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Abstract We consider the standard linear multiple regression model in which the
parameter of interest is the ratio of two regression coefficients. Our setup includes
a broad range of applications. We show that the 1 − α confidence interval for
the interest parameter based on the profile, conditional profile, modified profile
or adjusted profile likelihood can potentially become the entire real line, while
appropriately chosen integrated likelihoods do not suffer from this drawback. We
further explore the asymptotic length of confidence intervals in order to compare
integrated likelihood-based proposals. The analysis is facilitated by an orthogonal
parameterization.

Keywords Adjusted profile likelihood · Adjustments to profile likelihood ·
Conditional profile likelihood · Expected length of confidence interval · Integrated
likelihood · Orthogonal transformation · Profile likelihood

1 Introduction

There is a large class of important statistical problems that can broadly be described
under the general heading of inference about the ratio of regression coefficients
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in the general linear model. This class includes the calibration problem, ratio of
two means or Fieller–Creasy problem (cf. Fieller, 1954; Creasy, 1954), slope-ratio
assay, parallel-line assay and bioequivalence. The general nature of such problems
was recognized several decades ago, as documented for example in the excellent
treatise of Finney (1978). There are many articles on these specific problems based
on a frequentist perspective. However, solutions to these problems have typically
encountered serious difficulties. For example, confidence regions for the ratio of
two normal means based on Fieller (1954) pivot may be the entire real line.

We consider here likelihood-based intervals for the ratio of two regression
coefficients, which is our interest parameter. We discuss the profile likelihood and
its modifications, such as the conditional profile likelihood (Cox and Reid, 1987),
modified profile likelihood (Barndorff-Nielsen, 1983) and adjusted profile likeli-
hood (McCullagh and Tibshirani, 1990), and compare these against a certain class
of integrated likelihoods (Kalbfleisch and Sprott, 1970; Berger et al. 1999). All
these likelihoods may be viewed as special cases of adjustments to the profile
likelihood (cf. DiCiccio and Stern, 1994). Wallace (1958) and Scheffé (1970) also
discuss confidence intervals for the ratio of two regression coefficients. The key to
the derivation of the various likelihoods is a non-trivial orthogonal reparameter-
ization of the original parameter vector given by Ghosh et al. (2003) and reviewed
here in Sect. 2.

While the conditional, modified and adjusted profile likelihoods have been very
effective frequentist tools in eliminating nuisance parameters, they suffer from a
drawback for the problems as mentioned earlier. Since all these likelihoods remain
bounded away from zero at the end-points of the parameter space, as shown in Sect.
3, the resulting likelihood-based confidence regions could potentially become the
entire real line. Explicit conditions which guarantee this are provided in Sect. 4.
However, the integrated likelihoods considered in this paper avoid this problem.
We further show in Sect. 5 that a confidence set resulting from the integrated likeli-
hood under the one-at-a-time unconditional reference prior has a certain asymptotic
superiority over its competitors. We illustrate our results in Sect. 6 with an exam-
ple on a parallel-line assay and we make some concluding remarks in Sect. 7. The
proofs of some technical results in Sects. 3 and 4 are deferred to Appendix.

2 An orthogonal transformation

Consider the general regression model:

yi =
r∑

j=1

βjxij + ei , i = 1, . . . , n, (1)

where the errors ei are independent N (0, σ 2). Hereβj ∈ (−∞,∞) for j �= 2 while
β2 ∈ (−∞,∞) − {0}. The parameter of interest is θ1 = β1/β2. We write Y =
(y1, . . . , yn)

T, xi = (xi1, . . . , xir )
T, i = 1, . . . , n, XT = (x1, . . . , xn), β =

(β1, . . . , βr)
T, e = (e1, . . . , en)

T. Let rank(X) = r < n. Thus in matrix notation
the model can be rewritten as Y = Xβ + e.

Ghosh,Yin and Kim (2003) have given a transformation of the parameter vector
(βT, σ ) that results in the orthogonality of θ1 with the remaining parameters. Define
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S = (sij ), i, j = 1, . . . , r by S = n−1XTX and S11 = (sij ), i, j = 1, 2, S12 =
ST

21 = (sij ), i = 1, 2, j = 3, . . . , r , S22 = (sij ), i, j = 3, . . . , r . Since rank(X) =
r, S, S22 and C = S11 − S12A are positive definite, where A = S−1

22 S21. Write
A = (aij ), i = 3, . . . , r, j = 1, 2 and C = (cij ), i, j = 1, 2. Since C is positive
definite, the quantityQ(θ1) = c11θ

2
1 + 2c12θ1 + c22 is positive for all θ1. Consider

now the transformation:

β1 = θ1β2, β2 = θ2Q
−1/2(θ1),

βj = θj − β2(aj1θ1 + aj2), j = 3, . . . , r, σ = θr+1. (2)

Let ψ = (θ2, . . . , θr+1). It is shown in Ghosh, Yin and Kim (2003) that θ1 is
orthogonal to ψ and the reparameterized Fisher information matrix of θ = (θ1, ψ)
is given by

I (θ) = n

θ2
r+1

Block diag

(
θ2

2 |C|
Q2(θ1)

, 1, S22, 2

)
.

We will repeatedly use this information matrix for the development of various like-
lihoods for the parameter of interest θ1. We treat the rest of the parameters ψ as
nuisance parameters.

3 Development of likelihoods

We first derive the profile likelihood of θ1. Writing β̂ = (β̂1, . . . , β̂r )
T as the

maximum likelihood estimator (MLE) of β and SSE = (Y − Xβ̂)T(Y − Xβ̂),
the likelihood is

L(β1, β2, . . . , βr , σ ) ∝ σ−n exp

[
− 1

2σ 2

{
SSE + (β − β̂)TXTX(β − β̂)

}]
.

Next, writing φT = (θ1, 1), γ̂ T = (β̂1, β̂2), by an identity for partitioned matrices
we get

n−1(β − β̂)TXTX(β − β̂) = (β2φ − γ̂ )TC(β2φ − γ̂ )+ uTS22u,

where uT = (β3 − β̂3, . . . , βr − β̂r )+ (β2θ1 − β̂1, β2 − β̂2)S12S
−1
22 . Now, by maxi-

mizing with respect to (β3, . . . , βr), β2 and σ in succession, one obtains the profile
likelihood of θ1 as

LPL(θ1) ∝
{

SSE + n|C|(β̂2θ1 − β̂1)
2/Q(θ1)

}−n/2
. (3)

Remark 1 Note that as |θ1| → ∞, (β̂2θ1 − β̂1)
2/Q(θ1) → β̂2

2/c11 so from Eq. (3)
LPL(θ1) is bounded away from 0 as |θ1| → ∞. This immediately suggests that
any likelihood-based confidence interval for θ1 can potentially be the entire real
line; see Sect. 4.
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Remark 2 In many important problems of statistical inference, such as the Ney-
man–Scott problem, the deficiency of the profile likelihood has been rectified by
various adjustments. One such adjustment is the conditional profile likelihood, as
proposed by Cox and Reid (1987). Let L(θ) denote the likelihood function and
l(θ) the log-likelihood function of θ . Let ψ̃(θ1) denote the MLE of ψ for fixed
θ1 and (θ1, ψ̃(θ1)) = θ̃ (θ1). It is shown in Appendix that

LCPL(θ1) ∝
{

SSE + n|C|(β̂2θ1 − β̂1)
2/Q(θ1)

}−n−r/2
. (4)

Clearly LCPL(θ1), like LPL(θ1), remains bounded away from zero as |θ1| → ∞.
Moreover, due to their similarity in form, both produce identical confidence sets.

Remark 3 A second adjustment to the profile likelihood due to Barndorff-Nielsen
(1983) is the modified profile likelihood given by LMPL(θ1) = LPL(θ1)M(θ1),
whereM(θ1) is an adjustment factor. This adjustment factor, derived in Appendix,
leads to

LMPL(θ1) ∝ LPL(θ1)Q
1/2(θ1)(c11θ1θ̂1 + c12θ1 + c12θ̂1 + c22)

−1θ̃
(r+1)
r+1 (θ1). (5)

Thus as |θ1| → ∞, LMPL(θ1)/LPL(θ1) tends to a constant depending only on y
and X and hence LMPL(θ1) also remains bounded away from 0 as |θ1| → ∞.

Remark 4 McCullagh and Tibshirani (1990) proposed an adjustment to the pro-
file likelihood based on unbiased estimating functions. Let η̃(θ1) be the maxi-
mum likelihood estimator of η for fixed θ1, where η = (θ1, β2, . . . , βr , σ ). Let
Ũ (θ1) = {U(θ1)−m(θ1)}w(θ1), where U(θ1) = (∂/∂θ1) log LPL(θ1) is the score
function based on the profile log-likelihood, and m(θ1) and w(θ1) are chosen
such that Eη̃(θ1)Ũ (θ1) = 0 and Vη̃(θ1)Ũ (θ1) = −Eη̃(θ1)(∂/∂θ1)Ũ(θ1). Then

m(θ1) = Eη̃(θ1)U(θ1),

w(θ1) = {Vη̃(θ1)U(θ1)}−1
{

− Eη̃(θ1)

∂2

∂θ2
1

log LPL(θ1)+ ∂

∂θ1
m(θ1)

}
. (6)

Then the adjusted profile likelihood of McCullagh and Tibshirani is given by

LAPL(θ1) = exp
{ ∫ θ1

θ1∗
Ũ (t1)dt1

}
, (7)

where θ1∗ is an arbitrary point in the parameter space of θ1.
In our case it can be shown that

β̃2(θ1) = θ1(c11β̂1 + c12β̂2)+ c12β̂1 + c22β̂2

Q(θ1)
,

σ̃ (θ1) =
{

SSE

n
+ |C|(β̂2θ1 − β̂1)

2

Q(θ1)

}1/2

. (8)

The theorem below, proved inAppendix, provides expressions form(θ1) andw(θ1).
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Theorem 1

m(θ1) = 0 and w(θ1) = n− r − 1

n

Q(θ1)β̃
2
2 (θ1)

Q(θ1)β̃
2
2 (θ1)+ σ̃ 2(θ1)/n

.

Let lAPL(θ1) = log LAPL(θ1). Then, for θ1∗ < θ1, Theorem 1 and Eq. (7)
imply that |lAPL(θ1)| ≤ ∫ θ1

θ1∗
|U(t)|dt . Since U(t) = Op(t

−2) for large |t |, it fol-
lows that lAPL does not diverge to −∞ as |θ1| → ∞. In otherwords, LAPL also
remains positive as |θ1| → ∞.

Yet another approach to this problem is the one based on the integrated like-
lihood as introduced by Kalbfleisch and Sprott (1970) and more recently dis-
cussed in Berger, Liseo and Wolpert (1999). We begin with the likelihood for
η = (θ1, β2, . . . , βr , σ ):

L(η) ∝ σ−n exp

[
− n

2σ 2

{
n−1SSE + (β2φ − γ̂ )TC(β2φ − γ̂ )+ uTS22u

}]
.

(9)

The submatrix of the Fisher information corresponding to (β2, . . . , βr , σ ) is
given by

n

σ 2

⎡

⎣
φTS11φ φ

TS12 0
S21φ S22 0

0 0T 2

⎤

⎦ . (10)

Following Berger, Liseo and Wolpert (1999) we calculate the conditional ref-
erence integrated likelihood. To this end, first we start with the reference prior
π∗(β2, . . . , βr , σ |θ1) ∝ σ−r (φTCφ)1/2 = σ−rQ1/2(θ1) based on the square root
of the determinant of Eq. (10). Next, taking the sequence of compact intervals
[−i, i]r−1 × [i−1, i], i = 1, 2, 3, . . . for β2, . . . , βr , σ , following Berger, Liseo
and Wolpert (1999),

k−1
i (θ1) =

∫ i

i−1

∫ i

−i
· · ·

∫ i

−i
σ−rQ1/2(θ1)dβ2 dβ3 · · · dβr dσ ∝ Q1/2(θ1).

Thus, limi→∞ ki(θ1)/ki(θ10) ∝ Q−1/2(θ1) where θ10 is a fixed value of θ1. Now
from Berger, Liseo and Wolpert (1999), the conditional reference prior is given by

πCR(β2, . . . , βr , σ |θ1) ∝ σ−rQ1/2(θ1)Q
−1/2(θ1) = σ−r .

The corresponding integrated likelihood, after some simplification, is then

LCR
I (θ1) ∝

∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞
L(θ1, β2, . . . , βr , σ )π

CR

×(β2, . . . , βr , σ |θ1)dβ2 dβ3 · · · dβr dσ

∝ Q−1/2(θ1)
{

SSE + n|C|(β̂2θ1 − β̂1)
2/Q(θ1)

}−n/2

∝ Q−1/2(θ1)LPL(θ1).
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The advantage of the integrated likelihood over the profile likelihood is that the
former tends to 0 as |θ1| → ∞ due to the multiplying factor Q−1/2(θ1).
We note that in the θ -parameterization, the conditional reference prior reduces to
πCR(θ2, . . . , θr+1|θ1) ∝ θ−r

r+1Q
−1/2(θ1).

Remark 5 Interestingly, if one uses instead Jeffreys’ prior πJ(β2, . . . , βr , σ |θ1) ∝
σ−rQ1/2(θ1) as the conditional prior, the resulting integrated likelihood is the
same as the profile likelihood and thus has the same disadvantages pointed out
earlier. However, for the one-at-a-time conditional reference prior πOCR(β2, . . . ,

βr , σ |θ1) ∝ σ−1, the integrated likelihood is LOCR
I (θ1) ∝ Q−1/2(θ1)

{
SSE +

n|C|(β̂2θ1 − β̂1)
2/Q(θ1)

}−n−r+1/2
, which, due to the factor Q−1/2(θ1), also tends

to 0 as |θ1| → ∞. Clearly there are other choices. For example, for the one-
at-a-time Berger–Bernardo unconditional reference prior πR(θ2, . . . , θr+1|θ1) ∝
θ−1
r+1Q

−1(θ1), as found in Ghosh, Yin and Kim (2003), the integrated likelihood is

LR
I (θ1) ∝ Q−1(θ1)

{
SSE + n|C|(β̂2θ1 − β̂1)

2/Q(θ1)
}−n−r+1/2

.

4 Likelihood-based confidence regions

We begin with the derivation of a confidence region for θ1 using the profile like-
lihood. Such a region is obtained from the corresponding likelihood ratio test.
In particular, if θ̂1 denotes the maximum likelihood estimator of θ1, then writing
λPL(θ1) = LPL(θ1)/LPL(θ̂1) and lPL(θ1) = logLPL(θ1), we get

−2 log λPL(θ1) = 2{lPL(θ̂1)− lPL(θ1)}

= n log

{
1 + n|C|(β̂2θ1 − β̂1)

2/Q(θ1)

SSE

}

which is monotonically increasing in F = n|C|(β̂2θ1 − β̂1)
2Q−1(θ1)/MSE, where

MSE = SSE/(n − r) and the latter has the F -distribution with 1, n − r degrees
of freedom. Thus the acceptance region for H0 : θ1 = θ10 against the alternative
H1 : θ1 �= θ10 is given by

A(θ10) =
{
y :

n|C|(β̂2θ10 − β̂1)
2/Q(θ10)

MSE
≤ F1,n−r;α

}
,

where F1,n−r;α denotes the upper 100(1 − α)% point of the F-distribution with
1, n− r degrees of freedom. The corresponding confidence region is then given by

C(Y ) = {θ1 : F ≤ F1,n−r;α}. (11)

We now find conditions under which C(Y ) becomes the entire real line. Recall
φ = (θ1, 1)T, and γ̂ = (β̂1, β̂2)

T. The following lemma is proved in Appendix.

Lemma 1 supθ1
(β̂2θ1 − β̂1)

2/Q(θ1) = γ̂ TCγ̂ /|C|.
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Table 1 P(F2,n−r (ζ ) ≤ F1,n−r;α/2) for different choices of n− r , ζ and α

n− r α ζ

0.001 0.01 0.1 1 10

5 0.01 0.973 0.973 0.968 0.914 0.311
0.05 0.878 0.876 0.861 0.709 0.048
0.10 0.774 0.771 0.749 0.549 0.012

10 0.01 0.969 0.968 0.961 0.875 0.109
0.05 0.867 0.865 0.845 0.653 0.015
0.10 0.758 0.755 0.729 0.499 0.004

15 0.01 0.967 0.967 0.958 0.858 0.067
0.05 0.862 0.860 0.839 0.632 0.009
0.10 0.753 0.750 0.722 0.482 0.003

Remark 6 From Eq. (11) and Lemma 1, it follows that C(Y ) becomes the real line
if and only if nγ̂ TCγ̂ /MSE ≤ F1,n−r;α . Since nγ̂ TCγ̂ /(2MSE) is distributed as
the non-centralF with degrees of freedom 2 and n−r and non-centrality parameter
ζ = nγ TCγ/(2σ 2), where γ = (β1, β2)

T, the probability of C(Y ) being the real
line is given by P(F2,n−r (ζ ) ≤ F1,n−r;α/2). Table 1 gives these probabilities for
different choices of n− r , ζ and α and shows very clearly that for small values of
ζ there is a high probability that C(Y ) is the entire real line.

Next, the maximum likelihood estimator of θ1 based on the conditional profile
likelihood given in Eq. (4) continues to be β̂1/β̂2 = θ̂1. Hence, writing lCPL(θ1) =
log LCPL(θ1) and λCPL(θ1) = LCPL(θ1)/LCPL(θ̂1), one gets

−2 log λCPL(θ1) = 2{lCPL(θ̂1)− lCPL(θ1)}

= (n− r) log

{
1 + n|C|(β̂2θ1 − β̂1)

2Q−1(θ1)

SSE

}
.

Thus the conditional profile likelihood-based confidence region is the same as that
based on profile likelihood and, as pointed out in Remark 6, can become the entire
real line.

A similar phenomenon for the adjusted profile likelihood is given in Lemma
2, proved in Appendix. Let θ̂1,APL = arg supθ1

LAPL(θ1) and let λAPL(θ1) =
LAPL(θ1)/LAPL(θ̂1,APL).

Lemma 2

supθ1
{−2 logeλAPL(θ1)} ≤ Kγ̂ TCγ̂ /MSE ,

where K is a positive constant that depends only on n and C.

Remark 7 Lemma 2 states that an adjusted profile likelihood-based confidence
set becomes the entire real line for a given α if Kγ̂ TCγ̂ /MSE does not exceed
the upper 100α% point of the distribution of −2 logeλAPL. For the asymptotic
distribution of −2 log λAPL(θ1) we write

−2 log λAPL(θ1) = 2{lPL(θ̂1, APL)− lPL(θ1)}

−2
∫ θ̂1

θ1

(1 − w(t))U(t)dt. (12)
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But 1 −w(t) = σ̃ 2(t)/{nβ̃2
2 (t)Q(t)+ σ̃ 2(t)}. As |t | → ∞, it follows from Eq. (8)

that both β̃2
2 (t)Q(t) and σ̃ 2(t) are bounded in probability. SinceU(t) = Op(|t |−2),

by Eq. (12),

−2 log λAPL(θ1) = 2{lPL(θ̂1,APL)− lPL(θ1)} +Op(n
−1). (13)

Since 2{lPL(θ̂1,APL) − lPL(θ1)} is asymptotically distributed as χ2
1 , it follows

from Eq. (13) that −2 log λAPL(θ1) has the same asymptotic distribution. Thus
asymptotic confidence regions for θ1 can be constructed using percentiles of the
χ2

1 distribution.
The confidence regions for θ1 based on certain integrated likelihoods are bounded.

This is becauseQ(θ1) → ∞ as |θ1| → ∞. Hence, writing θ̂CR
1,I =arg supθ1

LCR
I (θ1),

−2 log λCR
I (θ1) = 2 {log LI(θ̂

CR
1,I ) − log LCR

I (θ1)} → ∞ as |θ1| → ∞. The

same is true for the integrated likelihoodsLOCR
I (θ1) andLR

I (θ1) introduced in the

previous section. Finally, to O(n−1) the integrated likelihood ratio statistics ob-
tained from LCR

I (θ1), L
OCR
I (θ1) and LR

I (θ1) are all asymptotically χ2
1 and these

may be used to obtain approximate confidence intervals for θ1.
Suppose s = √

MSE. Since the F statistic occurring in −2 log λPL(θ1) is
equal to t2, where

t =
√
n|C|(β̂1 − β̂2θ1)

s
√
Q(θ1)

(14)

has the t-distribution withn−r degrees of freedom, we see that the profile likelihood
ratio statistic delivers equitailed confidence intervals whenever these are not the
entire real line. In contrast, all three integrated likelihood ratios will deliver inter-
vals with unequal tail probabilities. However, we can apply a modification which,
toO(n−1), will produce equitailed intervals if desired. Furthermore, these intervals
will always be finite. The necessary modification is anO(n−1/2) bias correction to
the signed root log-likelihood ratio statistic; cf. Barndorff-Nielsen (1994). In our
case it is relatively straightforward to derive the adjustment by direct calculation.

Consider the conditional reference integrated likelihood ratio and let RCR
I =

sign(θ̂CR
1,I − θ1){−2 log λCR

I (θ1)}1/2 be the signed log-likelihood ratio statistic. It

is shown in Appendix that RCR
I − aCR is standard normal to O(n−1), where

aCR = − sQ
′
(θ̂1)

2β̂2{Q(θ̂1)n|C|}1/2
. (15)

Hence an approximate (1 − α) confidence interval for θ1 is {θ1 : |RCR
I − aCR| ≤

zα/2}, where zα is the upper α point of the standard normal distribution. Further-

more this interval is equitailed toO(n−1) and always finite, since RCR
I → ∓∞ as

θ1 → ±∞. Note that β̂2
2Q(θ̂1) in the denominator of Eq. (15) should be computed

as c11β̂
2
1 +2c12β̂1β̂2+c22β̂

2
2 to avoid numerical instability when β̂2 is near zero. The
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corresponding adjustments for the Jeffreys’ and unconditional reference integrated
likelihood ratio statistics are easily seen to be aOCR = aCR = (1/2)aR.

The parameter space Ω in the ratios problem excludes parameter vectors with
β2 = 0. Since the asymptotic confidence intervals obtained in this paper are non-
uniform in neighborhoods of β2 = 0, approximate 100(1 − α)% coverage is not
guaranteed for every value of θ1 for a given sample size n. However, a quasi-
Bayesian definition of an asymptotic 100(1 − α)% confidence interval Sα(Y ) for
θ1 would be Pπ(θ1 ∈ Sα(Y )) → 1 − α for every proper prior distribution π on
Ω . The requirement of some proper prior distribution on Ω is a mild assumption,
since the value β2 = 0 would not normally be regarded as being of any special
significance.

5 Asymptotic expected volumes of confidence sets

Test statistics and statistical procedures are often compared based on expected
lengths of associated confidence intervals (cf. Mukerjee and Reid, 2001). In this sec-
tion we compare the various adjusted likelihoods via asymptotic expected lengths
of the confidence intervals for θ1. The necessary quantities are based on asymptotic
distributions of the likelihood ratio statistics and are not equivalent to limits of the
expected lengths. Indeed, for the present class of problems, the latter are always
infinity (Gleser and Hwang, 1987).

Mukerjee and Reid (1999) and Datta and DiCiccio (2001) considered confi-
dence sets by inverting approximate 1−α+o(n−1) acceptance regions of likelihood
ratio tests obtained via maximization of the adjusted likelihoods. LetCu(Y ) (C(Y ),
respectively) be a 1−α+o(n−1) likelihood ratio confidence set of θ1 based on the
profile likelihood function (adjustments to the profile likelihood, respectively) of
θ1. To compare these adjustments, the aforementioned authors have developed an
expression for the change T in the asymptotic expected volume of C(Y ) relative
to the asymptotic expected volume of Cu(Y ). Mukerjee and Reid (1999) showed
that T remains the same for Cox and Reid, Barndorff-Nielsen or McCullagh and
Tibshirani adjustment. Therefore, in our comparison we consider only the Cox and
Reid (1987) adjustment.

We now write down an expression for T . Writing Du ≡ ∂/∂θu, we define
λuvw = Eθ {DuDvDwl(θ)}. Due to orthogonality of θ1 with θi , i = 2, . . . , r + 1,
from the expression for 2nT given by Eq. (20) of Datta and DiCiccio (2001) we
get

T = δ2

2I11
+

r+1∑

u=1

I 1uDu(δ)− 1

2

r+1∑

u=1

r+1∑

s=1

r+1∑

t=1

I 1uI st δ{2Dt(Ius)

+λust } + λ111δ

2I 2
11

+ o(n−1).

Using I 1i = 0 for i = 2, . . . , r + 1, I 2j = 0 for j = 3, . . . , r + 1, λ122 = 0,
λ1ij = 0 for i, j = 3, . . . , r + 1, in our case, T further simplifies to

T = δ2

2I11
+D1(δI

−1
11 )+ o(n−1). (16)
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Here δ depends on the adjustment term. We denote the δ corresponding to the Cox
and Reid adjustment by δ0 and the δ corresponding to an integrated likelihood for
a conditional prior π(ψ |θ1) by δπ . From Eqs. (23) and (26) of Datta and DiCiccio
(2001) it follows that

δ0 = 1

2

r+1∑

i=2

r+1∑

j=2

I ijλ1ij , δ
π = δ0 +D1(log π).

Using λ1ij = 0 for i, j = 3, . . . , r + 1, λ122 = 0, I 2i = 0 for i = 3, . . . , r + 1, it
follows that

δ0 = 0, δπ = D1(log π). (17)

Thus for a conditional prior of the form πw(ψ |θ1) ∝ Qw(θ1)g(ψ) for some con-
stant w and for a general function g(ψ) we get

δπw = w
Q′(θ1)

Q(θ1)
. (18)

Note that δπw depends on the prior πw only through w and θ1.
Using I−1

11 = θ2
r+1Q

2(θ1)/(nθ
2
2 |C|) we get from Eqs. (16) and (18) that the

expression for T corresponding to an integrated likelihood for the priorπw, denoted
by Tw, is given by

Tw = θ2
r+1w

2{Q′(θ1)}2

2nθ2
2 |C| + w

n
D1

{
Q′(θ1)Q(θ1)θ

2
r+1

θ2
2 |C|

}
+ o(n−1)

= θ2
r+1

2nθ2
2 |C|2 [(w2 + 2w){Q′(θ1)}2 + 2wQ′′(θ1)Q(θ1)] + o(n−1). (19)

The class of priors given by πw(θ) is quite general and by suitably choosing g(·)
and w we get Jeffreys’ prior, the one-at-a-time reference prior, the conditional
reference prior, the first and second order quantile matching priors and a highest
posterior density matching prior for θ1. In particular, a highest posterior density
matching prior is given by |θ2|Q(θ1) with w = 1. The details are given in Ghosh,
Yin and Kim (2003). For the other priors mentioned above, w is −1,−1/2 or 0. In
particular the one-at-a-time unconditional reference prior πR hasw = −1 and the
conditional reference prior πCR hasw = −1/2. Note that T−1 < T−1/2 < 0 < T1,
where 0 is the value of T for Cox–Reid adjustment. Since the integrated likelihoods
corresponding to πR and πCR produce confidence sets with asymptotic expected
length shorter than the integrated likelihood based on the above highest posterior
density matching prior, in our numerical studies we do not consider the last prior.
Note, however, that unlike other objective priors, this prior results in a confidence
set which has also posterior coverage equal to 1 − α + o(n−1).
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6 Numerical results

We begin with an example from Finney (1978) involving a parallel-line assay. Con-
sider an experiment in which p doses (x11, . . . , x1p) of a standard drug S is
assayed m times and q doses (x21, . . . , x2q) of a test drug T is assayed u times so
that a set {Z1ik, i = 1, . . . , p; k = 1, . . . , m;Z2jk, j = 1, . . . , q; k = 1, . . . , u}
of n = pm+qu observations are obtained. The assumed model for a parallel-line
assay is

Z1ik = α + βx1i + ε1ik, k = 1, . . . , m; i = 1, . . . , p,

Z2jk = α + β(x2j + ρ)+ ε2jk, k = 1, . . . , u; j = 1, . . . , q,

where ε1ik and ε2jk are independent N (0, σ 2). This model is a special case of
Eq. (1), where θ1 = ρ is the parameter of interest. In the example considered in
(Finney, 1978, p. 105), n=36.

Table 2 gives the exact confidence interval using the F statistic and the likeli-
hood-based confidence intervals for ρ with α=0.01, 0.05 and 0.10 based on the
profile likelihood, identical with the conditional profile likelihood, and the three
integrated likelihoods based on the conditional reference prior, the one-at-a-time
conditional and unconditional reference priors, along with the corresponding
lengths. Notice that we have two kinds of confidence intervals based on the inte-
grated likelihoods, the upper one based on the Chi-square approximation and the
lower one based on the equitailed approximation. We have also included the HPD
credible sets based on the one-at-a-time reference prior πR for the sake of compar-
ison with the likelihood-based confidence intervals. The HPD credible intervals are
slightly longer than the other confidence intervals but they have posterior coverage

Table 2 Likelihood-based confidence intervals for ρ with α=0.01, 0.05 and 0.10 using Finney’s
data

α 0.01 0.05 0.10

Interval Coverage Interval Coverage Interval Coverage
(length) (length) (length)

Exact (-0.307, 0.676) 0.989 (-0.181, 0.536) 0.948 (-0.121, 0.471) 0. 898
(0.987) (0.717) (0.592)

PL (-0.280, 0.646) 0.985 (-0.162, 0.516) 0.936 (-0.106, 0.455) 0.880
(0.926) (0.678) (0.561)

IL with (-0.279, 0.640) 0.984 (-0.162, 0.512) 0.934 (-0.106, 0.451) 0.877
(0.919) (0.674) (0.557)

CR prior (-0.275, 0.645) 0.984 (-0.159, 0.516) 0.935 (-0.103, 0.455) 0.878
(0.920) (0.675) (0.558)

IL with (0.294, 0.656) 0.987 (-0.173, 0.523) 0.942 (-0.115, 0.460) 0 .888
(0.950) (0.696) (0.575)

OCR prior (-0.289, 0.661) 0.987 (-0.169, 0.527) 0.942 (-0.111, 0.464) 0.888
(0.950) (0.696) (0.575)

IL with (-0.293, 0.650) 0.987 (-0.173, 0.518) 0.940 (-0.115, 0.456) 0.886
(0.943) (0.691) (0.571)

R prior (-0.284, 0.660) 0.987 (-0.165, 0.527) 0.940 (-0.107, 0.464) 0.886
(0.944) (0.692) (0.571)

HPD with (-0.316, 0.675) 0.990 (-0.188, 0.534) 0.950 (-0.127, 0.469) 0.900
R prior (0.991) (0.722) (0.596)
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Table 3 Confidence sets for ρ with coverage probability 1 − α based on three integrated likeli-
hoods using 1,000 simulated data

IL under CR prior IL under OCR prior IL under R prior

1-α Coverage Expected Coverage Expected Coverage Expected
probability length probability length probability length

0.99 0.996 79.3824 0.998 79.6600 0.998 15.5772
(0.0020) (2.3069) (0.0014) (2.2224) (0.0014) (0.2491)

0.95 0.959 19.4912 0.965 19.5617 0.966 7.2921
(0.0063) (0.5551) (0.0058) (0.5354) (0.0057) (0.1128)

0.90 0.918 10.8141 0.925 10.8453 0.922 5.1105
(0.0087) (0.3007) (0.0083) (0.2901) (0.0085) (0.0768)

probabilities right on the target and higher than the posterior coverage probabilities
of all the other intervals in our consideration.

It is evident from Table 2 that in all the situations considered, the integrated
likelihood under the conditional reference prior provides intervals with shortest
lengths, although the integrated likelihoods under the one-at-a-time conditional
and unconditional reference priors lead to intervals which are only slightly longer.
In this case nγ̂ TCγ̂ /(2MSE) = 45.92 is quite large. It is therefore no surprise that
a profile likelihood-based confidence interval for ρ becomes the entire real line
only for very small values of α which has very limited practical interest.

In contrast, next we undertake a simulation study, generating data from the
same parallel-line assay with β1=0.25, β2=0.25, β3=1, σ 2=3 and n, p, q,m, u
as before. In most of the runs the confidence set for ρ is an interval. However,
sometimes it is the union of two intervals, in which case the length of the confi-
dence set is the sum of the lengths of these two intervals. Based on these simulations,
Table 3 provides the coverage probabilities and the asymptotic expected lengths
of the confidence sets for ρ using the three integrated likelihoods. The simulation
standard errors are given within parentheses. As seen from Table 3, confidence sets
based on the unconditional reference prior have lengths much shorter than the ones
based on the conditional reference prior and the one-at-a-time conditional reference
prior.

Based on the theoretical findings of Sects. 4 and 5, the two examples presented
here and others that we have considered but have not reported, it is our recommen-
dation to use an integrated likelihood based on the one-at-a-time unconditional
reference prior for the construction of confidence regions for θ1.

7 Concluding remarks

In this paper we have considered likelihood-based inference for ratios of regres-
sion coefficients in linear models, which includes a large class of problems, as
indicated in Sect. 1. We have demonstrated both analytically and numerically sit-
uations where it becomes imperative to use an integrated likelihood if one is to
avoid confidence sets being the entire real line. Although the repeated sampling
confidence interpretation is not invalidated by the occasional occurrence of such
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sets, their final precision is very different from their initial precision, since a con-
fidence level of, say, 95% is attached to an interval in which θ1 is known to lie
with probability one. For the ratios problem our recommended approach is the
integrated likelihood based on the one-at-a-time unconditional reference prior of
Berger and Bernardo (1992).

We note that it is not lack of knowledge of σ that gives rise to the results in
this paper. Exactly the same behavior ensues when σ is known. In particular, for
the Fieller–Creasy problem with means θμ and μ and σ = 1, both the profile and
conditional profile likelihoods are proportional to

exp

[
−1

2

{
n(x̄ − θȳ)2

1 + θ2

}]
.

In contrast, the integrated likelihood multiplies the above by a factor (θ2 + 1)−1/2

or (θ2 +1)−1, depending on whether one is using πCR or πR. More generally, the
phenomena described in this paper are not confined to the normal regression model
(Eq. (1)). For example, it can be shown that in the Fieller–Creasy problem above
when the error distributions are Student t , the profile likelihood does not tend to
zero as |θ | → ∞. On the other hand, the information matrix is readily available and
the conditional priors associated with the various integrated likelihoods discussed
in Sect. 3 are unchanged. Analysis of the exact integrated likelihood is difficult, but
an analysis of the Laplace approximation, as given in Sweeting (1987), for exam-
ple, to the integrated likelihood reveals similar behavior to that obtained in the
normal case. A full analysis of location-scale and other regression models involves
additional technical difficulties and is a topic for future research.

Acknowledgements Ghosh and Kim’s research was partially supported by NSF Grants SBR-
9810968 and SBR-9911485. Datta’s research was partially supported by NSF Grants DMS-
0071642, SES-0241651 and NSA Grant MDA904-03-1-0016. Sweeting’s research was partially
supported by EPSRC Grant GR/R24210/01.

Appendix

Derivation of Eq. (4)

Clearly, LPL(θ1) given by Eq. (3) is equal to L(θ̃(θ1)). It can be checked that

{(
− ∂2l(θ)

∂θk∂θm

∣∣∣
θ̃ (θ1)

)}

k,m=2,...,r+1

= nθ̃−2
r+1(θ1) Diag (1, S22, 2). (20)

Due to the orthogonality of θ1 and ψ Eqs. (3), (20) and Eq. (10) of Cox and Reid
(1987) lead to the conditional profile likelihood of θ1 as

LCPL(θ1) ∝ LPL(θ1){θ̃r+1(θ1)}r ∝
{

SSE + n|C|(β̂2θ1 − β̂1)
2/Q(θ1)

}−n−r/2
,

which is Eq. (4).
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Derivation of Eq. (5)

To derive M(θ1) we first write the logarithm of the original likelihood as l ≡
l(θ1, ψ, θ̂1, ψ̂), where θ̂1 and ψ̂ are the maximum likelihood estimators of θ1 and
ψ . Then

M(θ1) =
∣∣∣∣−

∂2l

∂ψ∂ψ̂T

∣∣∣
θ̃ (θ1)

∣∣∣∣
−1 ∣∣∣∣−

∂2l

∂ψ∂ψT

∣∣∣
θ̃ (θ1)

∣∣∣∣
1/2

(21)

by Eq. (8.7) of Barndorff-Nielsen (1994). It follows after considerable algebra that
∣∣∣∣−

∂2l

∂ψ∂ψ̂T

∣∣∣
θ̃ (θ1)

∣∣∣∣ = g(θ̂)Q−1/2(θ1)θ̃
−(2r+1)
r+1 (θ1)

×(c11θ1θ̂1 + c12θ1 + c12θ̂1 + c22), (22)

where g(θ̂) only involves θ̂ . This derivation is carried out by expressing l as
l = −n log θr+1 − (2θ2

r+1)
−1[nθ̂2

r+1 + {β(θ1, ψ)− β(θ̂1, ψ̂)}T(XTX){β(θ1, ψ)−
β(θ̂1, ψ̂)}] + h(y,X), where h does not involve any parameters, β(θ1, ψ) is β
expressed as a function of θ1 and ψ as given in Eq. (2). Then Eqs. (20), (21) and
(22) give Eq. (5).

Proof of Theorem 1

Let τ1(θ1) = β̂2θ1 − β̂1 = (−1, θ1)γ̂ and τ2(θ1) = Q(θ1)β̃2(θ1) = (c11β̂1 +
c12β̂2)θ1 + c21β̂1 + c22β̂2 = (θ1, 1)Cγ̂ . It follows after some algebraic simplifica-
tions that

U(θ1) = − n2|C|τ1(θ1)τ2(θ1)

Q2(θ1){SSE + n|C|τ 2
1 (θ1)/Q(θ1)}

. (23)

From the distribution of γ̂ , it follows that (τ1(θ1), τ2(θ1))
T is bivariate normal

with means 0 and Q(θ1)β2, variances (σ 2/n)|C|−1Q(θ1) and (σ 2/n)Q(θ1), and
covariance n−1(−1, θ1)C

−1C(θ1, 1)T = 0. Thus τ1(θ1) and τ2(θ1) are indepen-
dently distributed. Further, SSE ∼ σ 2χ2

n−r and is distributed independently of γ̂ ,
and hence of (τ1(θ1), τ2(θ1)). Thus,

m(θ1) = Eη̃(θ1){U(θ1)}

= − n2|C|
Q2(θ1)

Eη̃(θ1)

{
τ1(θ1)

SSE + n|C|τ 2
1 (θ1)/Q(θ1)

}
Eη̃(θ1){τ2(θ1)}=0,(24)

utilizing the symmetry of τ1(θ1) around 0 and the independence of τ1(θ1) and SSE.
Next

Vη̃(θ1){U(θ1)} = n3|C|
Q3(θ1)

Eη̃(θ1)

{
n|C|τ 2

1 (θ1)/Q(θ1)

(SSE + n|C|τ 2
1 (θ1)/Q(θ1))2

}

×Eη̃(θ1){τ 2
2 (θ1)}. (25)
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Sincen|C|τ 2
1 (θ1)Q

−1(θ1)/σ
2 and SSE/σ 2 are independent Chi-squares with respec-

tive degrees of freedom 1 and n−r , after some simplifications we get from Eq. (25),

Vη̃(θ1){U(θ1)} = n2|C|
(n− r + 1)(n− r − 1)Q2(θ1)

Q(θ1)β̃
2
2 (θ1)+ σ̃ 2(θ1)/n

σ̃ 2(θ1)/n
.

(26)

Finally, we calculate

U ′(θ1) = 2

n
U 2(θ1)− n2|C|{τ ′

1(θ1)τ2(θ1)+ τ ′
2(θ1)τ1(θ1)}

Q2(θ1){SSE + n|C|τ 2
1 (θ1)/Q(θ1)}

+ 2n2|C|Q′(θ1)τ1(θ1)τ2(θ1)

Q3(θ1){SSE + n|C|τ 2
1 (θ1)/Q(θ1)}

.

Proceeding as in Eq. (24),

Eη̃(θ1){−U ′(θ1)} = −2

n
Vη̃(θ1){U(θ1)}

+ n2|C|
Q2(θ1)

Eη̃(θ1)

{
τ ′

1(θ1)τ2(θ1)+ τ ′
2(θ1)τ1(θ1)

SSE + n|C|τ 2
1 (θ1)/Q(θ1)

}
.

But τ ′
1(θ1) = β̂2 and τ ′

2(θ1) = c11β̂1 + c12β̂2. Solving τ1(θ1) = β̂2θ1 − β̂1 and
τ2(θ1) = (c11θ1 + c12)β̂1 + (c12θ1 + c22)β̂2, we get

β̂1 = θ1τ2(θ1)− (c12θ1 + c22)τ1(θ1)

Q(θ1)
, β̂2 = (c11θ1 + c12)τ1(θ1)+ τ2(θ1)

Q(θ1)
.

Now, after much algebraic simplification,

τ ′
1(θ1)τ2(θ1)+ τ ′

2(θ1)τ1(θ1) = Q−1(θ1){τ 2
2 (θ1)− |C|τ 2

1 (θ1)

+2τ1(θ1)τ2(θ1)(c11θ1 + c12)}.

Hence, as in Eq. (24),

Eη̃(θ1){−U ′(θ1)} = −2

n
Vη̃(θ1){U(θ1)}

+ n2|C|
Q3(θ1)

Eη̃(θ1)

{
τ 2

2 (θ1)− |C|τ 2
1 (θ1)

SSE + n|C|τ 2
1 (θ1)/Q(θ1)

}
.

Next, by Eq. (26) and the remarks after Eq. (25),

Eη̃(θ1){−U ′(θ1)} = n2|C|β̃2
2 (θ1)

(n− r + 1)Q(θ1)σ̃ 2(θ1)
. (27)

The expression for w(θ1) in Theorem 1 now follows from Eqs. (24), (26), (27)
and (6).
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Proof of Lemma 1

Write dT = (β̂2,−β̂1). Then

supθ1
(β̂2θ1 − β̂1)

2/Q(θ1) = supφ �=0
(φTd)2

φTCφ
= dTC−1d = γ̂ TCγ̂ /|C| ,

as required.

Proof of Lemma 2

Since 0 ≤ w(t) ≤ 1 we have

0 ≤ −2 log λAPL(θ1) ≤ 2
∫ ∞

−∞
|U(t)|dt. (28)

Recalling the definitions of τ1 and τ2 immediately before Eq. (23), write τ1(t) =
(−1, t)C−1/2C1/2γ̂ and τ2(t) = (t, 1)C1/2C1/2γ̂ . Then, by the Schwarz inequality,

|τ1(t)| ≤ {(−1, t)C−1(−1, t)T}1/2(γ̂ TCγ̂ )1/2 = {Q(t)/|C|}1/2(γ̂ TCγ̂ )1/2,

|τ2(t)| ≤ {(t, 1)C(t, 1)T}1/2(γ̂ TCγ̂ )1/2 = Q1/2(t)(γ̂ TCγ̂ )1/2.

Hence, from Eq. (23),

|U(t)| ≤ n2|C|1/2(γ̂ TCγ̂ )Q−1(t)/SSE. (29)

Since Q−1(t) is integrable over (−∞,∞), Lemma 2 follows from Eqs. (28) and
(29).

Derivation of the asymptotic distribution of RCR
I

Write g(θ1) = − 1
2 log Q(θ1). Then

g(θ̂CR
1,I )− g(θ1) = (θ̂CR

1, I − θ1)g
′
(θ1)+O(n−1) .

Since θ̂CR
1,I − θ̂1 = O(n−1), it follows from Eq. (14) that (θ̂CR

1,I − θ1)g
′
(θ1) =

aCRt +O(n−1), where aCR is given in Eq. (15). Also

−2 log λPL(θ1) = n log{1 + t2/(n− r)} = t2 +O(n−1) ,

which gives −2 log λPL(θ̂
CR
1,I ) = O(n−1), again using θ̂CR

1,I − θ̂1 = O(n−1).
Therefore

−2 log λCR
I (θ1) = 2{g(θ̂CR

1, I )− g(θ1)} − 2 log λPL(θ1)+ 2 log λPL(θ̂
CR
1,I )

= 2aCRt + t2 +O(n−1) = (t + aCR)2 +O(n−1) . (30)

It now follows straightforwardly from Eq. (30) that, to O(n−1), RCR
I = t + aCR

and hence RCR
I − aCR is standard normal to O(n−1).
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