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Abstract Necessary and sufficient conditions are provided for the existence of con-
sistent statistical procedures in regression models with random predictors under
various error assumptions.
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1 Introduction

Regression estimation is a central theme in statistics, and in one part of the related
literature least squares estimates are proposed and sufficient conditions are pro-
vided which guarantee their weak or strong consistency and asymptotic normality.
The sufficient conditions pertain to the structures of the errors, the design matrix
and the parameter space.

In linear and non-linear parametric regression, conditions for consistency and
asymptotic normality of the least squares estimates have been provided among oth-
ers by Eicker (1963), Jennrich (1969), Malinvaud (1970), Lai and Robbins (1977),
Lai et al. (1978), Richardson and Bhattacharyya (1986). In linear models, Drygas
(1976) and Wu (1980) gave conditions to characterize consistent directions of least
squares estimates, that were shown to be equivalent (Massam, 1987). In para-
metric non-linear regression, Wu (1981) provided asymptotic theory of the least
squares estimates which included necessary conditions for consistent estimation.
In most of these results, the predictors are assumed to be non-random. M-esti-
mates in the regression context have been studied among others by Bustos (1982),

Y.G. Yatracos

Department of Statistics and Applied Probability, The National University of Singapore,
6 Science Drive 2, Singapore 117546, Singapore

E-mail: yatracos @stat.nus.edu.sg



380 Y. G. Yatracos

Potscher and Prucha (1986), Jureckova (1989), Liese and Vajda (1994) and Koul
(1996).

In infinite dimensional linear models, the least squares estimates fail often to
be consistent due to the underlying structure of the problem, in particular either the
behavior of the sequence of the regression predictors or the size of the parameter
space. This fact motivated Li (1984) to provide necessary and sufficient conditions
pertinent to the non-random predictors for consistent estimation of bounded linear
functionals, and Van de Geer and Wegkamp (1996) to provide necessary and suffi-
cient conditions for consistent estimation in nonparametric models with random
predictors, based on §-entropy conditions on the parameter space.

Numerous regression problems involve random predictors, and it is undoubt-
edly useful to obtain conditions of various nature that guarantee the existence of
consistent statistical procedures. In this work, the results in Li (1984) for infinite
dimensional linear models are extended to random design. Necessary and suffi-
cient conditions are also provided for the existence of consistent tests of simple
hypotheses in regression, in terms of the Hellinger distances of the conditional
distributions of the response variables given the predictors at the hypotheses, when
neither the errors nor the predictors are identically distributed. These conditions are
also necessary for the existence of consistent estimates. When both the predictors
and the errors are identically distributed, the errors are independent and have finite
Fisher information, it is seen that Wu (1981) necessary condition for consistent
estimation holds also for random predictors.

Central in the proofs are the classic results by Kakutani (1948), Kraft (1955) and
Shepp (1965) that guarantee consistency in parametric and nonparametric prob-
lems using infinite product measures. Their use in regression is motivated by the
fact that a regression problem can be seen conditionally on the values of the pre-
dictors as a combination of several density estimation problems (e.g. see Yatracos,
1988).

2 Notation, definitions and the tools

The existence of consistent tests for simple hypotheses is directly related to orthog-
onality of two probability measures on infinite product spaces. The Hellinger dis-
tance and the Hellinger affinity are used below to characterize orthogonality of
probability measures.

Definition 2.1 For densities f, g, with respect to a o —finite measure A on the
space X, their Hellinger distance H (f, g) is defined as

H*(f,8) = f (f'2 ) — g"2(x))*A(d).
X

The affinity of f, g is

o(f.8) =/f1/2(X)g1/2(X))»(dX)-
X
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For the Hellinger distance and the affinity it holds:

H*(f,9) =2(1—p(f,8) <2, p(f,ge)=1-5H*f g); (1)

H?(f,g) = 2 if and only if p(f,g) = 0, that is, if f and g are orthogonal
(f(x)g(x) =0, —a.s.). In the sequel A(dx) is the Lebesgue measure dx. More
about the properties of H(f, g) and its use in Statistics can be found in Le Cam
and Yang (1990).

For the random vectors Xy, ... , X,,, ..., itis assumed that X; takes values in
a measurable space (X}, A;),

(X, A7) = [ (X, A, (X, A) = T A).

Q™ is the joint distribution of (X;,...,X,), and {Q™, n = 1,2,...} are
assumed to have a unique extension Q on (X, A). u is a o-finite measure on
(X, A), g =dQ/du, Q << pu.Denoteby Eg, E, the expectation operator and
by E(.].) the conditional expectation. Then, the finite dimensional projections of
w and g are respectively ™ = E(u]A™), ¢™ =dQ™ /du, = E(q|A") a.s. .

Definition 2.2 A sequence {¢,},0 < ¢, < 1, of A" -measurable functions on X
is consistent for testing between the sets Hy and H; of probability measures on
(X, A) if lim,_, o Epgpy, = O for every P € Hy, and lim,_, o Eg¢, = 1 for
every Q € H,.

Kakutani (1948) characterized equivalence and orthogonality of two infinite
direct product measures in terms of Hellinger distances between their finite dimen-
sional projections. Kraft (1955, p. 126, 128) provided a similar characterization
for any two infinite dimensional distributions, and used it to derive conditions for
the existence of consistent statistical procedures.

Proposition 2.1 (Kraft, 1955, Theorem 1, p. 128)
Let P and Q be probability measures on (X, A) with finite dimensional projections
p™ and g™ . The following statements are equivalent.

1. P and Q are orthogonal.
2. limy—osop(p™, q™) = 0.
3. There exists a consistent test for Hy = { P} against H) = {Q}.

Using Kakutani (1948) results, Shepp (1965) provided conditions for distin-
guishing a sequence of random variables from a translate of itself.

Proposition 2.2 (Shepp, 1965, Theorem 1, part (ii), p. 1108)

Let W = (Wy, ..., W,,...) be an infinite vector of independent identically dis-
tributed (i.i.d.) random variables with common distribution F = F(dw), and
a=(ay,...,a,...)anumerical sequence. If Q and Q? are the distributions of
W and W + a, respectively, and F has finite Fisher information, then

a) Q and Q* are orthogonal if 1> a? = +o0, and

n=1"n

b) Q and Q? are equivalent le:;x]) a? < +oo.
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Li (1984) considered observations Y1, ... , ¥, at predetermined levels xy, ... , X,,
from the linear model

+00
Y=Y xibit+e=(x0)+e=00+e 2)

i1
the unknown8 = (04, ..., 6, ...) and the known predictors X = (xy, ... , Xg,...)
are both infinite dimensional vectors in 1> = {(a1,...,a,...) : Y oy ar <
+00}; B € ® C %, (,) denotes the inner products in /%> and in R*, #(x) denotes

(x,0).
The error € has:

i) Mean 0, variance o2 (that may be unknown), and
ii) Finite Fisher information;
iii) €,...,¢,,... arei.id.
Let ®* be the closed linear space generated by ®. For §>0, let

B() =1{0:(0,0) <4, 6 € ©F}
iv) Assume that ® contains B(5§*) for some §*>0.

The next theorem provides necessary and sufficient conditions on the sequence
X, ..., Xy, ... that will guarantee the existence of consistent estimates 7,, of the
bounded linear functional 7' (f) = Z;Of ci0i; (c1y...,Cn,...) €12 T(0)isthen

called consistently-estimable bounded linear (c.e.b.1.) functional.

Proposition 2.3 (Li, 1984, p. 603) Under the assumptions i)-iv), the following
statements are equivalent for model (2):

a) T isac.e.b.l functional for 0 € ©.

b) Forany6* € ©, T isac.e.b.l. functional when the parameter space is restricted
to {0, 6*}.

¢) Forany 6 € © such that T (0) # 0,

d) For any §>0,

n

liminf 1Y "(x;,0)210 € B(), T(0) = 1} = +oo.
n—so0
i=1

e) There exists a sequence of estimators {fn} based on the first n observations,
such that lim, __, o, E[T, — T(6)]> =0, forany 6 € ©.
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3 The results

The next proposition is an extension of Proposition 2.3. The necessary and suffi-

cient conditions obtained for random sequences Xj, ... , X,, ... were intuitively
expected.
Proposition 3.1 Let (X, 7Y)),...,(X,, Yy), ... be random vectors that follow

model(Z), Yi Gy,' - R,X,‘ E.)(‘i, I = 1,... N /PN
Under the assumptions i)—-iv), and

VWPIX;elll=1,i=1,...,n,...,
the following statements are equivalent.

a) T is a c.e.b.l. functional for 0* € ©.

b) Forany6 € ©, T isac.e.b.l. functional when the parameter space is restricted
to {0, 6}.

¢) Forany 8 € O such that T (0) # 0,

+o00
D (X6 = +o0 as. .

i=1

d) For any §>0,

n—-o0

n
lim inf {Z(Xi,e>2|9 € B©),T®) =1} =+0c0 as..
i=1

Proof a) = b) It is clear.

b) = ¢) Let gy and gy x be respectively the joint densities of (Xi, Y1), ...,
Xy, Y), ... and (Y, ..., Yy, ... ) given (X, ..., X,,...), and g, g’k the
corresponding densities of the n-dimensional vectors.

By Proposition 2.1, the existence of a consistent test for the given hypotheses
implies that

lim H*(gg", g¢”) = 2. 3)
n—-0o0

Then,
H (85" 80") = Eqw H* (85 80%) = EqH (85'x. 80%
and (3) becomes

lim E,H*(g)'x. 85'%) = 2- 4)

n—-~o0
From Proposition 2.1, for every X-realization {x;, ... ,X,,...}

nli_])noQ Hz(géfl,)(, g(()fl;);) = H*(gs.x, 80.X)
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and since H 2( f,g) <2, forall f, g, from the bounded convergence theorem
(4) holds if and only if (denoted by iff in the sequel)

H*(gsx, 80x) =2a.s. . (5)

From assumption (iii), with 6(x) denoting (x, 6), the conditional density of the
Y’s given the X’s is

+00
80X = ‘1'[1 PoXy)- (6)
i=

From Eq. (6), (i), (ii) and Proposition 2.2, Eq. (5) holds iff

+00

+00
Z(Xh 0)* = ZGZ(X,-) =400 a.s..

i=1 i=1

¢) = d) For each X-realization that satisfies ¢), use the equivalence of ¢) and d)
in Proposition 2.3.
d) = a) For each X-realization that satisfies d) and from the equivalence of d)

and e) in Proposition 2.3, there is a least squares estimate 7,, such that

lim E(T, — T())> =0, and thus,
n—-o00

lim P[|T, — T(®)| > €] = 0. (7
n—o0o
Using the bounded convergence theorem for the conditional probabilities
Pl|IT, —T®)| > €|X; =Xq,...,X,;, =Xy, ...), Eq. (7) is obtained uncondi-
tionally.

Remark 3.1 In Proposition 3.1, the i.i.d. assumption (iii) was used to show that b)
implies ¢). If only i) holds, similar implications between a) and d) hold as those
mentioned in Li (1984, p. 606, after Corollary 3.1), that is, ¢) =— d) — a) —
b).

Consider now the nonparametric regression set-up

YVi=fXD+e,i=1,...,m 3)
the errors satisfy i)-iii), the X;’s take values in [0, 1], f € W}[0, 1],
W0, 11={f :[0,1] — R, £™=1 is absolutely continuous on [0, 1],

1
/ £ (1)2dr < +o0);

0

f® is the k-th derivative of f, m is a positive integer.
W10, 1] is a Hilbert space equipped with the inner product
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m

1
(f. g)) = / F9 ()g® (x)dx.
0

k=0

Using the decomposition in Li (1984, p. 608), if { f;; j > 1} denotes a complete
orthonormal system in W,"[0, 1], model (8) can be written as the model (2)

+o00
Yi=f(Xi)+e =Zwi,j9j+€i =<W;,0>+¢, i=1,...,n;, (9)
j=1

0; = {({f, f)) and w; ; = f;(X;). Assume also that (iv) holds for the obtained
parameter space ®, and that (v) holds for the W;’s. An application of Proposition
3.1 gives the next result.

Corollary 3.1 In model (9), T (.) is a c.e.b.l. functional if and only if
ZJr_of f(X)?* =400 as., forany f € WO, 1] such that T (f) # 0.

The next proposition provides necessary conditions for the existence of con-
sistent estimates in both parametric and nonparametric regression. Part f) extends
Theorem 1 in (Wu, 1981, p. 503) for random predictors.

Proposition 3.2 Let (Xy, Yy), ..., (X, Y,) be random vectors that follow the
regression model

Vi=fXi,0)+¢€, i=1,...,n, (10)

with 0 (resp. f) the unknown parameter.

Assume that Y; € V; C R, X; € A and has marginal density q;, the errors
€; have mean 0 and variance o*>0 unknown, and are independent with densities
pi,»i=1,...,n.

Then, the following statements are equivalent.

a) There is a consistent test for the hypotheses H, = {0}, H, = {n} (resp. H, =
{f}, Hi={g})

b) Y Eg HX(pigxio0 Piofoxom) = +00 (resp. 35 Eq HX(pi fx,.05
Di,g(X;,0) ) = +00).

o) H* (I pirxio S Pigxin) = 2 aus. (resp. H* (I pipxo0 THSY
Pigx.0) =2a.s.).

If X; = X1, qi = qi, the errors are identically distributed p; = p, i =
1,...,n, ..., then a)—c) are equivalent to
d) E, H*(prx,.0), Prexyn) > 0 (resp. Eq H*(prx,.0)s Pecxi0)) > 0).
e Y HA(Prxi0)s Proxin) = 00 aus. (resp. 305 HA(prex, o) Pecxi0) =
+o00a.s.).

If the errors have in addition finite Fisher information, a)—e) are equivalent to

0 Y 1FX,0) — FXi ] = 400 (resp. Y T f (X, 0) — g(Xi, 0)F =
+00).
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Proof 1t is enough to provide the proof for H, = {6}, H| = {n}.
a) <= b) Note that from Eq. (1)

H*(gg) =2|1- 11 f / VP ro.0) 00 P e 1) (x:)dy;dx;
1=
X Y

=2 [1 — I —05E, H*(px, ), Pf(X;,m)]} :

=

Then, a) holds by Proposition 2.1 iff

. 2 . 0 2
Jm H (89.8y) =2 <= lim TI[1—0.5E, H"(pi,rx.0), Pi.fex;,m)] =0,

n—+00 j=1

which holds iff

n—+400 4

n
lim Y Eq H (i, .0+ PiofX,n)) = +00. (1)
i=1
a) <= ¢) As in the proof b) = ¢) in Proposition 1,
. 2 n n 2 +00 +00
Jm H (g5, 8,) =2 <= H (il;l1 Proer 11 Pro.m) =2a.s..

b) & d)Ifgi=qi, pi=p, i =1,...,n, Eq. (11) holds iff

lim n Eg H*(pfx,.00 Prexim) = +00, oriff

n—-+o0o

Eq H*(psx,.0) Prexim) > 0.

d) < o) If E, HX(prex, 00, Proxm) > 0 then Y5 H2(pyexi ) Proxin) =
+00 a.s. . The converse also holds since 3" H?(pfx,.0) PfX,.n) = +00 a.s.
and Eq]Hz(pf(Xl,g), pf(Xl,TY)) = (0 lead to the contradiction Zj_zof Hz(pf(xi’g),

pf(Xi,n)) =0a.s..
¢) <= f) Follows from Proposition 2.2, as in the proof in Proposition 3.1.
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