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Abstract In this paper, we define a new kernel estimator of the regression func-
tion under a left truncation model. We establish the pointwise and uniform strong
consistency over a compact set and give a rate of convergence of the estimate. The
pointwise asymptotic normality of the estimate is also given. Some simulations
are given to show the asymptotic behavior of the estimate in different cases. The
distribution function and the covariable’s density are also estimated.

Keywords Asymptotic normality · Kernel · Nonparametric regression · Rate of
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1 Introduction

Let Y be a real random variable (rv) with distribution function (df) F and X a
random vector of covariates taking its values in IRs with df V and continuous den-
sity v. We want to estimate Y after observing X. The regression function at a point
x is the conditional expectation of Y given X = x, that is

IE [Y | X = x] =: m(x), (1)

which can be written m(x) = ψ(x)/v(x) with

ψ(x) =
∫
yF(x, dy) (2)
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where F(·, ·) is the joint df of the random vector (X, Y ) with density f(·, ·).
Now, based on an N -sample, m(x) is often estimated by local averaging, i.e.,

by averaging the Yi values for which Xi is close to x, that is

mN(x) =
N∑
i=1

Wi,N(x)Yi, (3)

using weightsWi,N(·) that are measurable functions ofx depending on X1, . . . ,XN.
The well-known kernel regression estimator (Nadaraya–Watson) is defined by

Wi,N(x) = K {(x − Xi )/hN }∑N
j=1K

{
(x − Xj )/hN

}

=:

(
NhsN

)−1
K {(x − Xi )/hN }
vN(x)

(4)

with the convention 0/0 = 0. Here, vN(·) is the kernel estimator of v(·), K is a
nonnegative function defined on IRs and (hN) a nonnegative sequence which goes
to zero as N goes to infinity.

The nonparametric kernel estimatormN(·) has first been considered in the case
of complete data. As the literature is abundant, we mention only a few references,
see e.g., Devroye, Györfi and Lugosi (1996), Györfi, Kohler and Walk (1998), Walk
(2002) and the references therein.

In the case of censored data, the estimation of the regression functionm(·) has
been studied by many authors. The monograph of Fan and Gijbels (1996) and the
recent work of Kohler, Máthé and Pintér (2002) can be consulted.

Now, let (Yi, Ti), 1 ≤ i ≤ N, be a sequence of iid random vectors such that
(Yi) is independent of (Ti). Let F and G denote the respective common dfs of the
Yi values and Ti values. In the random left-truncation model, the rv of interest Yi is
interferred by the truncation rv Ti in such a way that both Yi and Ti are observable
when Yi ≥ Ti , whereas neither is observed if Yi < Ti . Such data occur in astron-
omy and economics (see, e.g., Woodroofe, 1985; Feigelson and Babu, 1986; Wang
et al. 1986; Tsai et al. 1987 and also in epidemiology and biometry (see, e.g., He
and Yang 1994).

As a consequence of truncation, n, the size of the actually observed sample, is
random, with n ≤ N and N is unknown. Let α := IP{Y ≥ T } be the probability
that we observe the rv of interest Y . It is clear that if α = 0 no data can be observed.
Therefore, we suppose throughout the paper that α > 0.

From the strong law of large numbers (SLLN) we have, as N −→ +∞

α̂n := n

N
−→ α, IP − a.s. (5)

Without possible confusion we still denote (Yi, Ti), i = 1, . . . , n the observed
sequence. Conditionally on the value of n, these observed random vectors are still
iid. Following Stute (1993) the dfs of Y and T become:

F ∗(y) = α−1
∫ y

−∞
G(u)dF(u) and G∗(y) = α−1

∫ ∞

−∞
G(y ∧ u)dF(u)
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which are estimated by

F ∗
n (y) = n−1

n∑
i=1

1I{Yi≤y} and G∗
n(y) = n−1

n∑
i=1

1I{Ti≤y},

respectively.
Let C(·) be defined by

C(y) := G∗(y)− F ∗(y)
= α−1G(y)[1 − F(y)],

with empirical estimator

Cn(y) = n−1
n∑
i=1

1I{Ti≤y≤Yi } = G∗
n(y)− F ∗

n (y
−).

Since N is unknown and n is known (although random), our results would not
be stated with respect to the probability measure IP (related to the N -sample) but
will involve the conditional probability P related to the actually observed n-sample.
Also IE and E will denote the expectation operators related to IP and P, respectively.

Then, the nonparametric maximum likelihood estimators (MLE) of F and G
are the product-limit estimators obtained by Lynden-Bell (1971) given by

1 − Fn(y) =
∏
i;Yi≤y

[
nCn(Yi)− 1

nCn(Yi)

]
and

Gn(y) =
∏
i;Ti>y

[
nCn(Ti)− 1

nCn(Ti)

]
. (6)

Now, for any df L, let aL = inf{y, L(y) > 0} and bL = sup{y, L(y) < 1} be its
endpoints.

Asymptotic properties of Eq. (6) have been studied by Woodroofe (1985). In
his Theorem 2, he establishes the uniform consistency results

sup
y

|Fn(y)− F0(y)| P−a.s.−→ 0 and sup
y

|Gn(y)−G0(y)| P−a.s.−→ 0, (7)

where F0 denotes the conditional distribution of Y given Y ≥ aG and G0 is the
conditional distribution of T given T ≤ bF . Therefore, F is identifiable (F = F0)
only when aG ≤ aF , whereasG is identifiable (G = G0) only when bG ≤ bF . We
point out that these are necessary but not sufficient identifiability conditions.

Consequently, α is identifiable only if aG ≤ aF and bG ≤ bF . Note that the
estimator α̂n defined in Eq. (5) cannot be calculated (sinceN is unknown). Another
estimator, namely

αn = Gn(y)[1 − Fn(y
−)]

Cn(y)
(8)
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is used. He and Yang (1998) proved that αn does not depend on y and its value
can then be obtained for any y such that Cn(y) �= 0. Furthermore, they showed
(Corollary 2.5) that

αn
P−a.s.−→ α as n → ∞. (9)

Now, we come back to our main problem. We would like to estimate the regres-
sion function m(x) under random left truncation.

Let (Xi , Yi, Ti), i = 1, . . . , N , be a sequence of random vectors where Y is the
variable of interest, T , the truncation variable and X, the vector of covariates. The
number of observed vectors (i.e., Yi ≥ Ti) is still denoted n. Based on this sample,
the regression function that can be estimated is

m∗(x) = IE [Y |X = x, Y ≥ T ] . (10)

Since the marginal dfs of Y and T in the n-sample are different from their dfs in
the original sample, we have that m∗(x) �= m(x). Therefore, an estimate of m∗(·)
cannot be used as an estimate of m(·). Constructing an appropriate estimator is
then obtained by adapting the weights (Eq. 4) in order to put more emphasis on
small values of the interest variable Y which are more truncated than large values.
This can be achieved, as we will show in Sect. 3, by dividing by Gn which yields
our new estimator of m(x):

mn(x) =
∑n

i=1 YiG
−1
n (Yi)K {(x − Xi )/hn}∑n

i=1G
−1
n (Yi)K {(x − Xi )/hn}

.

Finally, let us quote some particular cases. For a linear model, i.e.,

Y = δ′X + ε, (11)

where δ ∈ IRs is an unknown parameter of interest and the error ε has a zero mean
and is uncorrelated with X, one of the earliest papers addressing the estimation of
the regression parameter δ under left truncation is due to Bhattacharya et al. (1983)
who built the estimator for the slope δ1 in the simple linear regression Y = δ0+
δ1X + ε, while the truncated variable T was assumed to be a known constant. The
slope δ1 corresponds to the Hubble constant in the study of luminosity function
of galaxies. In the case of a fixed (and therefore nonrandom) truncation and with
censored data, the nonparametric regression was studied by Lewbel and Linton
(2002), by using the local polynomial method. We point out here that the trunca-
tion definition used in their work is not the same as the (usual) one we use. Indeed
we stick for our part to one of the main consequences of truncation which is the
randomness of n.

Other regression investigations can be found in Gross and Huber-Carol (1992),
Gross and Lai (1996) and Kim and Lai (1999). Under the model (Eq. 11), He
and Yang (2003) construted a weighted least square estimate δ̂n for the regression
parameter δ, where the weights are random quantities depending on Gn. They
established the strong consistency and asymptotic normality of the estimators. We
point out that their scheme is slightly different than that of Woodroofe. Finally, Park
(2004) gives the optimal rate of convergence of a B-spline regression estimator in
the truncated and censored model.
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The purpose of this paper is to give the asymptotic behavior of the estimator
mn(x). As we are interested in the number n of observations (N is unknown), we
give (unless otherwise specified) asymptotics as n → ∞. Since n ≤ N , these
results also hold for N −→ ∞, IP—almost everywhere.

Throughout the paper (X ≤ x) stands for (X1 ≤ x1, . . . , Xs ≤ xs). The paper
is organized as follows. In Sect. 2 we construct an estimator for the covariate’s
density. The nonparametric regression estimator is defined in Sect. 3. In Sect. 4 we
give the assumptions and the main results. Some simulations are given in Sect. 5.
Finally, the proofs are given in Sect. 6.

2 Estimation of covariate’s density under random left truncation

As we did not find any literature about the estimation of the covariable distribution
under random left truncation, we build here estimators ofV and v. Note that we can
no longer use the kernel estimator vN defined in (Eq. 4) since only n observations
are made. On the other hand,

v∗
n(x) = 1

nhsn

n∑
i=1

K

(
x − Xi

hn

)

is an estimator of the conditional density v∗(x) (given Y ≥ T ). To overcome this
difficulty, we first consider the conditional joint distribution of (X, Y, T )

H ∗(x, y, t) = IP (X ≤ x, Y ≤ y, T ≤ t | Y ≥ T )

= 1

α

∫
u≤x

∫
aG≤w≤y

G(w ∧ t)F(du, dw).

Taking t = +∞, we get the conditional joint df of (X, Y )

F∗(x, y) = 1

α

∫
u≤x

∫
aG≤w≤y

G(w)F(du, dw) (12)

which by differentiating gives

F(dx, dy) = α

G(y)
F∗(dx, dy) for y > aG.

Integrating over y we get the df of X

V (x) = α

∫
u≤x

∫
y≥aG

1

G(y)
F∗(du, dy).

A natural estimator of V is then given by

Vn(x) = αn

n

n∑
i=1

1

Gn(Yi)
1I{Xi≤x}. (13)

Note that in Eq. (13) and the forthcoming formulae, the sum is taken only for i
such that Gn(Yi) �= 0.
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Finally, Eq. (13) yields the density estimator

vn(x) := 1

hsn

∫
K

(
x − u

hn

)
dVn(u)

= αn

nhsn

n∑
i=1

1

Gn(Yi)
K

(
x − Xi

hn

)
. (14)

Note here that, without possible confusion, we use the same notation for the density
estimator as in the case of complete data (vN ).

3 Construction of the new estimator of m(·)

Throughout this paper, we assume that

0 = aG < aF and bG ≤ bF . (15)

T and (X, Y ) are independent. (16)

Remark 1 In view of Eq. (15) many authors (see Stute 1993) used the milder con-
dition aG ≤ aF with additional integrability conditions. As we need to prove some
uniform results which imply a sufficient rate of convergence of Gn (see Lemma
6.3) we have to consider a set of values of Yi which do not include aG [a uniform
rate forGn is given in Woodroofe (1985) on [a, bG] with a > aG] that is aF > aG.

Let ξ : IRs × IR −→ IR be a measurable function and consider the problem
of estimating the mean IE [ξ(X, Y )] from the sample (Xi , Yi, Ti), i = 1, . . . , N .
Since only n observations (among N ) are made, we try to construct an estimator
of IE [ξ(X, Y )] which is calculated only if Y ≥ T . Following the idea introduced
by Carbonez, Györfi and van der Meulin (1995), one such unbiased estimate in the
random-truncated model is given by

1

N

N∑
i=1

ξ(Xi , Yi)

G(Yi)
1I{Yi≥Ti }. (17)

Indeed, using the properties of conditional expectation and Eq. (16) , we have

IE

[
1

N

N∑
i=1

ξ(Xi , Yi)

G(Yi)
1I{Yi≥Ti }

]
= 1

N

N∑
i=1

IE

[
IE

[
ξ(Xi , Yi)

G(Yi)
1I{Yi≥Ti }|Xi , Yi

]]

= 1

N

N∑
i=1

IE

[
ξ(Xi , Yi)

G(Yi)
IE
[
1I{Yi≥Ti }|Xi , Yi

]]

= 1

N

N∑
i=1

IE [ξ(Xi , Yi)]

= IE [ξ(X, Y )] .
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In the particular case where ξ(X, Y ) = (Y |X), we obtain an estimator of Eq. (1).
Unfortunately, N and G being unknown, Eq. (17) cannot be used in practice and
has to be adapted.

First G(·) is consistently estimated by Gn(·) and N by n/αn. However, it is
not possible to use the Nadaraya–Watson weights defined in Eq. (4) in order to
estimate IE [ξ(·, ·)]. Indeed, if we consider the weight Wi,n/αn , it is not possible to
calculate its denominator since only n values of Xi (among N ) are observed. On
the other hand, if we take the weights

Wi,n(x) = K {(x − Xi )/hn}∑n
j=1K

{
(x − Xj )/hn

}
which are calculated from the observed sample, the estimated regression function
will bem∗(·) defined in Eq. (10) which is not our purpose. Using Eq. (14) we adapt
Eq. (4) to get the new weights

Wi,n(x) = G−1
n (Yi)K {(x − Xi )/hn}∑n

j=1G
−1
n (Yj )K

{
(x − Xj )/hn

} .
Since these weights lead to a complicated estimator of ψ (see Remark 2 below),
they are modified into

W̃i,n(x) = α−1
n K {(x − Xi )/hn}∑n

j=1G
−1
n (Yj )K

{
(x − Xj )/hn

} (18)

in order to get a simpler and more natural estimator ψn of ψ [see (20) below] and
therefore for m. This is motivated by the fact that both α−1

n and n−1∑
i G

−1
n (Yi)

are consistent estimators of α−1. Note also that even if
∑

i W̃in �= 1, the equality
holds asymptotically, P − a.s.

Now the estimator Eq. (17) can be written as:

1

n
× n

N

n∑
i=1

ξ(Xi , Yi)

G(Yi)
,

which yields the new estimator of m(x) by replacing the uniform weights 1/n by
W̃i,n(x). We get

mn(x) := αn

n∑
i=1

W̃i,n(x)
Yi

Gn(Yi)

=
∑n

i=1 YiG
−1
n (Yi)K {(x − Xi )/hn}∑n

i=1G
−1
n (Yi)K {(x − Xi )/hn}

= ψn(x)

vn(x)
(19)

where

ψn(x) := αn

nhsn

n∑
i=1

Yi

Gn(Yi)
K

(
x − Xi

hn

)
(20)
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and vn(x) is defined in Eq. (14). The estimatormn(·) can be used in practice. Note
here that ψn(x) is an estimate of ψ(x) defined in Eq. (2) and can be written as:

ψn(x) = 1

hsn

∫
K

(
x − u

hn

)
d�n(u)

where

�n(x) = αn

n

n∑
i=1

Yi

Gn(Yi)
1I{Xi≤x} (21)

is an estimator of

�(x) =
∫
u≤x

ψ(u) du. (22)

Remark 2 Using the weights Win instead of W̃in yields the estimator

ψn(x) = α2
n

nhsn

n∑
i=1

Yi

G2
n(Yi)

K

(
x − Xi

hn

)

which is not a natural estimator of ψ . Moreover, the estimator αn is not needed in
the formula defining mn, whereas it is needed if we choose the weights Win.

4 Assumptions and main results

In what follows, we focus our attention on the case of a univariate covariable
(s = 1) and denote X for X. Define �0 = {x ∈ IR |v(x) > 0 } and let � ⊂ �0 be
a compact set with η = infx∈� v(x) > 0.

We will make use of the following assumptions gathered here for easy reference:

(A1) There exists β > 5/2 such that∫ ∫
yβF(dx, dy) < ∞.

(A2) The bandwidth hn satisfies

n1−2γ h2
n

log n
−→ ∞ as n → ∞

for some γ ∈ [0, 3
10 ) such that γ >

2

β
− 1

2
.

(A3) The kernel K is a C1-probability density with compact support.
(A4) v and ψ are locally Lipschitz continuous over �0.
(B1) The joint density f(·, ·) is twice differentiable with respect to the first variable.

Moreover, ∂f/∂x(·, ·) and ∂2f/∂x2(·, ·) are continuous over �0 × IR+.
(B2) The bandwidth hn satisfies

nh5
n −→ 0 as n → ∞.
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(B3) The kernel K satisfies
∫
rK(r) dr = 0.

Remark 3 If (A1) is satisfied for a β > 4 then we can take γ = 0 in (A2) which
can then be stated without reference to γ . In that case we achieve the best possible
rate in Theorem 4.1. More generally, hypotheses (A1)–(A3) are common in the
nonparametric regression estimation, whereas (A4) is needed to obtain a rate of
convergence in Theorem 4.1 (and Lemmas 6.4 and 6.6 below). (B1)–(B3) are addi-
tional assumptions to get asymptotic normality. Remark that under (B1), (A4) is
also satisfied. Note finally that Theorem 4.1 is still valid with the milder conditions
β > 2 (in A1) and γ ∈ [0, 1/2) (in A2).

Now our first result deals with the pointwise and uniform strong consistency
of mn(·). The latter is derived with a rate over a fixed compact set.

Theorem 4.1 Under assumptions (A1)–(A3), for any x such that v(x) > 0, we
have, as n → ∞,

mn(x) −→ m(x), P − a.s.

Moreover, if (A4) is satisfied then

sup
x∈�

|mn(x)−m(x)| = O

(
max

{√
log n

n1−2γ h2
n

, hn

})
, P − a.s. (23)

Remark 4 In the case where (A4) is not satisfied, it is still possible to get the first
part of Theorem 4.1 (and Lemma 6.4). In that case, the rate in Eq. (23) (and Lemma
6.4) is modified according to the continuity moduli of v and ψ .

Our next result states the pointwise asymptotic normality of mn(·). Let

�(x) =
(
�0(x) �1(x)
�1(x) �2(x)

)

with

�j(x) =
∫
y2−j f(y, x)
G(y)

dy, for j = 0, 1, 2.

Then follows the Theorem 4.2.

Theorem 4.2 Under assumptions (A1)–(A3) and (B1)–(B3), for any x such that
v(x) > 0 and

∫
sup
u∈U(x)

∣∣∣∣y ∂
j f
∂xj

(u, y)

∣∣∣∣ dy < +∞, j = 1, 2 (24)

for a neighborhood U(x) of x, we have

√
nhn (mn(x)−m(x))

D−→ N (
0, σ 2(x)

)
(25)
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where
D−→ denotes the convergence in distribution and

σ 2(x) = κ
[
�0(x)v

2(x)+�2(x)ψ
2(x)− 2v(x)ψ(x)�1(x)

]
αv4(x)

with

κ =
∫
K2(r) dr.

Remark 5 Note on the one hand that �2(x) ≥ v(x) and on the other hand, by
Cauchy–Schwartz inequality, we have �2

1(x) < �0(x)�2(x) (the equality does
not hold since the mapping y �→ y is not constant). Therefore, �(x) is positive
definite as soon as v(x) > 0.

Remark 6 Under Eq. (24)ψ is twice differentiable on a neighborhoodU ′(x) (⊂ U(x))
of x, by the dominated convergence theorem. Moreover,ψ ′′ is continuous on U ′(x)
and we have

ψ ′′(x) =
∫
y
∂2f
∂x2

(x, y) dy.

Remark 7 A plug-in-type estimate σ̂ 2(x) for the asymptotic variance σ 2(x) can
easily be obtained using Eqs. (14), Eq. (20) and the estimators

�̂j (x) = 1

nhn

n∑
i=1

Y
2−j
i

G2
n(Yi)

K

(
x −Xi

hn

)

of α−1�j(x), j = 0, 1, 2, respectively. This yields a confidence interval of asymp-
totic level 1 − ζ for m(x)

[
mn(x)− u1−ζ/2σ̂ (x)√

nhn
,mn(x)+ u1−ζ/2σ̂ (x)√

nhn

]

where u1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal distribution.

5 Simulations

The first subsection deals with the consistency (Theorem 4.1), whereas the second
looks at the asymptotic normality (Theorem 4.2).

5.1 Consistency

The aim of the following simulations is to study some particular regression func-
tions m(·). First we consider a linear regression function with the model Yi =
δ0 + δ1Xi + εi, i = 1, . . . , N , whereXi and εi are two independent iid sequences
distributed as N (0, 1) and N (0, 0.2), respectively. We also simulateN iid rv Ti ∼
N (µ, 1) where µ is adapted in order to get different values of α. We then keep the
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data (Xi, Yi), i = 1, . . . , n such that Yi ≥ Ti . We do it in a way to obtain a given
n (which means that in this case n is not random, whereas N is).

Then we compute our estimator with the observed data (Yi, Ti, Xi), i =
1, . . . , n. We choose a Gaussian kernel and it is well known that, in nonpara-
metric estimation, optimality (in the MSE sense) is not seriously swayed by the
choice of the kernel (K) but is affected by the choice of the bandwidth hn. We
notice that the quality of fit increases with n (see Fig. 1). In all cases, we take either
hn = 0.01 or hn = 0.05 (higher values give bad estimators).

We then try to see if the quality depends on the trunction proportion α. We take
n = 500 and choose different values of α :≈ 25, 50 and 100% (the latter is the
case of complete data). The estimator’s quality seems to be less affected by α as
shown in Fig. 2 than it is by n (though higher values of N are needed for small α
to achieve n = 500).

Finally, we consider the case of nonlinear m. Three models are studied:

Yi = (Xi − 1)2 + 0.5 + εi, parabolic case

Yi = arccosXi + εi, inverse cosine case

Yi = sinXi + εi sinus case.

For each nonlinear model we find a quality of fit as good as for the linear case (see
Figs. 3, 4).

5.2 Asymptotic normality

We now consider the problem of asymptotic normality. We show how good the
normality is when dealing with samples of finite size which is the case in practice.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5

–1.5

–1

–0.5

0

0.5

1

1.5
continuous curve=True curve
dashed curve=Estimated curve

continuous curve=True curve
dashed curve=Estimated curve

continuous curve=True curve
dashed curve=Estimated curve

–1.5

–1

–0.5

0

0.5

1

Fig. 1 Linear functionm(x) = 2x− 1 with α ≈ 30% and n = 100, 500 and 1, 000, respectively
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Fig. 2 Linear function m(x) = 2x − 1 with n = 500 and α ≈ 25, 50 and 100%, respectively
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We compare the shape of the estimated density (of normalized deviations) to that
of the standard normal density in the case of the linear regression model

Yi = Xi + 2 + εi, i = 1, . . . , n. (26)

The data arise from the same distributions as previously. For a given sample size n,
we estimate the regression function as before and calculate the normalized devia-
tion between this estimate and the theoretical regression function given in Eq. (26)
for x = 0 (i.e., mn = σ̂−1(0)

√
nhn {mn(0)− 2}). We draw, using this scheme,

B independent n-samples. The bandwidth hn is chosen according to hypothe-
ses (A2) and (B2). In order to estimate the density function of mn (by the kernel
method), we make the classical bandwidth choice (see, e.g., Silverman 1986, p. 40)
h′
n = C n−1/5, where the constant C is appropriately chosen.

We consider different values ofn andB and give only the plots forn = 200, 500
and B = 300. In each case, we also give a histogram and the Q–Q-plot against
a normal distribution. For n = 200 the results are considerably good but show a
bit of skewness (Fig. 5). Moreover, a Shapiro–Wilk normality test suggests a small
departure from normality (P value≈ 0.064). The results are more convincing with
n = 500 (see Fig. 6). In that case the P value of the Shapiro–Wilk test is around
0.771.
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Fig. 6 n = 500, B = 300

6 Proofs

In order to prove Theorem 4.1, we first consider the estimators

Ṽn(x) = α

n

n∑
i=1

1

G(Yi)
1I{Xi≤x} (27)

and

�̃n(x) = α

n

n∑
i=1

Yi

G(Yi)
1I{Xi≤x} (28)

of V (x) and �(x), respectively. Using Eqs. (12), (2) and Eq. (22) it can be shown
that these are E-unbiased estimators (which cannot be calculated). Moreover, we
have the following two lemmas.

Lemma 6.1 As n −→ +∞, we have

Ṽn(x) −→ V (x), P − a.s.

Furthermore, for any compact set � ⊂ �0, we have

sup
x∈�

∣∣Ṽn(x)− V (x)
∣∣ = O

[(
log n

n

)1/2
]

P − a.s. as n −→ ∞.
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Proof The first part of the Lemma 6.1 is a consequence of the strong law of
large numbers (SLLN). For the second part, let us consider the iid sequence
(X1, Y1), . . . , (Xn, Yn) and define

ϑn =
{
θx : �× IR+ −→ IR+/θx(u, y) = 1I{u≤x}

nG(y)
, x ∈ �

}
.

By Lemma (3b) in Giné and Guillou (1999),ϑn isVapnik–Červonenkis (V–C) class
of nonnegative measurable functions which are uniformly bounded with respect to
the envelope � = [nG(aF )]

−1. Moreover,

E [θx(X, Y )] = E
[

1I{X≤x}
nG(Y )

]
≤ 1

nG(aF )
=: Un

and

E
[
θ2
x (X, Y )

] = E

[(
1I{X≤x}
nG(Y )

)2
]

≤ 1

n2G2(aF )
=: σ 2

n .

While applying Talagrand’s (1994) inequality [see Proposition 2.2 in Giné and
Guillou (2001)] with λ

√
n−1 log n, where D is a positive constant, we have

P

{
sup
θx∈ϑn

∣∣∣∣∣
n∑
i=1

{θx(Xi, Yi)− E[θx(X, Y )]}
∣∣∣∣∣ ≥ D

√
log n

n

}

≤ B1 exp


− 1

B1
D

√
log n

n
× nG(aF ) log


1 +

D
√

log n
n3/2G(aF )

B1

(
1

n1/2G(aF )
+

√
logB2

nG(aF )

)2






(29)

where B1 and B2 are positive constants. For n large enough, the right-hand side of

Eq. (29) becomes an order of B1n
−( DG(aF )

B1
)2 , which by an appropriate choice of the

constantD can be madeO
(
n−3/2

)
— which in turn is the general term of summa-

ble series. Hence, by Borel Cantelli’s lemma, we have the second part of the result.
��

Lemma 6.2 Under (A1), as n −→ +∞, we have

�̃n(x) −→ �(x), P − a.s.

Furthermore, for any compact set � ⊂ �0

sup
x∈�

∣∣�̃n(x)−�(x)
∣∣ = O

[(
log n

n1−2γ

)1/2
]

P − a.s. as n −→ ∞,

for γ as in (A2).



Regression function for truncated data 371

Proof As for Lemma 6.1, the first part is a consequence of the SLLN. For the
second part and in the case of a bounded rv Y , the proof is similar to Lemma 6.1.
In order to deal with the unbounded case (bF = +∞), we use a truncation method
by a suitable sequence which diverges to infinity. Let

�̃n(x) = �̃1n(x)+ �̃2n(x)

with

�̃1n(x) = 1

n

n∑
i=1

Yi

G(Yi)
1I{Xi≤x, Yi≤nγ }

and �̃2n(x) = �̃n(x)− �̃1n(x).
It can be shown that �̃1n(x) and �̃2n(x) are E-unbiased estimators of�1(x) =∫

u≤x
∫
y1I{y≤nγ }F(du, dy) and �2(x) = �(x)−�1(x), respectively.

Now, we have

sup
x∈�

|�̃n(x)−�(x)| ≤ sup
x∈�

|�̃1n(x)−�1(x)| + sup
x∈�

|�̃2n(x)−�2(x)|
:= In + IIn.

In can be dealt analogously as in Lemma 6.1 by considering the V–C class

�n =
{
ϕx: �× IR+ −→ IR+ / ϕx(u, y)1I{u≤x; y≤nγ }

y

nG(y)
, x ∈ �

}
,

with envelope φ = [
n1−γG(aF )

]−1
. Furthermore, the first and second moments of

the ϕx are bounded by

Un = 1

n1−2γG(aF )
and σ 2

n = 1

n2−4γG2(aF )
,

respectively. We then get

In = O

[(
log n

n1−2γ

)1/2
]

P − a.s. as n −→ ∞.

For IIn, by Markov’s inequality, we have

P
[
IIn > n−( 1

2 −γ )
]

≤ E[IIβn ]

n−β( 1
2 −γ ) . (30)

By (A1) and Minkowski’s inequality, the right-hand side of Eq. (30) can be bounded

by
1

nβ(
1
2 +γ )−1

.

Since γ >
2

β
− 1

2
, the Borel–Cantelli lemma implies that

IIn = O

[(
1

n1−2γ

)1/2
]

P − a.s. as n −→ ∞.

��
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The next two lemmas deal with the strong uniform consistency of Vn(·) and
vn(·) with rates.

Lemma 6.3 As n → ∞, we have for any x,

Vn(x) −→ V (x), P − a.s.

Moreover, this convergence is achieved with a OP

(
(

log n
n
)1/2
)

rate and is uniform

on any compact set � ⊂ �0.

Proof of Lemma 6.3. We have

|Vn(x)− V (x)| ≤ ∣∣Vn(x)− Ṽn(x)
∣∣+ ∣∣Ṽn(x)− V (x)

∣∣
≤ |αn − α|

n

n∑
j=1

1

Gn(Yj )
1I{Xj≤x}

+α
n

n∑
j=1

∣∣∣∣ 1

Gn(Yj )
− 1

G(Yj )

∣∣∣∣ 1I{Xj≤x} + ∣∣Ṽn(x)− V (x)
∣∣

≤ |αn − α|
Gn(aF )

+ α supy≥aF |Gn(y)−G(y)|
Gn(aF )G(aF )

+ ∣∣Ṽn(x)− V (x)
∣∣

=: (I )+ (II )+ (III ). (31)

Since |αn − α| = OP(n
−1/2) [from Theorem 3.2 in He and Yang (1998)] and

Gn(aF )
P−a.s.−→ G(aF ) > 0 we get, uniformly on x, (I ) = OP(n

−1/2).
In the same way, and using Remark 6 in Woodroofe (1985) we get (II ) =

OP(n
−1/2). Finally, using Lemma 6.1 we get the result. ��

Remark 8 Recall that, as noted in Eq. (13), all the sums involving theG−1
n (Yj ) are

taken for the j such that Gn(Yj ) �= 0. It follows that an additional term

(IV ) = α

n

n∑
j=1

1

G(Yj )
1I{Xj≤x}1I{Gn(Yj )=0}

should be added in Eq. (31). This term is clearly negligible by the law of large
numbers. The same remark can be made for all similar quantities in what follows.

Lemma 6.4 Under assumptions (A2)–(A4) we have, as n → ∞,

vn(x) −→ v(x), P − a.s.

Moreover, we have for any compact set � ⊂ �0

sup
x∈�

|vn(x)− v(x)| = O

(
max

{√
log n

nh2
n

; hn
})

, P − a.s.
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Proof of Lemma 6.4

vn(x)− v(x) =
{

1

hn

∫
K

(
x − u

hn

)
dVn(u)− 1

hn

∫
K

(
x − u

hn

)
dV (u)

}

+
{

1

hn

∫
K

(
x − u

hn

)
v(u) du− v(x)

}

=: I1 + I2.

While integrating by parts, we have

|I1| ≤ 1

h2
n

∫
|Vn(u)− V (u)|

∣∣∣∣K ′
(
x − u

hn

)∣∣∣∣ du

≤ sup
u

|Vn(u)− V (u)| 1

hn

∫ ∣∣K ′(w)
∣∣ dw

which by Lemma 6.3 and (A3) is OP

(√
log n
nh2

n

)
for any x. Moreover, this rate is

uniform on any compact set � ⊂ �0.
On the other hand, by (A3) and (A4) the bias term I2 is O(hn), which yields

the result. ��
Finally, we state consistency results with rates for �n(·) and ψn(·).

Lemma 6.5 Under (A1), we have for any x, as n → ∞,

�n(x) −→ �(x), P − a.s.

Moreover, this convergence is achieved with aOP

(
(

log n
n1−2γ )

1/2
)

rate [where γ is as

in (A2)] and is uniform on any compact set � ⊂ �0.

Proof of Lemma 6.5 Analogous to Lemma 6.3, we have

|�n(x)−�(x)| ≤
[ |αn − α|
Gn(aF )

+ α supy≥aF |Gn(y)−G(y)|
Gn(y)G(y)

]
1

n

n∑
i=1

Yi1I{Xi≤x}

+ ∣∣�̃n(x)−�(x)
∣∣ .

Note that, by the SLLN, as n → ∞,

1

n

n∑
i=1

Yi1I{Xi≤x} −→ E
[
Y1I{X≤x}

] = 1

α

∫ ∫
yG(y)1I{u≤x}F(du, dy),

the latter being finite, under (A1). Then, similar arguments to Lemma 6.3 and using
Lemma 6.2 give the result. ��
Lemma 6.6 Under assumptions (A1)–(A4) we have for any x, as n → ∞,

ψn(x) −→ ψ(x), P − a.s.

Moreover, we have for any compact set � ⊂ �0

sup
x∈�

|ψn(x)− ψ(x)| = O

(
max

{√
log n

n1−2γ h2
n

; hn
})

, P − a.s.
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Proof of Lemma 6.6 Analogous to the proof of Lemma 6.4, therefore, it is omitted.
��
Proof of Theorem 4.1 Since

mn(x)−m(x) = ψn(x)− ψ(x)

vn(x)
+m(x)

v(x)− vn(x)

vn(x)
, (32)

the first parts of Lemmas 6.4 and 6.6 give the consistency result.
Now, from Eq. (32), we have P − a.s. and for n large enough

sup
x∈�

|mn(x)−m(x)| ≤ 1

η − supx∈� |vn(x)− v(x)|
{

sup
x∈�

|ψn(x)− ψ(x)|

+ η−1 sup
x∈�

|ψ(x)| sup
x∈�

|vn(x)− v(x)|
}
,

which by the second parts of Lemmas 6.4 and 6.6 gives the rate of convergence.
��

Now in order to prove Theorem 4.2, we write (using Eq. (19))

mn(x) = α−1
n ψn(x)

α−1
n vn(x)

where, from Eq. (20) and Eq. (14)

ψn(x)

αn
= (nhn)

−1
n∑
i=1

YiG
−1
n (Yi)K

(
x −Xi

hn

)
and

vn(x)

αn

= (nhn)
−1

n∑
i=1

G−1
n (Yi)K

(
x −Xi

hn

)
.

Then we have

ψn(x)

αn
− ψ(x)

α
= (nhn)

−1
n∑
i=1

YiG
−1
n (Yi)K

(
x −Xi

hn

)

− (nhn)−1
n∑
i=1

YiG
−1(Yi)K

(
x −Xi

hn

)

+ (nhn)−1
n∑
i=1

YiG
−1(Yi)K

(
x −Xi

hn

)

−IE

[
h−1
n Y1G

−1(Y1)K

(
x −X1

hn

)]

+h−1
n IE

{
Y1G

−1(Y1)K

(
x −X1

hn

)}
− ψ(x)

α

=: �n1(x)+�n2(x)+�n3(x). (33)
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In the same way,

vn(x)

αn
− v(x)

α
= (nhn)

−1
n∑
i=1

G−1
n (Yi)K

(
x −Xi

hn

)

− (nhn)−1
n∑
i=1

G−1(Yi)K

(
x −Xi

hn

)

+ (nhn)−1
n∑
i=1

G−1(Yi)K

(
x −Xi

hn

)

−IE

[
h−1
n G

−1(Y1)K

(
x −X1

hn

)]

+h−1
n IE

{
G−1(Y1)K

(
x −X1

hn

)}
− v(x)

α

=: �n1(x)+ �n2(x)+ �n3(x). (34)

We first consider the negligible terms in Eq. (33) and Eq. (34).

Lemma 6.7 Under (A1), (A2) and for any x, both
√
nhn�n1(x) and

√
nhn�n1(x)

are oP (1) as n → ∞.

Proof Using Remark 6 in Woodroofe (1985), we have

√
nhn�n1(x) ≤

√
nhn

supy |Gn(y)−G(y)|
G(aF )Gn(aF )

× 1

nhn

n∑
i=1

YiK

(
x −Xi

hn

)

= OP

(√
hn

)
. (35)

In the same way, we have

√
nhn�n1(x) = OP

(√
hn

)
. (36)

��
Lemma 6.8 Under (A1), (A3), (B1)–(B3) and for any x, both

√
nhn�n3(x) and√

nhn�n3(x) are oP (1) as n → ∞.

Proof Under (A1), (B1) and (B3) we have

√
nhn�n3(x) =

√
nhn

[
1

hn

∫ ∫
y

G(y)
K

(
x − u

hn

)
dF�(u, y)− ψ(x)

α

]

=
√
nhn

α

[∫ ∫
yK(r)dF(x − rhn, y)− ψ(x)

]

=
√
nh5

n

2α

∫ ∫
yr2K(r)

∂2f
∂x2

(xn, y) dydr
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(where xn is between x and x − rhn). Then under (A3), (B1) and (B2) we get (see
our Remark 6 about ψ ′′ continuity)

√
nhn�n3(x) =

√
nh5

n

2α

∫
r2K(r)ψ ′′(xn) dr = oP (1) (37)

and similarly

√
nhn�n3(x) = oP (1). (38)

��
Now we consider the dominant terms �n2(x) and �n2(x) and prove Lemma

6.9.

Lemma 6.9 Under (A1), (A3) and (B1) we have

(�n2(x), �n2(x))
T D−→ N (

0, α−1κ�(x)
)

Proof First we have

Var
[√
nhn�n2(x)

]
= 1

nhn
× nVar

[
Y1G

−1(Y1)K

(
x −X1

hn

)]

= 1

αhn

∫ ∫
y2

G(y)
K2

(
x − u

hn

)
f(y, u) dydu

− 1

α2h2
n

{∫ ∫
yK

(
x − u

hn

)
f(y, u) dydu

}2

= α−1κ�0(x)+ o(1) (39)

by a simple Taylor expansion, under (A1), (A3) and (B1). In the same way, we
easily get

Var
[√
nhn�n2(x)

]
= α−1κ�2(x)+ o(1) (40)

and

Cov
[√
nhn�n2(x),

√
nhn�n2(x)

]
= α−1κ�1(x)+ o(1). (41)

Now for a given pair of real numbers c = (c1, c2)
T put

�n(x) =
√
nhn [c1�n2(x)+ c2�n2(x)] =:

n∑
i=1

�ni(x)

where the�ni(x) (readily obtained from Eq. (33) and Eq. (34)) are clearly iid. Let

ρ
β

ni(x) = IE
[|�ni(x)|β

]
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for the β in (A1). Then by Hölder’s inequality we get from Eq. (33) and Eq. (34)

ρ
β

ni(x) ≤ 2β−1

(
hn

n

)β/2 {
c
β

1 IE

[∣∣∣∣Y1G
−1(Y1)

hn
K

(
x −X1

hn

)∣∣∣∣
β
]

+ c
β

2 IE

[∣∣∣∣G
−1(Y1)

hn
K

(
x −X1

hn

)∣∣∣∣
β
]}

which implies that, under (A1) (since 1 − β/2 < 0), we have

ρβn (x) :=
n∑
i=1

ρ
β

ni(x) = O
(
n1−β/2hβ/2n

) = o(1). (42)

On the other hand, we deduce from Eq. (39)–(41) that

s2
n(x) := Var

{√
nhn [c1�n2(x)+ c2�n2(x)]

}
n→∞−→ α−1κcT �(x)c > 0 (43)

for any c �= 0 provided v(x) > 0 (see Remark 5). Then Eq. (42) and (43) give
limn→∞ ρn(x)/sn(x) → 0. Hence, the result is a consequence of Berry–

Esséen’s Theorem (see Chow and Teicher, 1997, p. 322). ��
Proof of Theorem 4.2 Consider the mapping θ from IR2 to IR defined by θ(x, y) =
x/y fory �=0. Sincemn(x) andm(x) are the respective images ofα−1

n (ψn(x), vn(x))
and α−1(ψ(x), v(x)) by θ , we deduce from Lemmas 6.7 to 6.9 and from Mann–
Wald’s Theorem (see Rao 1965, p. 321) that

√
nhn (mn(x)−m(x)) converges in

distribution to N (
0, α−1κ∇θT �(x)∇θ), where the gradient ∇θ is evaluated at

α−1(ψ(x), v(x)). Simple algebra gives then the variance σ 2(x).
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