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Abstract We establish the
√
n asymptotic equivalence of V and U statistics when

the statistic’s kernel depends on n. Combined with a lemma of B. Lee this result
provides conditions under which U statistics projections and V statistics are

√
n

asymptotically equivalent. The use of this equivalence in nonparametric regression
models is illustrated with several examples; the estimation of conditional variances,
skewness, kurtosis and the construction of a nonparametric R-squared measure.

Keywords U statistics · V statistics · local linear estimation

1 Introduction

The use of U statistics (see Hoeffding 1948), as a means of obtaining asymp-
totic properties of kernel based estimators in semiparametric and nonparametric
regression models is now common practice in econometrics. For example, Powell,
Stock and Stoker (1989) use U statistics to obtain the asymptotic properties of their
semiparametric index model estimator. Ahn and Powell (1993) use U statistics to
investigate the properties of a two stage semiparametric estimation of censored
selection models where the first stage estimator involves a nonparametric regres-
sion estimator for the selection variable. Fan and Li (1996) use U statistics to study
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a set of specification tests for nonparametric regression models and Zheng (1998)
uses U-statistics to provide a nonparametric kernel based test for parametric quan-
tile regression models. See also Kemp (2000) and D’Amico (2003) for more recent
uses.

The appeal for the use of U statistics derives from the fact that often estimators
or statistics of interest – Tn – are expressed as linear combinations of nonparamet-
ric regression estimators. Consider for example a nonparametric regression model
E(Y |X = x) = m(x) with observations {(yi, xi)}ni=1, Tn = ∑n

i=1 cim̂(xi) where
ci ∈ � are nonstochastic and m̂(x) is an arbitrary nonparametric estimator for
m(x). Since m̂(x) can usually be written as m̂(x) = ∑n

j=1wjn(x)yj , we can write

Tn =
n∑

i=1

ciwin(xi)yi +
(
n
2

)

un = T1n + T2n,

whereun =
(
n
2

)−1∑
1≤i<j≤n ψn(Zi, Zj ) is a U statistic with kernelψn(Zi, Zj ) =

ciwjn(xi)yj + cjwin(xj )yi and Zi = (xi, yi). The asymptotic characterization of
Tn therefore depends on two terms. T1n is normally handled by a suitable central
limit theorem or law of large numbers. T2n, the U statistic component, is studied
using Hoeffding’s (1961) H-decomposition which breaks it into an average of inde-
pendent and identically distributed terms (projection) and a remainder term that is
orthogonal to the space in which the projection lies and is of order smaller than
that of the projection (see, e.g., Lee, 1990; Serfling, 1980).

In this note we show that a convenient approach to establishing the asymptotic
properties of Tn is to study it directly via von Mises’ V statistics. To this end we
show that under suitable conditions V statistics are

√
n asymptotically equivalent

to U statistics. Combined with the use of Hoeffding’sH -decomposition our results
establish the

√
n asymptotic equivalence of V statistics and the corresponding U

statistic projection. In contrast with Serfling (1980) our results allow the statistics’
kernel to depend on n. The remainder of the paper is structured as follows. We intro-
duce the asymptotic equivalence result of V and U statistics in Sect. 2.Applications
to the estimation of conditional variance, skewness and kurtosis in nonparamet-
ric regression models and constructing nonparametric R-square are provided in
Sect. 3. A brief conclusion is given in Sect. 4.

2 Asymptotic Equivalence of U and V statistics

Let {Zi}ni=1 be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables and ψn(Z1, . . . , Zk) be a symmetric function with k ≤ n. We call
ψn(Z1, . . . , Zk) a kernel function and a k-dimensional U statistic will be denoted
by un which is defined as,

un =
(
n
k

)−1 ∑

(n,k)

ψn(Zi1, . . . , Zik ), (1)
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where
∑

(n,k) denotes a sum over all subsets 1 ≤ i1 < i2 < · · · < ik ≤ n of
{1, 2, . . . , n}. A k-dimensional V statistic, denoted by vn, is defined as

vn = n−k
n∑

i1=1

. . .

n∑

ik=1

ψn(Zi1, . . . , Zik ). (2)

The following Theorem establishes the
√
n asymptotic equivalence of U and V

statistics under suitable conditions.

Theorem 1 Let {Zi}ni=1 be a sequence of i.i.d. random variables and un and vn be
U and V statistics with kernel functionψn(Z1, . . . , Zk). IfE

(
ψ2
n(Zi1, . . . , Zik )

) =
o(n) for all 1 ≤ i1, . . . , ik ≤ n, k ≤ n, then un − vn = op(n

−1/2).

Proof From Bönner and Kirschner (1977) we have

vn = 1

nk

k∑

κ=1

∑

(n,κ)

∑

{ν1,... ,νκ ,k}

k!
∏κ
j=1 νj !

ψn(Zi1, . . . , Zi1︸ ︷︷ ︸
ν1− times

, . . . , Ziκ , . . . , Ziκ︸ ︷︷ ︸
νκ− times

),

where
∑

{ν1,... ,νκ ,k} denotes the sum over all ν1, . . . , νκ such that k = ∑κ
j=1 νj ,

νj ≥ 1, κ ∈ {1, . . . , k}. Now let φκ,n(Zi1, . . . , Ziκ ) = ∑
{ν1,... ,νκ ,k}

k!∏κ
j=1 νj !ψn

(Zi1, . . . , Zi1︸ ︷︷ ︸
ν1− times

, . . . , Ziκ , . . . , Ziκ )︸ ︷︷ ︸
νκ− times

so that

vn = 1

nk

∑

(n,k)

φk,n(Zi1, . . . , Zik )+ 1

nk

k−1∑

κ=1

∑

(n,κ)

φκ,n(Zi1, . . . , Ziκ ). (3)

Note that
∑

(n,k)

φk,n(Zi1, . . . , Zik ) = k!
∑

(n,k)

ψn(Zi1, . . . , Zik )

= n!

(n− k)!

(
n
k

)−1 ∑

(n,k)

ψn(Zi1, . . . , Zik ) = Pnk un,

wherePnk = n!
(n−k)! . Hencevn = 1

nk
P nk un+ 1

nk

∑k−1
κ=1

∑
(n,κ) φκ,n(Zi1, . . . , Ziκ ). Let-

ting u(κ)n =
(
n
κ

)−1∑
(n,κ) φκ,n(Zi1, . . . , Ziκ ) we write un − vn =

(
1 − Pnk

nk

)
un −

1
nk

∑k−1
κ=1

(
n
κ

)

u(κ)n . By Chebyshev’s inequalityP
(
n1/2|un − vn| > ε

) ≤ nE((un−vn)2)
ε2

for all ε > 0 and consequently to reach the desired conclusion it suffices to show
that nE((un − vn)

2) = o(1). By the cr -inequality we can write

nE((un − vn)
2) ≤ kn

(

1 − Pnk

nk

)2

E(u2
n)+ kn

k−1∑

κ=1

(
n
κ

)2

n−2kE((u(κ)n )
2).

(4)
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We will deal with the two terms on the righthand side of inequality (4) separately.
We first note that by the representation theorem for U statistics (Serfling, 1980; p.
180) u(κ)n = 1

n!

∑
p W

(κ)
n (Zi1, . . . , Zin) where

W(κ)
n (Zi1, . . . , Zin) = 1

γκ
(φκ,n(Zi1, . . . , Ziκ )+ φκ,n(Ziκ+1, . . . , Zi2κ )+ · · ·

+φκ,n(Ziγκ κ−κ+1, . . . , Ziγκ κ )),

γκ = [n/κ] is the greatest integer ≤ n/κ and
∑

p denotes the sum over all permu-
tations (i1, . . . , in) of {1, 2, . . . , n} and similarly un = 1

n!

∑
p Wn(Zi1, . . . , Zin)

where Wn(Zi1, . . . , Zin) = 1
γ
(ψn(Zi1, . . . , Zik ) + ψn(Zik+1, . . . , Zi2k ) + · · · +

ψn(Ziγk−k+1, . . . , Ziγk )) and γ = [n/k] is the greatest integer ≤ n/k. Now, for the
first term on the righthand side of inequality (4), since nk−Pnk = O(nk−1)we have

n
(

1 − Pnk
nk

)2
= O(n−1) andn

(
1 − Pnk

nk

)2
E(u2

n)=O(n−1)E
((

1
n!

∑
p Wn(Zi1, . . . ,

Zin)
)2
)
. By Minkowski’s inequality

E





(
1

n!

∑

p

Wn(Zi1, . . . , Zin)

)2


 ≤ 1

(n!)2

(
∑

p

(
E(|Wn(Zi1, . . . , Zin)|2)

)1/2

)2

= E(|Wn(Zi1, . . . , Zin)|2),

where the last equality follows since {Zi}i=1,2,... is an i.i.d. sequence. By definition
of Wn and another use of Minkowski’s inequality we have

E(|Wn(Zi1, . . . , Zin)|2) ≤ γ−2




γ∑

j=1

(
E(ψ2

n(Zijk−k+1, . . . , Zijk ))
)1/2





2

= E(ψn(Zi1, . . . , Zik )) = o(n),

where the last equality follows by assumption.We therefore conclude thatn
(
1− Pnk

nk

)2

E(u2
n) = o(1).

For the second term on inequality (4), note first that

(
n
κ

)

n−k = O(nκ−k) and

since κ ∈{1, . . . , k − 1}, maxκnκ−k = n−1 and therefore

((
n
κ

)

n−k
)2

=O(n−2).

Once again, by Minkowski’s inequality we have E((u(κ)n )
2) ≤ E(|W(κ)

n (Zi1 ,

. . . , Zin)|2). Now, given the definition of W(κ)
n and the fact that {φκ,n(Zijκ−κ+1

, . . . , Zijκ )}j=1,2,... is an i.i.d. sequence of random variables we have by another
application of Minkowski’s inequality thatE(|W(κ)

n (Zi1, . . . , Zin)|2) ≤ E((φκ,n(Zi1
, . . . , Ziκ ))

2). Let lκ denote the number of terms in
∑

{ν1,... ,νκ ,k}, then by the cr
inequality
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E((φκ,n(Zi1, . . . , Ziκ ))
2)

= E








∑

{ν1,... ,νκ ,k}

k!
∏κ
j=1 νj !

ψn ×(Zi1, . . . , Zi1︸ ︷︷ ︸
ν1− times

, . . . , Ziκ , . . . , Ziκ )︸ ︷︷ ︸
νκ− times






2




≤ lκ
∑

{ν1,... ,νκ ,k}

(k!)2

(
∏κ
j=1 νj !)

2
E




ψ

2
n(Zi1, . . . , Zi1︸ ︷︷ ︸

ν1− times

, . . . , Ziκ , . . . , Ziκ )︸ ︷︷ ︸
νκ− times




 .

Now, since by assumption E
(
ψ2
n(Zi1, . . . , Zik )

) = o(n) for all 1 ≤ i1, . . . , ik
≤ n, k ≤ n,, then it is true that for all κ ∈ {1, . . . , k − 1} and all νj ≥ 1 such
that k = ∑κ

j=1 νj we have E
(
ψ2
n(Zi1, . . . , Zi1, . . . , Ziκ , . . . , Ziκ )

) = o(n). Then
E(|W(κ)

n (Zi1, . . . , Zin)|2) = o(n) and consequentlyE((u(κ)n )
2) = o(n).As a result,

n

k−1∑

κ=1

(
n
κ

)2

n−2kE((u(κ)n )
2)≤nO(n−2)o(n)

k−1∑

κ=1

lκ
∑

{ν1,... ,νκ ,k}

(k!)2
(∏κ

j=1 νj !
)2 =o(1),

which completes the proof. ��
Theorem 1 can be proved using the following two conditions which are im-

plied by E
(
ψ2
n(Zi1, . . . , Zik )

) = o(n) for all 1 ≤ i1, . . . , ik ≤ n, k ≤ n: (a)
E
(
ψ2
n(Zi1, . . . , Zik )

) = o(n) for all 1 ≤ i1 < i2 < · · · < ik ≤ n, k ≤ n;
(b) for all κ ∈ {1, . . . , k − 1} and all νj ≥ 1 such that k = ∑κ

j=1 νj that
define Zi1, . . . , Zi1︸ ︷︷ ︸

ν1− times

, . . . , Ziκ , . . . , Ziκ︸ ︷︷ ︸
νκ− times

E
(
ψ2
n(Zi1, . . . , Zi1, . . . , Ziκ , . . . , Ziκ )

)

= o(n2(k−κ)−1). The next corollary establishes the
√
n asymptotic equivalence

between V statistics and U statistics projections.

Corollary 1 Let {Zi}ni=1 be a sequence of i.i.d. random variables and un and
vn be U and V statistics with kernel function ψn(Z1, . . . , Zk). In addition, let
ûn = k

n

∑n
i=1 (ψ1n(Zi)− θn)+ θn, where ψ1n(Zi) = E (ψn(Z1, . . . , Zk)|Zi) and

θn = E (ψn(Z1, . . . , Zk)). If E
(
ψ2
n(Z1, . . . , Zk)

)
= o(n) then

√
n(vn − ûn) =

op(1).

Proof From Theorem 1 we have
√
n(vn − un) = op(1), and from Lemma 2.1 in

Lee (1988) we have that
√
n(un − ûn) = op(1). Hence,

√
n(vn − ûn) = op(1). ��

3 Some applications in regression models

We provide applications of Theorem 1 and its corollary around the following regres-
sion model,

yt = m(xt )+ εt , (5)
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where, {(yt , xt )}nt=1 is a sequence of i.i.d. random variables, yt , xt ∈ � with joint
density q(y, x), E(εt |xt ) = 0 and V (εt |xt ) = σ 2(xt ). This is similar to the regres-
sion model considered by Fan and Yao (1998), with the exception that here the
observations are i.i.d. rather than strictly stationary. Our applications all involve
establishing the asymptotic distribution of statistics that are constructed as linear
combinations of a first stage nonparametric estimator of m(x). As the first stage
estimator for m(x) we consider the local linear estimator of Fan (1992), i.e., for
x ∈ �, we obtain m̂(x) = α̂ where

(α̂, β̂) = argminα,β

n∑

t=1

(yt − α − β(xt − x))2K

(
xt − x

hn

)

,

where K(·) is a density function and 0 < hn → 0 as n → ∞ is a bandwidth. We
make the following assumptions.

A1. (1) 0 < Bg ≤ g(x) ≤ B̄g < ∞ for all x ∈ G, G a compact subset of
�, where g is the common marginal density of xt . (2) For all x, x ′ ∈ �,
|g(x)−g(x ′)| < mg|x−x ′| for some 0 < mg < ∞. (3) q(y, x) is continuous
everywhere.

A2. (1) 0 < Bσ ≤ σ(x) ≤ B̄σ < ∞ for all x ∈ �, σ 2(·) : � → � is a measurable
twice continuously differentiable function in � with |σ 2(2)(x)| < B̄2σ for all
x ∈ �. (2) 0 < Bm ≤ m(x) ≤ B̄m < ∞ for all x ∈ �,m(·) : � → � is a mea-
surable twice continuously differentiable function in � with |m(2)(x)| < B̄2m
for all x ∈ �.

A3. K(·) : � → � is a symmetric density function with bounded support SK ∈ �
satisfying (1)

∫
xK(x)dx = 0; (2) ∫ x2K(x)dx = σ 2

K; (3) for all x ∈
�, |K(x)| < BK < ∞; (4) for all x, x ′ ∈ �, |K(x)−K(x ′)| < mK |x − x ′|
for some 0 < mK < ∞;

A4. nh3
n → ∞, and nh3

n(ln(hn))
−1 → −∞.

Lemma 1 provides auxiliary results that are useful in the applications that fol-
low. We note that the proof of the Lemma is itself facilitated by using Theorem 1
and its corollary. In addition, the proof relies on repeated use of a version of Lebes-
gue’s dominated convergence theorem which can be found in Prakasa-Rao (1983),
p. 35. Henceforth, we refer to this result as the proposition of Prakasa-Rao. In
addition, the proofs rely on Lemma 2 and Theorem 1 in Martins-Filho and Yao
(2003).

Lemma 1 Letf (xt , yt ) be continuous at xt and assume the regression model in (5),
assumptions A1–A4 and that E(f 2(xt , yt )) < ∞. Define In = 1

n

∑n
t=1(m̂(xt ) −

m(xt ))f (xt , yt ), Jn = 1
n

∑n
t=1(m̂(xt )−m(xt ))

2f (xt , yt ), Ln = 1
n

∑n
t=1(m̂(xt )−

m(xt ))
3f (xt , yt ) and Mn = 1

n

∑n
t=1(m̂(xt )−m(xt ))

4f (xt , yt ).



V and U statistics in nonparametric models 395

(a) Given E(y2
t f

2(xt , yt )) < ∞ then

In = 1

n

n∑

t=1

εt

∫

f (xt , y)g(y|xt )dy +1

2
h2
nσ

2
KE(m

(2)(xt )f (xt , yt ))

+op(n− 1
2 )+ op(h

2
n), (6)

where g(y|x) denotes the conditional density of y given x.

(b) Given E(y4
t f

2(xt , yt )) < ∞ then

Jn = σ 2
Kh

2
n

n

n∑

t=1

εtm
(2)(xt )E(f (xt , yt )|x1, . . . , xn)

+1

4
h4
nσ

4
KE((m

(2)(xt ))
2f (xt , yt ))

+op(n− 1
2 )+ op(h

3
n), (7)

(c) Given E(y6
t f

2(xt , yt )) < ∞ then

Ln = op(h
3
n) (8)

(d) Given E(y8
t f

2(xt , yt )) < ∞ then

Mn = op(h
4
n). (9)

Proof Here we prove parts (a)–(c). The proof of (d) is similar to that of (c) and is
omitted. Let

∑
(p) hi1...ip denote the sum of hi1...ip over the permutations of i1 . . . ip,

i.e.,
∑

(p) hi1...ip is the sum of p! terms given by hi1i2...ip +hi2i1...ip +· · ·+hipip−1...i1 .
(a) Note that,

m̂(xt )−m(xt ) = 1

nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

εk

+ 1

2nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

m(2)(xkt )(xk − xt )
2 + w(xt ),

wherew(xt ) = m̂(xt )−m(xt )− 1
nhng(xt )

∑n
k=1K(

xk−xt
hn
)y∗
k andy∗

k = εk+ 1
2m

(2)(xkt )

(xk−xt )2 withxkt = λxt+(1−λ)xk for someλ ∈ (0, 1). Hence, In = I1n+I2n+I3n,
where

I1n = 1

n2hn

n∑

t=1

n∑

k=1

K

(
xk − xt

hn

)

εkf (xt , yt )
1

g(xt )
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I2n = hn

2n2

n∑

t=1

n∑

k=1

K

(
xk − xt

hn

)(
xk − xt

hn

)2

m(2)(xkt )f (xt , yt )
1

g(xt )

I3n = 1

n

n∑

t=1

w(xt )f (xt , yt ).

We treat each term separately. Observe that I1n can be written as

I1n = 1

2n2

n∑

t=1

n∑

k=1

(
1

hn
K

(
xk − xt

hn

)

εkf (xt , yt )
1

g(xt )

+ 1

hn
K

(
xt − xk

hn

)

εtf (xk, yk)
1

g(xk)

)

= 1

2n2

n∑

t=1

n∑

k=1




∑

(2)

htk



 = 1

2n2

n∑

t=1

n∑

k=1

ψn(Zt , Zk) = 1

2
vn,

where vn is a V statistic with Zt = (xt , yt ) and ψn(Zt , Zk) a symmetric kernel.
Hence, by Corollary 1, if E

(
ψ2
n(Zt , Zk)

) = o(n) for all t, k then
√
n(vn − ûn) =

op(1). First, note that for t �= k 1
n
E
(
ψ2
n(Zt , Zk)

) = 2
n
E(h2

tk) + 2
n
E(htkhkt ) and

since E(ε2
k |x1, . . . , xn) = σ 2(xk), we have from the proposition of Prakasa-Rao

that

1

n
E(h2

tk) = 1

nh2
n

E

(

K2

(
xk−xt
hn

)

σ 2(xk)E(f
2(xt , yt )|x1, . . . , xn)

1

g2(xt )

)

→ 0,

provided that nhn → ∞. Similarly it can be shown that E( 1
n
htkhkt ) = o(1)

and therefore 1
n
E(ψ2

n(Zt , Zk)) = o(1). For t = k it suffices to verify that 4K2(0)
nh2

n

E
(
σ 2(xt )

f 2(xt ,yt )

g2(xt )

)
= o(1), but this follows directly given our assumptions. Now,

since E(εt |x1, . . . , xn) = 0, θn = E (ψn(Zt , Zk)) = 0 and ûn = 2
n

∑n
t=1 ψ1n(Zt ).

Therefore,

ψ1n(Zt ) = 1

hn
εt

∫ ∫

K

(
xk − xt

hn

)

f (xk, yk)g(yk|xk)dxkdyk

= εt

∫

f (xt , y)g(y|xt )dy + o(1),

where g(y|x) = q(y,x)

g(x)
. Consequently,

I1n = 1

n

n∑

t=1

εt

∫

f (xt , y)g(y|xt )dy + op(n
− 1

2 ) (10)

given that 1
n

∑n
t=1 εt = Op(n

− 1
2 ). Now, note that

I2n = 1

4n2

n∑

t=1

n∑

k=1

∑

(2)

htk = 1

4n2

n∑

t=1

n∑

k=1

ψn(Zt , Zk) = 1

4
vn,
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wherehtk = hnK(
xk−xt
hn
)( xk−xt

hn
)2m(2)(xkt )f (xt , yt )

1
g(xt )

. By Corollary 1 ifE(ψ2
n(Zt ,

Zk)) = o(n) for all t, k, then
√
n(vn − ûn) = op(1). Hence we focus on ûn. Note

that, ûn = 2
n

∑n
t=1 ψ1n(Zt ) − θn, where ψ1n(Zt ) = E(htk|Zt) + E(hkt |Zt) and

E(ûn) = θn = 2E(htk). Hence, by the proposition of Prakasa-Rao,

E

(
ûn

h2
n

)

= 2

hn

∫ ∫ ∫

K

(
xk − xt

hn

)(
xk − xt

hn

)2

m(2)(xkt )

×f (xt , yt )g(xk)
g(xt )

q(xt , yt )dxkdxtdyt

−→ 2σ 2
KE(m

(2)(xt )f (xt , yt )).

In addition, note that

V

(
1

h2
n

ûn

)

= 4

n2h4
n

nV (E(htk|Zt)+ E(hkt |Zt))

= 4

nh4
n

(
E(E(htk|Zt))2+E(E(hkt |Zt))2

+2E(E(htk|Zt)E(hkt |Zk))−θ2
n

)
.

Under our assumptions, it is straightforward to show that

1

nh4
n

E(E(htk|Zt))2

= 1

nh2
n

E

(

f (xt , yt )
2 1

g2(xt )
E2

(

K

(
xk − xt

hn

)(
xk − xt

hn

)2

m(2)(xkt )|Zt
))

→0

as n→ ∞. Similarly, 1
nh4

n
E(E(hkt |Zt))2 → 0 and 1

nh4
n
E(E(htk|Zt)E(hkt |Zt)) → 0

as n→ ∞. Hence, V
(

1
h2
n
ûn

)
→ 0. By Markov’s inequality we conclude that

ûn = 2h2
nσ

2
KE(m

(2)(xt )f (xt , yt ))+ op(h
2
n) and by Corollary 1,

I2n = 1

2
h2
nσ

2
KE(m

(2)(xt )f (xt , yt ))+ op(h
2
n). (11)

Finally, verification that E(ψ2
n(Zt , Zk)) = 2E(h2

tk) + 2E(htkhkt ) = o(n) for all
t �= k follows directly from our assumptions and use of the proposition of Pra-
kasa-Rao, and for the case where t = k we have that E(ψ2

n(Zt , Zk)) = 0. From
Martins-Filho and Yao’s (2003) Lemma 2 and Theorem 1

|w(xt )| =
∣
∣
∣
∣
∣
m̂(xt )−m(xt )− 1

nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

y∗
k

∣
∣
∣
∣
∣
= Op(Rn,2(xt ))

and supxt∈G |Rn,2(xt )| = op(h
2
n), hence supxt∈G |w(xt )| = op(h

2
n). As a result we

have that |I3n| ≤ op(h
2
n)

1
n

∑n
t=1 |f (xt , yt )| = op(h

2
n), since E(f 2(xt , yt )) < ∞.

Therefore, I3n = 1
n

∑n
t=1w(xt )f (xt , yt ) = op(h

2
n). Combining this result with
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(10) and (11) proves part (a).
For part (b) note that

Jn = 1

n3h2
n

n∑

t=1

n∑

k=1

n∑

l=1

f (xt , yt )
1

g2(xt )
K

(
xk − xt

hn

)

K

(
xl − xt

hn

)

εkεl

+ h2
n

4n3

n∑

t=1

n∑

k=1

n∑

l=1

1

g2(xt )
f (xt , yt )K

(
xk − xt

hn

)(
xk − xt

hn

)2

×K
(
xl − xt

hn

)(
xl − xt

hn

)2

m(2)(xkt )m
(2)(xlt )

+1

n

n∑

t=1

w2(xt )f (xt , yt )

+ 1

n3

n∑

t=1

n∑

k=1

n∑

l=1

1

g2(xt )
f (xt , yt )K

(
xk − xt

hn

)

×K
(
xl − xt

hn

)(
xl − xt

hn

)2

m(2)(xlt )εk

+ 2

n2hn

n∑

t=1

n∑

k=1

w(xt )
1

g(xt )
f (xt , yt )K

(
xk − xt

hn

)

εk

+hn
n2

n∑

t=1

n∑

k=1

w(xt )
1

g(xt )
f (xt , yt )K

(
xk − xt

hn

)(
xk − xt

hn

)2

m(2)(xkt )

= J1n + J2n + J3n + J4n + J5n + J6n.

We examine each term separately.

J1n = 1

6

1

n3

n∑

t=1

n∑

k=1

n∑

l=1

∑

(3)

htkl = 1

6

1

n3

n∑

t=1

n∑

k=1

n∑

l=1

ψn(Zt , Zk, Zl) = 1

6
vn,

where htkl = 1
h2
n
K(xk−xt

hn
)K(xl−xt

hn
)εkεlf (xt , yt )

1
g2(xt )

. By Corollary 1, if E(ψ2
n(Zt ,

Zk, Zl)) = o(n) for all t, k, l then
√
n(vn − ûn) = op(1). Since ψ1n(Zt ) = 0

and θn = 0, we have that ûn = 0 and therefore
√
nI1n = op(1). To verify that

1
n
E(ψ2

n(Zt , Zk, Zl)) = o(1) for t �= k �= l we note that 1
n
E(ψ2

n(Zt , Zk, Zl)) =
4
n
(3E(h2

tkl)+2E(htklhktl)+2E(htklhltk)+2E(hktlhltk)). Under A1–A4, repeated
application of the proposition of Prakasa-Rao to each of these expectations shows
that each approaches zero as n → ∞. Also, if t = k but t �= l we have that
E(ψ2

n(Zt , Zt , Zl)) = o(n) and when t = k = l, E(ψ2
n(Zt , Zt , Zt )) = o(n2)

directly from our assumptions provided nh3
n → 0.

J2n = 1

24n3

n∑

t=1

n∑

k=1

n∑

l=1

∑

(3)

htkl = 1

24n3

n∑

t=1

n∑

k=1

n∑

l=1

ψn(Zt , Zk, Zl) = 1

24
vn,

wherehtkl = h2
nK(

xk−xt
hn
)( xk−xt

hn
)2K(xl−xt

hn
)( xl−xt

hn
)2m(2)(xkt )m

(2)(xlt )
1

g2(xt )
f (xt , yt ).

By Corollary 1
√
n(vn − ûn) = op(1) provided that E(ψn(Zt , Zk, Zl)) = o(n)
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for all t, k, l. As above, verification of this condition is straightforward given our
assumptions. Note that ûn = 3

n

∑n
t=1 ψ1n(Zt )− 2θn with E(ûn) = θn. Hence,

1

h4
n

E(ûn) = 6

h2
n

E

(

K

(
xk−xt
hn

)(
xk − xt

hn

)2

K

(
xl−xt
hn

)(
xl−xt
hn

)2

m(2)(xkt )

× m(2)(xlt )
1

g2(xt )
f (xt , yt )

)

and by the proposition of Prakasa-Rao we have, 1
h4
n
E(ûn)→6σ 4

KE((m
(2)(xt ))

2f (xt ,

yt )) and V ( 1
h4
n
ûn) → 0. By Markov’s inequality we conclude that J2n = 1

4h
4
nσ

4
K

E((m(2)(xt ))
2f (xt , yt )) + op(h

4
n) + op(n

−1/2). J3n = 1
n

∑n
t=1w

2(xt )f (xt , yt ) =
op(h

4
n) follows directly from the analysis of the I3n in part (a). Now,

J4n = 1

6n3

n∑

t=1

n∑

k=1

n∑

l=1

∑

(3)

htkl = 1

6n3

n∑

t=1

n∑

k=1

n∑

l=1

ψn(Zt , Zk, Zl) = 1

6
vn,

wherehtkl = K(xk−xt
hn
)K(xl−xt

hn
)( xl−xt

hn
)2m(2)(xlt )εk

1
g2(xt )

f (xt , yt ). Once again given

our assumptions it can be verified that E(ψ2
n(Zt , Zk, Zl)) = o(n) for all t, k, l,

therefore we have
√
n(vn − ûn) = op(1), where ûn = 3

n

∑n
t=1 ψ1n(Zt ) − 2θn.

Given that in this case θn = 0, we have

ûn= 6

n

n∑

t=1

εtE

(

K

(
xt−xk
hn

)

K

(
xl−xk
hn

)(
xl−xk
hn

)2

m(2)(xlk)
1

g2(xk)
f (xk, yk)|Zt

)

,

Under A1–A4, the proposition of Prakasa Rao gives

E

(
1

h2
n

K

(
xt − xk

hn

)

K

(
xl − xk

hn

)(
xl − xk

hn

)2

m(2)(xlk)
1

g2(xk)
f (xk, yk)|Zt

)

→

σ 2
Km

(2)(xt )E(f (xt , y)|x1, . . . , xn).

Hence, ûn = 6h2
n

n

∑n
t=1 εtm

(2)(xt )σ
2
KE(f (xt , y)|x1, . . . , xn)+op(n− 1

2 ), given that
6
n

∑n
t=1 εt = Op(n

− 1
2 ). Consequently, J4n = σ 2

Kh
2
n

n

∑n
t=1 εtm

(2)(xt )E(f (xt , y)

|x1, . . . , xn)+ op(n
− 1

2 ).

|J5n| =
∣
∣
∣ 2
n

∑n
t=1w(xt )

(
1

nhng(xt )

∑n
k=1K(

xk−xt
hn
)εk

)
f (xt , yt )

∣
∣
∣ and from

Martins-Filho and Yao (2003) Theorem 1 we have supxt∈G |w(xt )|
= op(h

2
n) and supxt∈G

∣
∣
∣ 1
nhng(xt )

∑n
k=1K(

xk−xt
hn
)εk

∣
∣
∣ = op(hn). Hence, |J5n|

≤ 2
n

∑n
t=1 |f (xt , yt )|op(h3

n) = Op(1)op(h3
n) = op(h

3
n) since 2

n

∑n
t=1 |f (xt , yt )|

= Op(1), which gives J5n = op(h
3
n). Finally, from Martins-Filho and Yao (2003)

Theorem 1 we have

sup
xt∈G

∣
∣
∣
∣
∣

hn

ng(xt )

n∑

k=1

K

(
xk − xt

hn

)(
xk − xt

hn

)2

m(2)(xkt )

∣
∣
∣
∣
∣
= Op(h

2
n) (12)
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and |J6n| ≤ 1
n

∑n
t=1 |f (xt , yt )|op(h2

n)Op(h
2
n) = Op(1)op(h4

n) = op(h
4
n). Com-

bining the orders of all six terms gives the desired result.

(c) Let atn = 1
nhng(xt )

∑n
k=1K

(
xk−xt
hn

)
εk ,btn = 1

2nhng(xt )

∑n
k=1K

(
xk−xt
hn

)
m(2)(xkt )

(xk − xt )
2, ctn = w(xt ). Then (m̂(xt ) − m(xt ))

3 = a3
tn + b3

tn + c3
tn + 3atnb2

tn +
3atnc2

tn+3a2
tnbtn+3a2

tnctn+3b2
tnctn+3btnc2

tn+6atnbtnctn and n−1∑n
t=1(m̂(xt )−

m(xt ))
3f (xt , yt ) = ∑10

i=1 Lin, where L1n = n−1∑n
t=1 a

3
tnf (xt , yt ), . . . , L10n =

n−1∑n
t=1 6atnbtnctnf (xt , yt ). Since

∣
∣
∣
∣
∣
supxt

1

nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

εk

∣
∣
∣
∣
∣
= op(hn),

then |L1n| ≤ op(h
3
n)× 1

n

∑n
t=1 |f (xt , yt )| = op(h

3
n). By (12), |L2n| ≤ Op(h

6
n)n

−1
∑n

t=1 |f (xt , yt )| = Op(h
6
n) since E(f 2(xt , yt )) < ∞. |L3n| ≤ op(h

6
n) follows

directly from supxt∈G|w(xt )| = op(h
2
n).

|L4n| ≤ 3

n

n∑

t=1

∣
∣
∣
∣
∣

1

nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

εk

∣
∣
∣
∣
∣

×
∣
∣
∣
∣
∣
∣

(
1

2nhng(xt )

n∑

k=1

K

(
xk − xt

hn

)

(xk − xt )
2m(2)(xkt )

)2
∣
∣
∣
∣
∣
∣

×|f (xt , yt )| ≤ op(hn)Op(h
4
n)

3

n

n∑

t=1

|f (xt , yt )| = op(h
5
n)

from (12) and the analysis of J5n in part (b). Similarly, we obtain |L5n|, |L10n| ≤
op(h

5
n), |L6n|, |L7n| ≤ op(h

4
n) and |L8n|, |L9n| ≤ op(h

6
n). Hence, we have Ln =

op(h
3
n). ��

We now use the results in the Lemma to establish the asymptotic distribution of
several statistics of interest.

3.1 Estimating conditional variance

Consider first a special case of the model (5), where εt |xt ∼ N(0, σ 2). Then a
natural estimator of σ 2 is

σ̂ 2 = 1

n

n∑

t=1

(yt − m̂(xt ))
2 = 1

n

n∑

t=1

(
ε2
t +2(m(xt )−m̂(xt ))εt+(m(xt )−m̂(xt ))2

)
.

The difficulty in dealing with such expressions lies in the average terms involv-
ing (m(xt )− m̂(xt )) and (m(xt )− m̂(xt ))

2, since the first term is an average of an
i.i.d. sequence. By using Corollary 1 and Lemma 1 we have a convenient way to
establish their asymptotic properties. This is shown in the next theorem.

Theorem 2 Assume that in model (5), εt |xt ∼ N(0, σ 2) and E(y4
t ) < ∞. Under

assumptions A1–A4 we have
√
n(σ̂ 2 − σ 2 − b1n)

d→ N(0, 2σ 4), where b1n =
op(h

2
n).
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Proof Note that σ̂ 2 = 1
n

∑n
t=1

(
ε2
t + 2(m(xt )− m̂(xt ))εt + (m(xt )− m̂(xt ))

2
)
.

Now, letting f (xt , yt )=−2εt in part (a) of Lemma 1 we have 1
n

∑n
t=1 εt

∫
f (xt , yt )

g(yt |xt )dyt = 0, since E(εt |x1, . . . , xn)= 0 and 1
2h

2
nσ

2
KE

(
m(2)(xt )f (xt , yt )

)= 0.

Hence, 1
n

∑n
t=1 2(m(xt )− m̂(xt ))εt = op(n

− 1
2 )+ op(h2

n). By part (b) of Lemma 1
with f (xt , yt ) = 1 we have

1

4
h4
nσ

4
KE((m

(2)(xt ))
2f (xt , yt )) = Op(h

4
n)

and

σ 2
Kh

2
n

n

n∑

t=1

εtm
(2)(xt )E(f (xt , y)|x1, . . . , xn)

= σ 2
Kh

2
n

n

n∑

t=1

εtm
(2)(xt ) = Op(n

− 1
2 h2
n) = op(n

− 1
2 )

by the central limit theorem for i.i.d. sequences. Hence, 1
n

∑n
t=1(m(xt )−m̂(xt ))2 =

op(n
− 1

2 ) + op(h
3
n) provided E(y4

t ) < ∞. Finally, note that 1
n

∑n
t=1(ε

2
t − σ 2) =

1
n

∑n
t=1 ζt , then E(ζt ) = 0, V (ζt ) = E(ζ 2

t ) = 2σ 4, given conditional normality.

Hence, 1√
n

∑n
t=1(ε

2
t − σ 2)

d→ N(0, 2σ 4). Combining the results for each term
proves the theorem. ��

Theorem 2 can be generalized by relaxing the conditional normality assumption
and allowing V (yt |xt ) = σ 2(xt ). This generalization was done by Martins-Filho
and Yao (2003) but their proof can be conveniently simplified by using Theorem 1
and its corollary.

3.2 Estimating conditional skewness and kurtosis

We now consider the estimation of Pearson’s conditional skewness α3 = µ3/µ
3/2
2

and kurtosis α4 = ν4/µ
2
2 for the regressand in (5), whereµr = E ((yt −m(xt ))

r |xt )
for r = 2, 3, 4. We assume for simplicity that the these higher order conditional
centered moments do not depend on xt , t = 1, 2, . . . although the underlying
conditional density clearly does. We now define the estimators

α̂3 = n−1∑n
t=1(yt − m̂(xt ))

3

(n−1
∑n

t=1(yt − m̂(xt ))2)3/2
, α̂4 = n−1∑n

t=1(yt − m̂(xt ))
4

(n−1
∑n

t=1(yt − m̂(xt ))2)2

and establish the following theorem.

Theorem 3 Assume A1–A4 are holding for model (5) and let µr =E((yt
−m(xt ))

r |xt ) for r = 2, 3, 4.

(a) If E(y6
t ) < ∞ then

√
n(α̂3 − α3 − B1n)

d→ N(0, µ−3
2 V (Zt)) where

B1n = −3/2µ−1/2
2 E

(
m(2)(xt )

)
h2
nσ

2
K + op(h

2
n)

and Zt = ε3
t + 1/2µ3 − 3µ2εt − 3/2µ3

µ2
ε2
t
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(b) If E(y8
t ) < ∞ then

√
n(α̂4 − α4 − B2n)

d→ N(0, µ−4
2 V (Wt)) where

B2n = −2h2
nµ

−2
2 µ3σ

2
KE(m

(2)(xt ))+ op(h
2
n)

and Wt = ε4
t + µ4 − 4εtµ3 − 2µ4

µ2
ε2
t

Proof We first write

α̂3 − α3 =
(

n−1
n∑

t=1

(yt − m̂(xt ))
2

)−3/2 (
b1n − b2nµ3µ

−3/2
2

)
, (13)

α̂4 − α4 =
(

n−1
n∑

t=1

(yt − m̂(xt ))
2

)−2
(
b3n − b4nµ4µ

−2
2

)
, (14)

where b1n = n−1∑n
t=1(yt − m̂(xt ))

3 − µ3, b2n = (n−1∑n
t=1(yt − m̂(xt ))

2)3/2 −
µ

3/2
2 , b3n = n−1∑n

t=1(yt−m̂(xt ))4−µ4 and b4n = (n−1∑n
t=1(yt−m̂(xt ))2)2−µ2

2.
By Theorem 2, and adopting the notation σ 2 ≡ µ2 we have that n−1∑n

t=1(yt −
m̂(xt ))

2 = n−1∑n
t=1 ε

2
t +op(n−1/2)+op(h2

n). But since n−1∑n
t=1 ε

2
t −µ2 = op(1)

by Kolmogorov’s law of large numbers, we have that

n−1
n∑

t=1

(yt − m̂(xt ))
2 = µ2 + op(1). (15)

(a) By the mean value theorem for random variables we have that for λ ∈ (0, 1),

b2n = 3

2

(

µ2 + λ(n−1
n∑

t=1

(yt − m̂(xt ))
2 − µ2)

)1/2

×
(

1

n

n∑

t=1

(yt − m̂(xt ))
2 − µ2

)

(16)

= 3

2
µ

1/2
2

1

n

n∑

t=1

(ε2
t − µ2)+ op(n

−1/2)+ op(h
2
n). (17)

Also,

b1n = n−1
n∑

t=1

(m(xt )− m̂(xt ))
3 + 3n−1

n∑

t=1

(m(xt )− m̂(xt ))
2εt

+3n−1
n∑

t=1

(m(xt )− m̂(xt ))ε
2
t + n−1

n∑

t=1

ε3
t − µ3

= pn1 + pn2 + pn3 + pn4 − µ3.
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Since E(y6
t ) < ∞, by part (c) of Lemma 1 pn1 = op(h

3
n). By part (b) pn2 =

op(n
−1/2)+op(h3

n) and by part (a)pn3 = −3n−1µ2
∑n

t=1 εt−3/2h2
nσ

2
Kµ2E(m

(2)

(xt ))+ op(n
−1/2)+ op(h

2
n), hence

b1n = n−1
n∑

t=1

ε3
t − µ3 − 3n−1µ2

n∑

t=1

εt − 3

2
h2
nµ2σ

2
KE(m

(2)(xt ))

+op(n−1/2)+ op(h
2
n). (18)

Combining (17) and (18) we have that b1n−b2nµ3µ
−3/2
2 = n−1∑n

t=1 Zt+A1n,
whereZt = ε3

t +1/2µ3 −3µ2εt −3/2µ3

µ2
ε2
t ,A1n = − 3

2µ2E
(
m(2)(xt )

)
h2
nσ

2
K +

op(n
−1/2) + op(h

2
n). Note that E(Zt) = 0 and by the cr -inequality V (Zt) =

E(Z2
t ) < ∞ provided E(y6

t ) < ∞. Hence, by the central limit theorem for
i.i.d. random variables

√
n

(

b1n − b2n
µ3

µ
3/2
2

− A1n

)
d→ N(0, V (Zt)) (19)

and consequently, combining (15) and (19) we have
√
n
(
α̂3 − α3 − B1n

) d→
N(0, µ−3

2 V (Zt)) where B1n = −3/2µ−1/2
2 E

(
m(2)(xt )

)
h2
nσ

2
K + op(h

2
n).

(b) Again for λ ∈ (0, 1) we have by the mean value theorem that

b4n = 2µ2
1

n

n∑

t=1

(ε2
t − µ2)+ op(n

−1/2)+ op(h
2
n). (20)

Also,

b3n = n−1
n∑

t=1

(m(xt )− m̂(xt ))
4 + 4n−1

n∑

t=1

(m(xt )− m̂(xt ))
3εt

+4n−1
n∑

t=1

(m(xt )− m̂(xt ))ε
3
t

+6n−1
n∑

t=1

(m(xt )− m̂(xt ))
2ε2
t + n−1

n∑

t=1

ε4
t − µ4

= qn1 + qn2 + qn3 + qn4 + qn5 − µ4.

By part (d) of Lemma 1 with f (xt , yt ) = 1 we have qn1 = op(h
4
n), and by part (c)

with f (xt , yt ) = −4εt , qn2 = op(h
3
n). By part (b) with f (xt , yt ) = 6ε2

t

qn4 = 6

n
σ 2
Kσ

2h2
n

n∑

t=1

εtm
(2)(xt )+ 3

2
h4
nσ

4
Kσ

2E
(
(m(2)(xt ))

2
)

+op(n−1/2)+ op(h
3
n). (21)

By part (a) with f (xt , yt ) = −4ε3
t we have

qn3 = −4µ3

n

n∑

t=1

εt − 2σ 2
Kh

2
nµ3E

(
m(2)(xt )

)+ op(n
−1/2)+ op(h

2
n). (22)
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Hence,

b3n = n−1
n∑

t=1

ε4
t − µ4 − 4µ3

n

n∑

t=1

εt − 2σ 2
Kh

2
nµ3E

(
m(2)(xt )

)

+op(n−1/2)+ op(h
2
n). (23)

Combining (20) and (23), we write b3n − b4n
µ4

(µ2)2
= n−1∑n

t=1Wt + A2n where

Wt = ε4
t +µ4 − 4εtµ3 − 2µ4

µ2
ε2
t and A2n = −2h2

nσ
2
Kµ3E(m

(2)(xt ))+ op(n−1/2)+
op(h

2
n). Note that E(Wt) = 0 and by the cr -inequality, V (Wt) = E(W 2

t ) < ∞.
Hence, given that E(y8

t ) < ∞ we have the central limit theorem for i.i.d. random
variables that

√
n

(

b3n − b4n
µ4

µ2
2

− A2n

)
d→ N(0, V (Wt)). (24)

Combining (15) and (24), we have that

√
n
(
α̂4 − α4 − B2n

) d→ N(0, µ−4
2 V (Wt)), where

B2n = −2h2
nµ

−2
2 σ 2

Kµ3E(m
(2)(xt ))+ op(h

2
n). (25)

��

3.3 Estimating a nonparametric R2 measure

In regression analysis we are usually interested in Pearson’s correlation ratio,

η2 = V (E(y|x))
V (y)

= V (m(x))

V (y)

where, y is a regressand and x is the regressor in the context of model (5). Since
V (y) = V (E(y|x)))+E(V (y|x)) = V (m(x))+E(σ 2(x)), η2 gives the fraction
of the variability of y which is explained with the best predictorm(x). This can be
interpreted as a nonparametric coefficient of determination or a nonparametric R2

measure. Estimation of a nonparametric R2 measure has been studied by Doksum
and Samarov (1995) using a Nadaraya–Watson estimator. A similar topic – estima-
tion of noise to signal ratios – has been considered by Yao and Tong (2000). Here,
given that V (m(x)) = V (y)−E(y−m(x))2 we have η2 = 1 − E(y−m(x))2

V (y)
and we

consider

η̂2 = 1 −
1
n

∑n
t=1(yt − m̂(xt ))

2

1
n

∑n
t=1(yt − ȳ)2

where ȳ = 1

n

n∑

t=1

yt .

The following theorem gives the asymptotic characterization of our proposed
nonparametric R2 measure.

Theorem 4 Assume A1–A4 are holding for model (5) and E(y4
t ) < ∞, then we

have
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√
n(η̂2−η2−b2n)

d→ N(0, V (ξt )) where ξt = 1

V (yt )

(
ε2
t −(1−η2)(yt−E(yt ))2

)

and b2n = op(h
2
n).

Proof η̂2 − η2 = − 1
1
n

∑n
t=1(yt−ȳ)2

(
β1 − β2

E(yt−m(xt ))2
V (yt )

)
where β1 = 1

n

∑n
t=1(yt −

m̂(xt ))
2 −E(yt −m(xt ))

2, β2 = 1
n

∑n
t=1(yt − ȳ)2 − V (yt ). First, note that by the

law of large numbers 1
n

∑n
t=1 y

2
t

p→ E(y2
t ) and ȳ2 p→ E(yt )

2, hence
(

1

n

n∑

t=1

(yt − ȳ)2

)−1
p→ V (yt )

−1. (26)

For β2, ȳ2 − (E(yt ))
2 = 1

2
1
n2

∑n
t=1

∑n
k=1(ytyk + ykyt ) − E(m(xt ))

2 = 1
2vn −

(E(m(xt )))
2. By Corollary 1, since 1

n
E(ψ2

n(yt , yk)) = 4
n
E((y2

t ))
2 = o(1) for all

t, k,
√
n(vn−ûn) = op(1)where ûn= 2

n

∑n
t=1(ψ1n(Zt ))−θn= 4

n

∑n
t=1 ytE(m(xt ))−

2(E(m(xt )))2. Hence, ȳ2 − (E(yt ))
2 = 2

n

∑n
t=1 ytE(m(xt )) − 2(E(m(xt )))2 +

op(n
− 1

2 ), and

β2
E(yt −m(xt ))

2

V (yt )
= 1

n

n∑

t=1

{
E(σ 2(xt ))

V (yt )
(y2
t − E(y2

t ))

−2
E(σ 2(xt ))E(m(xt ))

V (yt )
(yt − E(m(xt )))

}

+ op(n
− 1

2 ).

Forβ1, 1
n

∑n
t=1(yt−m̂(xt ))2 = 1

n

∑n
t=1

(
ε2
t + 2(m(xt )−m̂(xt ))εt+(m(xt )−m̂(xt ))2

)
.

Similarly to the proof of Theorem 2, we use part (a) of Lemma 1 with f (xt , yt )
= −2εt to obtain 1

n

∑n
t=1 2(m(xt )−m̂(xt ))εt = op(n

− 1
2 )+op(h2

n). By part (b) with

f (xt , yt ) = 1 we obtain 1
n

∑n
t=1(m(xt )−m̂(xt ))2 = op(n

− 1
2 )+op(h3

n). Therefore,
1
n

∑n
t=1(yt − m̂(xt ))

2 = 1
n

∑n
t=1 ε

2
t + op(n

− 1
2 )+ op(h

2
n). Hence,

β1 − β2
E(yt −m(xt ))

2

V (yt )
= 1

n

n∑

t=1

(ε2
t − E(σ 2(xt ))− E(σ 2(xt ))

V (yt )
(y2
t − E(y2

t ))

+2E(σ 2(xt ))E(m(xt ))

V (yt )
(yt − E(m(xt )))

+op(n− 1
2 )+ op(h

2
n)

= 1

n

n∑

t=1

ζt + op(n
− 1

2 )+ op(h
2
n).

Since E(ζt ) = 0, V (ζt ) = V (ε2
t − (1 − η2)(yt − E(yt ))

2) < ∞ and ζt forms an
i.i.d. sequence, then by the central limit theorem we have

√
n

(

β1 − β2
E(yt −m(xt ))

2

V (yt )
− op(h

2
n)

)
d→ N(0, V (ζt )). (27)

Given that η̂2 − η2 = − 1
1
n

∑n
t=1(yt−ȳ)2

(
β1 − β2

E(yt−m(xt ))2
V (yt )

)
together with (26) and

(27) gives the desired result. ��
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4 Conclusion

We have established the
√
n asymptotic equivalence between V and U statistics

when their kernels depend on n, the sample size. We combine our result with a
result of Lee (1988) to obtain the

√
n asymptotic equivalence between V statistics

and U statistics projections. We provide a number of examples and illustrations
on how our results can be used in nonparametric kernel estimation. The list of
examples is obviously not exhaustive as our results can be used in much broader
contexts.
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