and only if ai = bi .

This result is taken from Rao (1965), Result 1e.6 p. 47.
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Proposition 6.2 The system of equations

p

1 − p
− q

1 − q
= c1 ∈ R,

p(1 − q)2 + q(1 − p)2

(1 − p)(1 − q)(1 − pq)
= c2 ≥ 0, (60)

where |c1|≤c2 and p, q ∈ [0, 1), admits a unique solution given by Eq. (35) when
c1 ≥ 0 and (36) when c1 ≤ 0.

Proof Assume first that c1≥0. Using the first equation in Eq. (60) to express p in
terms of q we obtain the second equation in Eq. (35). Substituting this expression
into the second equation in Eq. (60), after tedious algebra we obtain the following
equation for q:

g(q)=(c1−1)(c1−c2)q
2−2(c2

1 −c1c2−1)q+(c1 + 1)(c1 − c2) = 0. (61)

If c1 = c2, this equation produces q=0, which coincides with the expression
for q in Eq. (35). Otherwise, if c1=1, Eq. (61) reduces to a linear equation with
solution q = (c2 − 1)/c2, which again coincides with the expression for q in
Eq. (35). Finally, if c1 �= c2 and c1 �= 1, the function g is quadratic in q with
g(0) = (c1 + 1)(c1 − c2) < 0 and g(1) = 2 > 0, so there is a unique solution of
Eq. (61) in (0, 1). An application of the quadratic formula shows that this solution
is given by the expression for q in Eq. (35). Assume now that c1≤0. Then, since
the first equation in (60) can be written as q/(1 − q) − p/(1 − p) = −c1 ≥ 0
while the second equation is symmetric in p and q, it follows that the solution is
the same as that in case c1≥0, where c1 is replaced by −c1 and p is interchanged
with q. This leads to Eq. (36), and the result follows. ��
Proof of Proposition 4.4 Let Y have a DL(p, q) distribution with the p.m.f. pk

given by Eq. (3), satisfying the constraint Eq. (34). Let the variable X have any
distribution on the integers with non-vanishing p.m.f. qk = P(X = k), k ∈ Z, also
satisfying Eq. (34). As before, denote by X+ and X− the positive and the negative
parts of X, respectively. Then by Eq. (34) we have

EX+ =
∞∑

k=0

kqk = c1 + c2

2
, EX− = −

0∑

k=−∞
kqk = c2 − c1

2
. (62)

Next, by Proposition 6.1 with ai = qi and bi = pi (so that
∑

ai = ∑
qi = 1 ≥

1 = ∑
pi = ∑

bi), it follows that

H(X) = −
∞∑

k=−∞
qk log qk ≤ −

∞∑

k=−∞

qk log pk = − log
(1 − p)(1 − q)

1 − pq
− Q, (63)

where

Q =
0∑

k=−∞
|k|qk log q +

∞∑

0

kqk log p = log qEX− + log pEX+. (64)
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Thus, in view of Eq. (62), we have the following upper bound for the entropy H(X)
of X ∈ C:

H(X) ≤ − log
(1 − p)(1 − q)

1 − pq
−
(

log q
c2 − c1

2
+ log p

c1 + c2

2

)

. (65)

A straightforward calculation shows that this bound is actually attained by Y . If we
now use Eq. (34) along with the expressions for EY and E|Y | given by Eq. (11),
Proposition 6.2 produces the values of p and q given in Eqs. (35) and (36). Substi-
tuting c1 and c2 into the right-hand-side of Eq. (65) yields the maximum entropy
Eq. (37).

To prove Proposition 5.2 we need the following lemma, which can be estab-
lished by a straightforward albeit lengthy algebra.

Lemma 6.1 Let X ∼ DL(p, q), and define W = [X+, X−] ′. Then the mean
vector and the covariance matrix of W are

EW =
[

p(1 − q)

(1 − p)(1 − pq)
,

q(1 − p)

(1 − q)(1 − pq)

]′
(66)

and

�W = 1

(1 − pq)2

[
p(1−q)(1−qp2)

(1−p)2 −pq

−pq
q(1−p)(1−pq2)

(1−q)2

]

. (67)

Proof of Proposition 5.2 We start with Part (i). Note that according to Eq. (46),
when X̄n≥0 the MLE’s are of the form p̂n = F1(X̄

+
n , X̄−

n ) and q̂n = F2(X̄
+
n , X̄−

n ),
where

F1(x, y) = 2y + (x − y)(1 + √
1 + 4xy)

(1 + √
1 + 4xy)(1 + x − y)

,

F2(x, y) = 2y(1 + x − y)

1 + 2y(x − y) + √
1 + 4xy

. (68)

Further, using this notation we can write the expressions in Eq. (47) correspond-
ing to the case X̄n≤0 as p̂n = F2(X̄

−
n , X̄+

n ) and q̂n = F1(X̄
−
n , X̄+

n ), respec-
tively. This allows us to express the MLE’s as (p̂n, q̂n) = G( 1

n

∑n
j=1 Wj ), where

the Wj ’s are i.i.d. bivariate copies of W defined in Lemma 6.1 and G(x, y) =
(G1(x, y), G2(x, y)) where

G1(x, y)=
{
F1(x, y) when x ≥y
F2(y, x) when x ≤y

and G2(x, y)=
{
F2(x, y) when x ≥y
F1(y, x) when x ≤y

.

(69)

Since the Wj ’s satisfy the law of large numbers and the function G is continuous,
we have

G

⎛

⎝1

n

n∑

j=1

Wj

⎞

⎠ d→ G(EW) = (G1(EW), G2(EW)).
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Substituting EW given in Lemma 6.1 into G1 and G2 defined above utilizing the
expressions for F1 and F2 given in Eq. (68) results in (p, q). This proves consis-
tency. We now move to Part (ii). By (bivariate) central limit theorem, we have

√
n

⎛

⎝1

n

n∑

j=1

Wj − EW

⎞

⎠ d→ N(0, �W),

where EW is given by Eq. (66) as before and the right-hand-side is a bivariate
normal distribution with mean zero and covariance matrix given by Eq. (67). Then,
by standard large sample theory results (see, e.g., Rao 1965), we have

√
n

⎛

⎝G

⎛

⎝1

n

n∑

j=1

Wj

⎞

⎠− G(EW)

⎞

⎠ d→ N(0, 
),

where 
 = D�WD′ and

D =
[

∂Gi

∂xj

∣
∣
∣
∣
(x1,x2)=EW

]

i,j=1,2

is the matrix of partial derivatives of the functions G1 and G2 defined by Eq. (69).
Rather lengthy computations produce

D =

⎡

⎢
⎢
⎢
⎢
⎣

1 − pq2

1 + pq

(1 − p)2

1 − q

p(1 − p)(1 − q)

1 + pq

q(1 − p)(1 − q)

1 + pq

1 − qp2

1 + pq

(1 − q)2

1 − p

⎤

⎥
⎥
⎥
⎥
⎦

.

After straightforward but laborious matrix multiplications we find that D�WD′
reduces to Eq. (48) given in the statement of Proposition 5.2. Finally, to establish
Part (iii), take the inverse of the Fisher information matrix (41) and verify that it
coincides with the asymptotic covariance matrix 
. This concludes the proof.
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