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Abstract We establish the +/n asymptotic equivalence of V and U statistics when
the statistic’s kernel depends on n. Combined with a lemma of B. Lee this result
provides conditions under which U statistics projections and V statistics are </n
asymptotically equivalent. The use of this equivalence in nonparametric regression
models is illustrated with several examples; the estimation of conditional variances,
skewness, kurtosis and the construction of a nonparametric R-squared measure.

Keywords U statistics - V statistics - local linear estimation

1 Introduction

The use of U statistics (see Hoeffding 1948), as a means of obtaining asymp-
totic properties of kernel based estimators in semiparametric and nonparametric
regression models is now common practice in econometrics. For example, Powell,
Stock and Stoker (1989) use U statistics to obtain the asymptotic properties of their
semiparametric index model estimator. Ahn and Powell (1993) use U statistics to
investigate the properties of a two stage semiparametric estimation of censored
selection models where the first stage estimator involves a nonparametric regres-
sion estimator for the selection variable. Fan and Li (1996) use U statistics to study
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a set of specification tests for nonparametric regression models and Zheng (1998)
uses U-statistics to provide a nonparametric kernel based test for parametric quan-
tile regression models. See also Kemp (2000) and D’ Amico (2003) for more recent
uses.

The appeal for the use of U statistics derives from the fact that often estimators
or statistics of interest — 7,, — are expressed as linear combinations of nonparamet-
ric regression estimators. Consider for example a nonparametric regression model
E(Y|X = x) = m(x) with observations {(y;, x)}'_,, T, = Y r_, cit(x;) where
¢; € M are nonstochastic and m(x) is an arbitrary nonparametric estimator for
m(x). Since m(x) can usually be written as 7 (x) = Z?=1 w;, (x)y;, we can write

T, = Zciwin(xi)yi + <g> u, = Ty + Ty,

i=1

1
whereu, = (g) lekifn V. (Zi, Z;)isaUstatistic withkernel ¥, (Z;, Z;) =

Ciwjn(x;)y; + cjwin(x;)y; and Z; = (x;, ;). The asymptotic characterization of
T,, therefore depends on two terms. 77, is normally handled by a suitable central
limit theorem or law of large numbers. 7»,, the U statistic component, is studied
using Hoeffding’s (1961) H-decomposition which breaks it into an average of inde-
pendent and identically distributed terms (projection) and a remainder term that is
orthogonal to the space in which the projection lies and is of order smaller than
that of the projection (see, e.g., Lee, 1990; Serfling, 1980).

In this note we show that a convenient approach to establishing the asymptotic
properties of T, is to study it directly via von Mises’V statistics. To this end we
show that under suitable conditions V statistics are /n asymptotically equivalent
to U statistics. Combined with the use of Hoeffding’s H-decomposition our results
establish the /n asymptotic equivalence of V statistics and the corresponding U
statistic projection. In contrast with Serfling (1980) our results allow the statistics’
kernel to depend on n. The remainder of the paper is structured as follows. We intro-
duce the asymptotic equivalence result of V and U statistics in Sect. 2. Applications
to the estimation of conditional variance, skewness and kurtosis in nonparamet-
ric regression models and constructing nonparametric R-square are provided in
Sect. 3. A brief conclusion is given in Sect. 4.

2 Asymptotic Equivalence of U and V statistics

Let {Z;}]_, be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables and ¥, (Zy, ... , Z;) be a symmetric function with k& < n. We call
Y.(Z1, ..., Z;) akernel function and a k-dimensional U statistic will be denoted
by u,, which is defined as,

-1
u, = (Z) YV Zis Zi),s (M

(n.k)



V and U statistics in nonparametric models 391

where Z(n o denotes a sum over all subsets 1 < i < iy < --- < iy < nof
{1,2,...,n}. A k-dimensional V statistic, denoted by v, is defined as

=0 " YaZiy. . Zy). )
i1=1 ir=1

The following Theorem establishes the /n asymptotic equivalence of U and V
statistics under suitable conditions.

Theorem 1 Let {Z;}}_, be a sequence of i.i.d. random variables and u, and v, be
U and V statistics with kernel function r,(Z1, ... , Zy). If E (wf(Zi], e, Z,-k)) =
on)foralll <iy,...,ix <n, k <n,thenu, —v, = op(n_m).

Proof From Bonner and Kirschner (1977) we have

o kZZ Z H I//n(Zl],...,Zil,...,ZiK,...,Z,‘K),

k=1 (n,k) {v

v — times v.— times

where }°,, . denotes the sum over all vy, ..., v, such that k = > 7_, v,
' k!

v; > 1,k € {l,... k}. Now let ¢ ,(Z;,...,Z;) = Z{vl,...,vk,k} an

(Zl'l, ey Z,’l, ,Z,'K, ,Z,‘K) so that

— times ve— times

k—1
v, = % > $enZin o Zi) + % Y benZiso Zi). B

(n,k) it

Note that

Z¢k,l1(zi]9 ey Zik) = k! Z 1//71(21-1, o, Zik)

b (n,k)

(n_k)'< ) Zl/fn(zll"“vzik)zpkunv
(n,k)

Where P[:l - ( k)l Hence v, = nk Pknun-"_nik Zi;ll Z(n,/() ¢K*”(Zi17 R Zi,()'Let-
e = <Z> i) Ben(Ziys oo, Zi) we write uy — vy = (1 - _) Uy —

Ly ( ) ul. By Chebyshev’sinequality P (n'/?|u, — v,| > €) < %{”02)

for all € > 0 and consequently to reach the desired conclusion it suffices to show
that nE ((u, — v,)?) = o(1). By the c,-inequality we can write

pr 2 k—1 2
nE((uy — vp)?) < kn ( - n—’;> E(uy)+kny (Z) n*E(ui)?).

k=1

“4)
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We will deal with the two terms on the righthand side of inequality (4) separately.
We first note that by the representation theorem for U statistics (Serfling, 1980; p.
180) ul) = L3 W(Zi,, ..., Z;,) where

1
Wi Ziy,s o Zi,) = o G Zisoo 2+ ben iy ) o
K
then(Ziyiis s Zin, )

Y = [n/k] is the greatest integer < n/kx and »_ , denotes the sum over all permu-
tations (iy,...,i,) of {1,2,...,n} and similarly u,, = % Zp W (Zi, ..., Z;,)
where Wn(Zi]s DR Zin) = %(wn(zilv s Zik) + Wn(Zin e Zizk) + -+
YuZiy s -+ -5 Ziy,)) and y = [n/k] is the greatest integer < n/k. Now, for the
first term on the righthand side of inequality (4), since n* — P! = O (n*~') we have

n(1- P_;)z = 0 andn (1~ P—ﬁ)z E@)=00"E (53, WalZi ...

Zin))z) . By Minkowski’s inequality

2 2
! 1 1/2
E (;;Wn(zm-~- 7Zi/,)> <GP (Zp: (E(AWa(Ziy, .. Zi)P) )
=E(Wu(Zi..... Zi)I,

where the last equality follows since {Z;};— ».... is an i.i.d. sequence. By definition
of W, and another use of Minkowski’s inequality we have

Y
E(Wa(Zips oo Zi)P) <y 2 S (EQ2Ziy e Z0))
j=1
= E(.(//n(zilv crc Zik)) = O(n)v

n 2
where the last equality follows by assumption. We therefore conclude that n (l - 5—’;)

Eu?) = o(1).

For the second term on inequality (4), note first that (Z) n~% = 0n“*) and

2
since k €{1, ...,k — 1}, max,n“* = n~! and therefore ((Z) n k) =0om™?).

Once again, by Minkowski’s inequality we have E((u))?) < E(W*(Z; ,

, Z;)|?). Now, given the definition of Wé") and the fact that {¢, ,(Z;, _,,,
soor» Zi ) j=12.... 1s an i.i.d. sequence of random variables we have by another
application of Minkowski’s inequality that E(|W)(Z;,, ... , Z; )|*) < E((¢en(Z;,
v.or s Zi))?). Let I, denote the number of terms in 2 (... e k) then by the ¢,
inequality
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E(pen(Ziys ... Zi)))

2
=E Z 1_[ i Un X(Ziysooo s Zivs oo s Zigsovv s Zi)
Jj= . .
— times v — times
(k!)? )
<L Y Tl |V Za 2 20
(V1,0 k) Jj=1"J ) )
— times v, — times

Now, since by assumption E (Y2(Z;,, ... , Z;)) = o(n) forall 1 <iy, ..., ik

<n,k < n,, thenitis true that forall « € {I,... ,k — 1} and all v; > 1 such
thatk = )%, v; we have E (Vi (Ziys ...\ Ziyy . Ziyy ... Z;,)) = o(n). Then
E(\W(Z;,, ..., Zi)|*) = o(n) and consequently E((u("))z) = o(n).As aresult,

- n ? 2k 2 2 = (k!)z
"Z(K) P E(f) <00 om) Y e Y ————=o(l),
k=1 k=1 (V1. Ve k} (]_[’;.:1 vj!)

which completes the proof. O

Theorem 1 can be proved using the following two conditions which are im-

plied by E (Y2(Zi,, ... . Z)) = o(n) forall 1 < iy,....ix < n, k < n: (a)

EWXZ,,....Z)) =om forall 1l <ij <ip < -+ <ix <n k <n

(b) for all « € {1,...,k — 1} and all v; > 1 such that k = Z;=1 v; that

define  Zi,....Zi.... . Zis,... . Zi EW2(Ziy, ... s Ziss oo Zips o Z4))
— times ve— times

= o(n**=~1) The next corollary establishes the ,/n asymptotic equivalence
between V statistics and U statistics projections.

Corollary 1 Let {Z;}]_, be a sequence of i.i.d. random variables and u, and
v, be U and V statistics with kernel function V,(Z,, ..., Zy). In addition, let
fy =531 (Y1a(Zi) = 64) + 64, where Y11,(Z;) = E (Yu(Z1, ..., Zi)|Z;) and
0, (T) EWn(Zy, ..., Z)). If E(WX(Z:, ..., Z) = o(n) then /n(v, — ii,) =
op(1).

Proof From Theorem 1 we have \/n(v, — u,) = o »(1), and from Lemma 2.1 in
Lee (1988) we have that /n(u, — ii,) = 0,(1). Hence, \/n(v, — ii,) = 0,(1). O

3 Some applications in regression models

We provide applications of Theorem 1 and its corollary around the following regres-
sion model,

e =m(x,) + &, )
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where, {(y;, x,)}}_, is a sequence of i.i.d. random variables, y;, x, € i with joint
density ¢(y, x), E(g,]x;) = 0and V (&, |x;) = o>(x,). This is similar to the regres-
sion model considered by Fan and Yao (1998), with the exception that here the
observations are i.i.d. rather than strictly stationary. Our applications all involve
establishing the asymptotic distribution of statistics that are constructed as linear
combinations of a first stage nonparametric estimator of m(x). As the first stage
estimator for m(x) we consider the local linear estimator of Fan (1992), i.e., for
x € 9N, we obtain m(x) = & where

@, f) = argmin, 4 ; i —a— Bl — ) K (x’ > x) ,

where K (-) is a density function and 0 < h,, — 0 as n — oo is a bandwidth. We
make the following assumptions.

Al. ()0 < B, < g¢x) = Bg < oo for all x € G, G a compact subset of
9N, where g is the common marginal density of x,. (2) For all x,x” € N,
lg(x) —g(x")| < mg|x —x'| for some 0 < m, < 00.(3) g(y, x) is continuous
everywhere.

A2. (1)0<B, =0o(x) < B, < ocoforallx € ®, 02(-) : ® — N is a measurable
twice continuously differentiable function in 9%t with |0>? (x)| < By, for all
x€N.(2)0 <B,, <m(x) < B, <ooforallx € R,m(:) : K — Nisamea-
surable twice continuously differentiable function in it with [m® (x)| < By,
for all x € M.

A3. K(-) : " — Nis asymmetric density function with bounded support Sy € N
satisfying (1) [xK(x)dx = 0; (2) [x*K(x)dx = o}; (3) for all x €
N, |[K(x)] < Bx <o0; (4) forall x,x’ e R, |K(x) — K(x)| < mg|x — x|
for some 0 < mg < oo;

A4. nh? — oo, and nh3(In(h,))~! — —oo.

Lemma 1 provides auxiliary results that are useful in the applications that fol-
low. We note that the proof of the Lemma is itself facilitated by using Theorem 1
and its corollary. In addition, the proof relies on repeated use of a version of Lebes-
gue’s dominated convergence theorem which can be found in Prakasa-Rao (1983),
p- 35. Henceforth, we refer to this result as the proposition of Prakasa-Rao. In
addition, the proofs rely on Lemma 2 and Theorem 1 in Martins-Filho and Yao
(2003).

Lemma 1 Let f(x,, y;) be continuous at x, and assume the regression model in (5),
assumptions A1-A4 and that E(f*(x,, y;)) < oc. Define I, = % S m(x,) —

m(x:)) f (X, i)y Jn = %Zle(m(xt) - m(x,))zf(xt, i), Ly = %thlzl(’ﬁ(xt) -
m(x[))3f(x,, y) and M,, = % Zl::l(rﬁ(xt) - m(xt))4f(xta Vo).
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(a) Given E(ytzfz(x,, V1)) < o0 then

_ 1y L )
In= ;81‘ / [ y)g(ylxndy +2hnaKE(m (o) f (x5 ye))

+0p(172) + 0, (D), ©)
where g(y|x) denotes the conditional density of y given x.
(b) Given E(yt“fz(x,, Y1) < 00 then

212 n
ogh

Ty =23 e m® () ECf (e y)lx1 L %)
=1

o n
1

ok E(n® () f (i, 30))

+0,(n72) + 0, (h3), (7)

(c¢) Given E(yf’fz(x,, V) < 00 then

L, =o0,(h) ®)

(d) Given E(y3f?(x;, y)) < oo then
M, = o,(h}). ©)

Proof Here we prove parts (a)—(c). The proof of (d) is similar to that of (c) and is
omitted. Let Z( ) hi, iy denote the sum of h,-li__,-p over the permutations of iy . .. ip,

ie., Z(p) hi, i, is the sum of p!terms given by h; i, i, +hiyiy. i, -+ hiji, ;-
(a) Note that,

) —me) = —— 3K (x"h_ "’) e

nhg(x:) =

1 " Xp — Xy
— Y k(2 )m® o 7
+2nh,,g(x,) ; ( I ) m' () (o — x0)° + w(xy)

where w(x;) = "A’l(xr)—m(xt)—m Yt K5 yp and yf = extam@ (xi,)
(xpe—x,)? with x;, = Ax;+(1—A)x; forsome A € (0, 1).Hence, I, = I,,+ oy + I3,
where

1 n n X
= o ZZK( h

=1 k=1 n

Xt

1
) e f (X1, yt)g(x,)
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IZn —

2
Xp — X; X — X; @) 1
2n2§ 2 K () (B5) mPem0re 0

I, = ; Z w(x) f (X5 ye).

t=1

We treat each term separately. Observe that I}, can be written as

1
=g 22 (e (M e
iK t —)Ck) 1
+hn ( o & f (X, yk)g(xk))

1 n n 1 n n 1
= Z—nZZZ Zhrk ZZ—nZZZlﬁn(zr,Zk)z Evn

=1 k=1 \ @) t=1 k=1

) ex f (X, 1)

where v, is a V statistic with Z, = (x;, y;) and v,(Z;, Z;) a symmetric kernel.
Hence, by Corollary 1, if E (Y2(Z,, Zx)) = o(n) for all 1, k then f(v,, ) =
0,(1). First, note that for  # k LE (Y2(Z,, Z)) = 2E(h%) + 2E(huhy,) and
since E (8,%|x1, ..., Xy) = 0%(xz), we have from the proposition of Prakasa-Rao
that

Teaey = 2 E<K2 (x" )o ) EF2(x, yo)lx x);)—>0
n tk hz hn k t’Yt 1y «ee s An gz(x[) )

provided that nh, — oo. Similarly it can be shown that E(lh,khk,) = o(l)
and therefore E(I/fQ(Z,, Zy)) = o(1). For t = k it suffices to verify that 4K (0)

( 2(x;) A g(’& ‘)”)> = o(1), but this follows directly given our assumptions. Now,

since E(e|x1. ..., %) = 0,6, = E (u(Zs, Zo) = Oand it = 2 31 Y1,(Z)).
Therefore,

n

1 Xi — X;
Yia(Z) = h—é“z//K( A )f(xky)’k)g(}%uk)dxkd)’k

=¢& / f G, »)g(ylx)dy + o(1),

where g(y|x) = q;%;;). Consequently,
1 n
=~ & / FG y)glx)dy + 0, (n72) (10)
=1

given that 1 37 & = 0,(n~?). Now, note that

n n

D) D) DTS 30 D ACAPAT

=1 k=1 (2) =1 k=1
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where hu = hy K (470 (%250)2m® (x) f (%1, 31) 555~ By Corollary 1if E(r;(Z,
Z)) = o(n) for all ¢, k, then /n(v, — ii,) = 0, (1). Hence we focus on i,,. Note

that, i, = 23/ Y1,(Z,) — 6,, where ¥1,(Z,) = E(hulZ:) + E(his|Z,) and
E(ia,) = 6, = 2E(h;). Hence, by the proposition of Prakasa-Rao,

12_,1 _ 3 X — Xy X —x\° @
£(is) = 0 [ () () me
X f(xe, y1) i ;Q(xt, ve)dxgdx,dy;
Xt

— 208 Em® (x,) f (X1, y1)).

In addition, note that
1 4
V(i) = gV B Z0) + Eha|Z))

4
= (E(E(hu|Z))*+E(E(h|Z)))?
+2E(E(ha Z) E(hii| Z4) —6)) .

Under our assumptions, it is straightforward to show that

1
o EE0alZ))?

1 1 Xp — X x—x\°
=k (f()"’y’)zgz(xt)E2 <K< T )( T ) ma)(xk’”Z’)) -0

asn — oo. Similarly, - E(E (hy|Z,))*> — 0 and ~ E(E (hy| Z,) E (hi/| Z,)) — 0O

as n — oo. Hence, V (h%ﬁn) — 0. By Markov’s inequality we conclude that

fp = 2h26 E(m@ (x,) f (x;, y1)) + 0,(h%) and by Corollary 1,

= 5ok Em® ) f (i, 30) + 0, (). (11)
Finally, verification that E(l/f (Z;, Zy)) = 2E(h ) + 2E(hyhy) = o(n) for all
t # k follows directly from our assumptions and use of the proposition of Pra-
kasa-Rao, and for the case where t = k we have that E (wf(Z,, Zy)) = 0. From
Martins-Filho and Yao’s (2003) Lemma 2 and Theorem 1

) I (=X .
)| = m(x»—m(x,)—mZK( —5)5
n t k=1 n

= 0p(Ry2(x1))

and sup, . [ Ry 2(x;)| = op(hz) hence sup, g |w(x,)| = op(h ). As a result we

have that |I3,] < 0,(h2)~ >t | f(xs, y)| = 0,(h2), since E(f2(x;, y;)) < o0.
Therefore, 15, = % S wx,) f(x, ¥) = 0,(h?). Combining this result with
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(10) and (11) proves part (a).
For part (b) note that

5= szzﬂxt,y, p (;)K(h—)

nor=1 k=1 I=1

n —x 2
4n3 ZZZ 2( ) (xhyt)K( nXt>(thnx)

t=1 k=1 I=1

<K (XIh_Xt> (XIh—Xt) m(z)(xkt)m(z)(xh)

1 n
+- Zw%x,)f(x,, )

33 ey g

tlk][lg

2
<K (XI han) (Xl han) m(z)(x[t)sk

n22h ZZw(m (xl,yf)K< - x’)ek

t=1 k=1

hn . . t - At 2
+-3 ZZw(m (xz,yaK( — ) (x"h x) m® (xiy)

t=1 k=1
= Jln + J2n + J3n + J4n + JSn + Jén-

We examine each term separately.

n n n
1

Jln—__zzzzhtkl—gig ZWn(ZthZZ):gvnv

t=1 k=1 I=1 (3) t=1 k=1 I=1

where h;; = %K("kh—;x‘)K("’;")sks[f(x,, yt)%. By Corollary 1, if E(y¥2(Z,,
Zi, Z1)) = o(n) for all ¢, k,[ then \/n(v, — ii,) = op(1). Since ¥1,(Z,) = 0
and 6, = 0, we have that i, = 0 and therefore /nl, = 0,(1). To verify that
YEWX(Zi, Zk, Z))) = o(1) for t # k # | we note that LE(W2(Z,, Zk, Z))) =
4 (3E(htk1) +2E (hyrhin) +2E (hegihye) + 2E (higghyg)). Under A1-A4, repeated
appllcatlon of the proposition of Prakasa-Rao to each of these expectations shows
that each approaches zero as n — oo. Also, if + = k but ¢+ # [ we have that
EWX(Zi,Z,,Z))) = o(n) and when t = k = I, EQX(Z, Zi, Z,)) = o(n?)
directly from our assumptions provided nh} — 0.

1 n n n 1 nonon 1
Iy, = WZZZZ’W — WZZZ‘/’"(Z” Zi, Z)) = 52U

t=1 k=1 I=1 (3) t=1 k=1 I=1

where g = h2K (5724 (S22 K (20 (520 2m Coym ® (i) gl £ Cevs 30).
By Corollary 1 /n(v, — ii,) = 0,(1) provided that E(Y,,(Z,, Zx, Z;)) = o(n)
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for all ¢, k, I. As above, verification of this condition is straightforward given our
assumptions. Note that &, = 2 Y0, ¥1,(Z,) — 26, with E(ii,) = 6,. Hence,

1 6 Xe—X:\ Xk — X; 2 X;—Xr\ [(X1—X; 2
—E K K @
h4 (i1,) = hn ( < h, ) ( hn ) h, h, m' (xXx;)

[, yt)

2
x m' )(xlt)

2()

and by the proposition of Prakasa-Rao we have, - mE (lin) —> 60 ¢ E((m@ (x,)) f (x1,
y;)) and V(h—4ﬁn) — 0. By Markov’s inequality we conclude that J,, = }ThﬁaK

E((m® (x)*f (e, y)) + 0p(hp) + 0,(n™V2). T3 = 130 w?(x) f (3, 31) =
0p (hi) follows directly from the analysis of the /3, in part (a). Now,

n n n

Jan = o Zzzzhﬂcl o ZZZWH(ZNZ]OZZ)_

t=1 k=1 I=1 (3) t=1 k=1 I=1

where h; = K(’“kh—_x‘)K(x’h;x’)(x’h;xf)zm(z)(xl,)ek%f(x,, y;). Once again given
our assumptions it can be verified that E(V2(Z,, Zx, Z1)) = o(n) for all ¢, k, 1,
therefore we have /n(v, — ii,) = 0,(1), where i, = %Z:’zl Y1,(Z) — 26,.
Given that in this case 6, = 0, we have

B N2
=—Z€r ( ( x1<>K(xlhnXk><xlhnxk> m® (x;) o )f(xk,)’k)|zz>,

Under A1-A4, the proposition of Prakasa Rao gives

1 Xy — Xg X — xi\ (X — Xk
E(@K( hy >K< hy )( hy, ) (2)( 1k) g2 (x )f(xk’yk)|zl>_>

O'Iz(m(Z)(-xt)E(f(-xtv )’)|x1’ D) -xn)~

" emPx)oEE(f (X, y)|xi, - ,x,,)+0,,(n_%),given that
n= gtm(Z)(xt)E(f(xta y)

o 6h?
Hence, u,, = e

SZLI& = Op(n_%). Consequently, Jy, = Z h
|x17 axn) +0p(n_%).

ol = %Z:;lw(xt)(nhn;(x,) ZZ:lK(XkI;X')Ek> f(xtayt)‘ and from
Martins-Filho and Yao (2003) Theorem 1 we have sup, s |w(x/)]
) ZZ=1K(”@X’)8’<’ = 0p(hy). Hence, |Js,|

< 231G y)lop(h) = 0,(Doy(hY) = o0p(h3) since 237 | f(x;, yo)l
= 0, (1), which gives Js, = 0, (hfl). Finally, from Martins-Filho and Yao (2003)
Theorem 1 we have

h, - Xp — X; Xp — Xt 2
K 2)
sup ng (%) ka]: ( I n m (Xgr)

x,€G

= o0,(h2) and sup, ;

=0, (12
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and |Jo,| < LY | £ 30)l0p(h2) 0, (h2) = 0,(Do,(h}) = 0,(h}). Com-
bining the orders of all six terms gives the desired result.

(@ Let i = gy s K (3572) ensbon = iy T K (252) m® G
(xx — x0)?, ¢ = w(x,). Then (R (x;) — m(x))* = a}, + b}, + ¢, + 3amb}, +
3,2, +3a by +3a2,cin + 32, cn + 312, + 61, by and n Y (i (x,) —
m(xl))3f(xt7 )’t) = legl Lin’ Where Lln = l’l71 Z:l:l afnf(xh yt)v ) LlOn =
n= Y 6ambcon f (x;, y1). Since

1 - Xp — x,)
sup, —————— K < &k
nh,g(x;) Z hy

k=1

= Op(hn),

then |Ly,| < 0,(h3) x 2370 | f(x, )| = 0,(h}). By (12), | Lay| < O, (hS)n~!
S 1 f Gyl = 0p(hS) since E(f*(x;, y1)) < 00. |Laa| < 0,(hS) follows
directly from supy, g |w(x,)| = 0, (h2).

1 " X — X
Sor (M) e

nhag G = \"h,

n

|L4n| = %Z

t=1

2
1 " Xp — Xy 20
8 (2nhng(xz) ZK( hy )m xm (xk’))

k=1

3 n
X1f G 30l < 0p () Op (i) = D 1f Giry 30| = 0p (k)

=1
from (12) and the analysis of Js, in part (b). Similarly, we obtain |Ls,|, | L] <
0p(h3), |Lenl, |L7a| < 0,(h}) and |Ls,|, |Lo,| < 0,(hS). Hence, we have L, =
0 ,,(hfl). O
We now use the results in the Lemma to establish the asymptotic distribution of
several statistics of interest.

3.1 Estimating conditional variance

Consider first a special case of the model (5), where |x; ~ N(0,c?). Then a
natural estimator of o2 is

1 ¢ 1
&2 == (v —hx))’= - D67 +20mCe) = (x))e+(m(x) —1i(x,))%)
t=1

n
t=1

The difficulty in dealing with such expressions lies in the average terms involv-
ing (m(x;) — m(x;)) and (m(x;) — m(x,))?, since the first term is an average of an
i.i.d. sequence. By using Corollary 1 and Lemma 1 we have a convenient way to
establish their asymptotic properties. This is shown in the next theorem.

Theorem 2 Assume that in model (5), &|x, ~ N(0, 6%) and E(y,4) < o0o. Under

assumptions AI-A4 we have \/n(6*> — 0% — by,) 4 N(0, 20%), where by, =
op(h,%).
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Proof Note that 62 = % Yo (8,2 +2(m(x;) — m(x,)e; + (m(x,) — ﬁi(x,))z).
Now, letting f (x;, y;) = —2¢, in part (a) of Lemma 1 we have % & f f(xe, ve)
g(yilx)dy, =0, since E(&|x1, ..., x,) =0 and 1h202 E (m® (x,) f (x;, y,)) =0.
Hence, 1 Yo 2(m(x) —m(x,)e, = op(n_%) + op(h,zl). By part (b) of Lemma 1

n

with f(x;, ;) = 1 we have

1
IR E(n® () f (v, 7)) = O (h})
and

oI &
Y em P @) ECf ()l x)
t=1
2h2 n
= TS em® ) = 0, (0 D) = 0,(n )

n
t=1

by the central limit theorem fori.i.d. sequences. Hence, % S (m(x,)—m (x)? =

op(n_%) + 0,(h}) provided E(y}) < oo. Finally, note that 1 Y% (¢7 — 0?) =
%Zf:] &, then E(g) =0, V(&) = E({',Z) = 20*, given conditional normality.

Hence, \/LE Y (e? —0?) AN (0, 20*). Combining the results for each term
proves the theorem. O

Theorem 2 can be generalized by relaxing the conditional normality assumption
and allowing V (y,|x;) = o2(x,). This generalization was done by Martins-Filho
and Yao (2003) but their proof can be conveniently simplified by using Theorem 1
and its corollary.

3.2 Estimating conditional skewness and kurtosis

We now consider the estimation of Pearson’s conditional skewness a3 = w3/ ,u;/ 2
and kurtosis oy = w;/u% fortheregressandin (5), where u, = E ((y; — m(x;))" |x;)
for r = 2, 3, 4. We assume for simplicity that the these higher order conditional
centered moments do not depend on x,, ¢t = 1,2, ... although the underlying
conditional density clearly does. We now define the estimators

& = n-! Z;;](yr - ’;l(xt))S &y = n! Z:l=1()7t - ’;l(xt))4
(=130 (e = in(x,)) )32 (=1 30 0 — m(x,))?)?
and establish the following theorem.

Theorem 3 Assume Al-A4 are holding for model (5) and let w, = E((y;
—m(x;)) |x;) forr =2,3,4.

(a) I E(y®) < 00 then /(63 — a3 — Biy) — N(0, 152V (Z,)) where
Bi, = —3/2u; PE (m® (x))) k202 + 0,(h%)
and Z, = & +1/2p15 — 3poe, — 3/28267
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(b) IFE(y8) < 00 then /n(&4 — ots — Bay) > N(0, 115*V (W,)) where
By = =215 3o E(m™® (x,)) + 0, (hy)
and W; = 8:1 + g — 4 u3 — ZZ_ZSIZ
Proof We first write

" -3/
& — oy = (n—‘ >0 - rh(x,»Z) (bin = boapay™).(3)

t=1

n -2
5[4 — 0y = (I’ll Z(yr - 7’;\1(351))2) (b3n - b4nﬂ4ﬂ2_2) ’ (14)

t=1

where by, = n~' 30 (v — m(x0))? = pa, bay = (07 300 (v — 1i(x))?) Y —
3/2 _ n A _ n A~

157, b3, ==t 0 (=) —paand by, = (071 Y0 (=1 ()22 — 143

By Theorem 2, and adopting the notation 0> = 1, we have that n=' Y7 (y, —

mx))? =n"1Y" e240,(n""?)+o0,(h?).Butsincen! Y1 e2—pr = 0,(1)

by Kolmogorov’s law of large numbers, we have that

n™ Y =) = a2 + 0, (1). (15)
=1

(a) By the mean value theorem for random variables we have that for A € (0, 1),

) 12
3 A
by, = E (/Lz + )L(n71 ;(yt - m(xt))z - MZ))

1 n
x (; t;(y, — 1 (x))? — m) (16)
3

1 n
172 _
= uy- Z,zl (€2 — 2) + 0, (12 + 0, (D). (17

Also,

by =n"" (m(x) —m(x))* +3n7" Y (mx) — rin(x)) e

t=1 t=1

n n
+3n71 Y (m(x) —m)el +n7' Y 8l — s
t=1 =1

= Dnl T Pn2 + DPn3 + DPna — W3-
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Since E(y®) < oo, by part (c) of Lemma 1 pn1 = 0,,(h3) By part (b) p,2 =
0,(n""2)+0,(h3) andbypart (a) p,3 = —3n"'ua 30, &—3/2h2 0t o E(m®
(Xz)) +0,(n""%) + 0,(h?), hence

biy =n" 128 — 3 —3n" mZe, h w20k Em® (x)

+o,,(n—‘/2) + 0, (h?). (18)

Combining (17) and (18) we have that by, — by, sty > = n~" Y'_ Z, 4 Ay,
where Z, = &) +1/213 =326, —3/28267, A1, = —3E (m® (x) h2o} +
0,(n"'2) + 0,(h2). Note that E(Z,) = 0 and by the c¢,-inequality V(Z,) =
E (Zz) < 00 prov1ded E (y ) < oo. Hence, by the central limit theorem for
i.1.d. random variables

U3 d

\/ﬁ (bln - b2n 3/2 - Aln) - N(Ov V(Zt)) (19)
2%)

.. A d

and consequently, combining (15) and (19) we have /n (a3 — o3 — Bln) —

N, 15>V (Z,)) where By, = —3/2u; P E (m® (x)) h20% + 0,(h2).
(b) Again for A € (0, 1) we have by the mean value theorem that

1 n
by =212 — 2 -2 h2). 20
an =202 ) (6] — ) +0p(n”1%) + 0, (1) (20)

t=1

Also,

by, =n"' Y (m(x) —m(x))* +4n~" Y " (m(x) —i(x)) e

=1 t=1

4nt Y (m(xe) = me)e]

t=1

n n
6n~" Y (m(x) —me))Ye; 07t Y el — s
t=1 =
= qn1 + qn2 + qn3 + qn4 + qns — 4.
By part (d) of Lemma 1 with f(x,, y;) = 1 we have g,; = o, (h*), and by part (c)
with f(x;, y) = —4&, gua = 0, (h;). By part (b) with f(x,, y,) = 6¢}

6
Gus = 030 2h225m(2)(x)+ 2ot E (n® ())?)

t=1

+0,(n" ) + 0, (k). 21
By part (a) with f(x,, ;) = —4¢} we have

4p _
qng_—T* g — 202 W2 s E (m®(x)) + 0,(n ") 4+ 0,(h2).  (22)

t=1
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Hence,

by, =n~! Zs — g — ﬂ & — 2O‘Kh2pL3E( (2)(xt))

t=1

+o,,(n 2 +0,(h2). (23)

Combining (20) and (23), we write b, — bay | 52“)2 =n"'Y" | W, + Ay, where
Wi = & + g — 43 — 2527 and Ay, = —2h%0 g us E(m™® (x,)) +0,(n™ /%) +
0,(h2). Note that E(W;) = 0 and by the c,-inequality, V(W) = E(W?) < oc.

Hence, given that E (y, ) < oo we have the central limit theorem for i.i.d. random
variables that

Jn (bsn - m% - Azn) L NGO, VW) (24)
2
Combining (15) and (24), we have that

~ d _
Vn (Gs — oa — Byy) = N(O, 15 V(W,)),  where
By, = —2h; 115 0g usEm® (%)) + 0, (h}). (25)

3.3 Estimating a nonparametric R? measure

In regression analysis we are usually interested in Pearson’s correlation ratio,

2 VEQI) _ Vin))
V() V(y)

where, y is a regressand and x is the regressor in the context of model (5). Since
V(y) = V(E(y|x))) + E(V(y|x)) = V(m(x)) + E(c*(x)), n* gives the fraction
of the variability of y which is explained with the best predictor m (x). This can be
interpreted as a nonparametric coefficient of determination or a nonparametric R>
measure. Estimation of a nonparametric R> measure has been studied by Doksum
and Samarov (1995) using a Nadaraya—Watson estimator. A similar topic — estima-
tion of noise to signal ratios — has been considered by Yao and Tong (2000). Here,

given that V (m(x)) = V(y) — E(y —m(x))* we have n*> = 1 — E@;f’;gx”z and we
consider

1 n A 2 n

. = —m(x 1

n2 I IZZ_;()][ (_ 12)) where )_] _ = Zyt
T2 (e =) n

The following theorem gives the asymptotic characterization of our proposed

nonparametric R> measure.

Theorem 4 Assume AI-A4 are holding for model (5) and E (y,4 ) < 00, then we
have
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VAR =12 =by) 5 N(0, V(&)) where £ =

oD (67 —(1=1") (3 —E())?)

and by, = 0,(h?).

A —m t 2
Proof 7> — 1% = _%ZTIW*V)Z (ﬁl - ﬁz%) where i = £ Y (v —
mx))? — E(yi —m(x))?, o = L Ly (v — $)* = V(). First, note that by the
law of large numbers Zt 1 yt LS E(y,) and y? LS E(y,)?, hence

1< -
(; > - yf) SV (26)

For B, 2 — (E(y))?* = 1530 1Zk LGk + yey) — E(m(x))* = 3v,
(E(m(x;)))?. By Corollary 1, since nE(I//‘n e, Y1) = iE((ytz))2 = o(1) for all
1, ky /(v i) —op(1>whereﬁn—2 Y (Ui (Z))y 0, =2 30, v E(m(x,)—
2(1‘3(171()0)))2 Hence, 3> — (E(y))* = 2 Y1, wE(m(x,)) — 2(E(m(x,)))* +
op(n~ 2) and

Ey —m@) _ E@ ()
IBQ V()’t _Z{ V( z) t E( ))
E(02(x) E(m(x,)) B
=2 xv(yt)mx (y,—E(m<x,))>}+o,,<n ).

For B, 1 3 (yv—i(x))? =1 370 €2 + 2(m (x) — 1t (x1)) &+ (m(x,) =1 (x,))?).
Similarly to the proof of Theorem 2, we use part (a) of Lemma 1 with f(x;, y;)

— —2¢, to obtain * Zt 1 2(m(x,) —m(x,))e, = 0p(n~ 2)+op(h ). By part (b) with
fx, y) =1we obtam}l S (m(x) —m(x,))? = 0,(n~ 2)+op(h,3l).Theref0re,
IS =) =130 g2+ Op(n_%) + 0,(h2). Hence,

E(y; —m(x,))? 2 E(o%(x,))

S NS A E(o%(x,) — — E(
b= b Z(, (0> = == =07 —EOD)
2E(02(Xr))E(m(Xr))
V()
+0,(n"7) 4 0,(h2)

(e — E(m(x,)))

1 n
=) Gt op(nTE) + o, (k).
=1
Since E() = 0, V(&) = V(e2 — (1 — ) (v — E(:))?) < o0 and ¢; forms an
i.i.d. sequence, then by the central limit theorem we have

E(y, — m(x))? y
Jn (m — py— 2 ) ’V 53 - op<h3>) S N, V(©&)). (27)
t
Given that 7> — n* = —m (,31 - B2 EO%W) together with (26) and
n =11 !

(27) gives the desired result. O
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4 Conclusion

We have established the /n asymptotic equivalence between V and U statistics
when their kernels depend on n, the sample size. We combine our result with a
result of Lee (1988) to obtain the v/ asymptotic equivalence between V statistics
and U statistics projections. We provide a number of examples and illustrations
on how our results can be used in nonparametric kernel estimation. The list of
examples is obviously not exhaustive as our results can be used in much broader
contexts.
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