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Abstract We fit parametric models to survival data in the case of censoring and
(outlier) contamination. To do so, we adapt the robust density power divergence
methodology of Basu, Harris, Hjort, and Jones (Biometrika, 85, 549–559, 1998) to
the case of censored survival data. Asymptotic properties, simulation performance
and application to data are provided.

Keywords Density power divergence · Kaplan–Meier · L2-estimator ·
M-estimator

1 Introduction

Survival data are commonly encountered in biomedical or industrial settings where
n individuals are followed until occurrence of a particular event of interest or n
items are put on test until failure. Analysis of survival data is typically complicated
by various censoring mechanisms. Since the failure times in many cases are not
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observable and the censoring mechanism may or may not be known, a host of
semi-parametric procedures have been developed for survival analysis. However,
it is well known that the semi-parametric procedures are not as efficient as the max-
imum likelihood approach (or other efficient parametric methods) if the specified
parametric form is valid.

On the other hand, when the underlying model is misspecified or contaminated
the maximum likelihood or other classical parametric methods may be severely
affected and lead to very poor results. In the presence of censoring the nature and
amount of contamination can be very difficult to detect. Therefore, robust methods,
which automatically discount the effects of contamination and model misspecifi-
cation, can serve to provide a compromise between efficient classical parametric
methods and the semi-parametric approach provided they are reasonably efficient
at the model. In this paper, we consider parametric estimation for right censored
data with and without contamination, and try to balance the dual aims of robustness
and efficiency using a density-based minimum divergence procedure.

Basu et al. (1998) introduced a family of density-based divergence measures
indexed by a tuning parameter α. The population parameters of interest are esti-
mated by minimising a data-based estimate of the proposed divergence between the
density underlying the data and the assumed model density. The trade-off between
robustness and asymptotic efficiency of the parameter estimators is controlled by
α. When α = 0, the density power divergence is the Kullback–Leibler divergence
(Kullback and Leibler, 1951) and the method is maximum likelihood estimation;
when α = 1, the divergence is the mean squared error, and a robust but relatively
inefficient minimum mean squared error estimator ensues (Scott, 2001). Basu et
al. (1998) have shown that the estimators with small α > 0 have strong robustness
properties with little loss in asymptotic efficiency relative to maximum likelihood
under model conditions.

Here, we extend the estimator developed by Basu et al. to estimation of the
population parameters under a parametric approach in the context of right censored
data. The method has the great advantage that it does not require any nonparametric
smoothing for producing a data-based estimate of the true density function, the
empirical distribution function alone being used to approximate the appropriate
divergence in the case of independently and identically distributed (i.i.d.) data.
For the right censoring situation, we take advantage of the well known
Kaplan–Meier estimator (Kaplan and Meier 1958), appropriately modified to make
it complete, and the substitution of this in place of the empirical distribution func-
tion leads to our objective function which is minimised to generate robust parameter
estimates.

The rest of the paper is organised as follows. In Sect. 2 we provide a brief
review of the density power divergence and related inference in the case of i.i.d.
data, and propose a modified estimator to handle right censored data. In Sect. 3
we consider the asymptotic properties of the proposed estimator. Proof of part of
our theorem is given in the Appendix. Some simulation results involving exponen-
tial and Weibull distributions are presented in Sect. 4, along with robust fitting of
Weibull models to data from Efron (1988). Throughout the rest of the paper we
will denote distributions by upper case letters and their densities by corresponding
lower case ones. The distribution generating the data will be denoted byG, having
density g, and will be called the target distribution.
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2 The density power divergence and right censored data

2.1 The density power divergence for i.i.d. data

Consider a parametric family of models {Ft }, indexed by an unknown parameter
vector t ∈ � ⊂ IRs , possessing densities {ft } with respect to the dominating
measure, and let G be the class of all distributions having densities with respect
to that measure. Define the divergence dα(g, f ) between g and another density
function f to be

dα(g, f )=
∫ {

f 1+α(z)−
(

1+ 1

α

)
g(z)f α(z)+ 1

α
g1+α(z)

}
dz for α > 0. (1)

When α = 0, the divergence d0(g, f ) is defined as

d0(g, f ) = lim
α→0

dα(g, f ) =
∫ [

g(z) log(g(z)/f (z))+ (f (z)− g(z))
]

dz,

which is a version of the Kullback–Leibler divergence. The choice α = 1 generates
the mean squared error or L2 distance

∫ {g(z) − f (z)}2dz. We eschew values of
α > 1 in practice in view of their diminished efficiency. Basu et al. (1998) show that
for all α ≥ 0, dα(g, f ) is a divergence in that it is nonnegative for all g, f ∈ G and
is equal to zero if and only if f ≡ g almost everywhere. A simple consequence of
the latter fact is that for any given α the minimum density power divergence func-
tional Tα(G) at G, defined by the requirement dα(g, fTα(G)) = mint∈� dα(g, ft ),
is Fisher consistent.

Note that the density power divergence dα(g, ft ) between the target density g
and the model density ft can be represented as

∫
f 1 +α
t (z)dz−(1 + 1/α)

∫
f αt (z)×

dG(z) + β. The quantity β is independent of the parameter t , so does not affect
the minimisation procedure, and the first term is known, given t . Using a random
sample X1, . . . , Xn from the target distribution G one can actually minimise

∫
f 1 +α
t (z)dz− (1 + 1/α)

∫
f αt (z)dGn(z)

=
∫
f 1 +α
t (z)dz− (1 + 1/α) n−1

n∑
i=1

f αt (Xi) (2)

with respect to t , where Gn is the empirical distribution function, to obtain the
minimum density power divergence estimator of the parameter vector. Notice
that this method has the greatly appealing advantage that it does not require a
smooth nonparametric estimate of g which is necessary, or unnecessarily imposed,
in other robust density-based minimum divergence approaches (e.g. Beran, 1977;
Cao et al. 1995; Heathcote, 1977); thus the bandwidth selection problem and rate of
convergence results for the kernel density estimator are not relevant. As discussed
in Basu et al. (1998, Sect. 3.4) in general the density power divergence estimator
is equivariant only to linear data transformations and not to more general ones;
however, this covers the important case in survival analysis of timescale changes.
It is possible that

∫
f 1 +α
t (z)dz is infinite for some t , but this just means that Eq. (2)

will not be minimised at such t .
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Under differentiability of the model and appropriate regularity conditions, the
minimum density power divergence estimators can be obtained by solving the
estimating equation∫

ut(z)f
1 +α
t (z)dz− n−1

n∑
i=1

ut(Xi)f
α
t (Xi) = 0,

where ut(z) = ∂ log ft (z)/∂t is the maximum likelihood score function. Note that
the above estimating equation is unbiased when g = ft . If, for example, {Ft } is a
location model, with location parameter t , the minimum density power divergence
estimator is the maximiser of

∑
i f

α
t (Xi), with corresponding estimating equa-

tion
∑

i ut (Xi)f
α
t (Xi) = 0. This contrasts with the maximum likelihood estimator

which maximises
∑

i log ft (Xi), with the corresponding estimating equation being∑
i ut (Xi) = 0. For several parametric models such as the normal, ut(z)f αt (z) is

a bounded function of z for fixed t and for all α > 0, although ut(z) itself is not.
Thus the estimating equation of the minimum density power divergence estima-
tor downweights the score function in a probabilistic manner. Basu et al. (1998)
have shown that the estimators corresponding to small values of α combine strong
robustness properties together with reasonably high efficiency.

2.2 The density power divergence for right censored data

Now let (Xi, Ci) , i = 1, . . . , n, be n i.i.d. pairs of random variables. The variables
Xi are randomly generated from the target distributionG which is modeled by the
parametric family {Ft }. The sequence of variables {Ci} are censoring variables, so
that one actually observes Yi = min (Xi, Ci) and the indicator function δi , where
δi = 1 if Xi < Ci , δi = 0 otherwise. Although in most conceivable applications
the distributions G and H of Xi and Ci , respectively, will both be absolutely con-
tinuous with respect to Lebesgue measure, our results will also hold if they are
not but do not have any jump points in common. Throughout the rest of the paper
we will assume that the variable of interest X and the censoring variable C are
independent.

Kaplan and Meier (1958) developed a nonparametric estimator for the survival
function S(x) = 1 −G(x) as

Ŝn(x) =




�i:Y(i) ≤ x
(
n−i
n−i+1

)I (δ(i)=1)
if x ≤ Y(n),

0 if δ(n) = 1 for x > Y(n),

undefined if δ(n) = 0 for x > Y(n),

where (Y(i), δ(i)), i = 1, 2, . . . , n, are the n pairs of observations ordered over
the Y(i). The Kaplan–Meier estimator is a step function with positive mass points
at those observations Xi for which δi = 1, i.e. only if Xi is a failure; if δi = 1
for all i, the Kaplan–Meier estimator reduces to the ordinary empirical survi-
vor function 1 − Gn. In the case where the largest observation is censored, the
Kaplan–Meier estimator is undefined after the largest failure point. It is conve-
nient to artificially complete Ŝn by distributing the leftover mass equally among
all the censored observations greater than the largest failure. In this paper we have
followed this convention.
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The Kaplan–Meier estimator is the nonparametric maximum likelihood esti-
mator of the underlying survival function. It is a strongly consistent estimator of
the target survival function S = 1 −G, so that Ŝn(x) → S(x) almost surely under
appropriate conditions (see Peterson, 1977; Miller, 1981), the most important one
of which is formally stated in assumption A6 in Sect. 3 (implicitly, we assume this
to be true for the rest of the paper). When these conditions are satisfied, the method
described in the previous paragraph of artificially completing the Kaplan–Meier
estimator has no role in its asymptotic properties; the adjustment is simply a tool
to make the method work in small samples.

Now, the reason why the minimum density power divergence method is able to
avoid the use of a smooth nonparametric density estimate is that in expression (1)
for the divergence the target distribution appears only in a linear functional (except
in the part which is independent of the unknown parameter and which therefore has
no role in the optimisation). Thus, in the right censoring context described above,
we can replace Gn in Eq. (2) by Ĝn(x) = 1 − Ŝn(x) which provides a consistent
estimator of the true distribution function in this context, and which is the Kaplan–
Meier estimator of the distribution function G. Therefore, for the right censoring
situation we generate the sample version of the density power divergence between
the model density ft and the target density g, minus the term β independent of t ,
as

Dn(t) =
∫
f 1 +α
t (z)dz−

(
1 + 1

α

) ∫
f αt (z)dĜn(z). (3)

The corresponding estimating equation for the unknown parameter is then given by

Un(t) =
∫
ut(z)f

1 +α
t (z)dz−

∫
ut(z)dĜn(z) = 0. (4)

3 Consistency and asymptotic normality

Here we establish the consistency and asymptotic normality of the minimum den-
sity power divergence estimator in the right censored situation when the data are
generated from the target distributionG. In the following theorem, θ represents the
best fitting parameter, whereas t denotes a generic element of �. The best fitting
parameter is the minimiser of D(t) = ∫

f 1 +α
t (z)dz − (1 + 1/α)

∫
f αt (z)dG(z)

with respect to t which will be assumed to exist and be unique. Let θ̂ be the mini-
miser ofDn(t) given by Eq. (3) One can representDn(t) as

∫
Vt(z)dĜn(z), where

Vt(x) =
∫
f 1 +α
t (z)dz−

(
1 + 1

α

)
f αt (x).

We assume that G and the censoring distribution H have no common points of
discontinuity.

The minimum density power divergence estimator which is obtained as the
solution of

∫
ψ(z, t)dĜn(z) = 0, where ψ(x, t) = (ψ1(x, t), . . . , ψs(x, t))

T =
(∂Vt (x)/∂t1, . . . , ∂Vt (x)/∂ts)

T , is also a particular form of M-estimator for cen-
sored data; for the latter, see e.g., Reid (1981) and Wang (1999). The difficulty in
developing the asymptotic properties of M-estimators for censored data in general
has been the absence of a law of large numbers and central limit theorem results
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for general functionals
∫
φ dĜn of the Kaplan–Meier estimator. However, during

the last decade or so the works of W. Stute and J.L. Wang (Stute and Wang, 1993;
Stute, 1995; Wang, 1995, 1999) have laid down just such a theoretical framework
and obtained strong consistency and asymptotic normality results.

Below, we present a theorem on the asymptotic properties of our minimum
divergence estimator; the theorem has two parts, (1) consistency, (2) asymptotic
normality. It turns out that, since we do not assume the components ofψ(x, t) to be
bounded, it is easiest to adapt Lehmann’s (1983) Theorem 6.4.1(i) on consistency
to the censored data case; this is done in the Appendix. Had we assumed bound-
edness, as would often be the case, then the consistency result of part (1) of our
theorem would follow from Wang (1999, Theorem 3(i)). Part (2) of our theorem
follows directly from Theorem 5 of Wang (1999). For any given α, we first make
the following assumptions:

A1: The distributionsFt have common support, so that the setA = {z|ft (z)>0}
is independent of t . The true distribution G is also supported on A, on which
g > 0.
A2: There is an open subset ω of the parameter space � containing the best
fitting parameter θ such that

∫
f 1 +α
t (z)dz < ∞ and, for almost all z ∈ A and

all t ∈ ω, ft (z) is three times differentiable with respect to t and the third partial
derivatives are continuous with respect to t .
A3: The integrals

∫
f 1 +α
t (z)dz and

∫
f αt (z)dG(z), when finite, can be differ-

entiated three times, and the derivatives can be taken under the integral sign.
EG

{
∂Vt (X)/∂tk|t=θ

}
< ∞ for all k = 1, . . . , s.

A4: The s × s matrix J (G, t) is defined by

Jkl(G, t) = EG

{
∂2Vt(X)

∂tk∂tl

}
, k, l = 1, . . . , s.

All elements of J (G, θ) are finite and the matrix is positive definite.
A5: For all k, l,m = 1, . . . , s, there exist functions Mklm(x) such that∣∣∣∣ ∂

3Vt(x)

∂tk∂tl∂tm

∣∣∣∣ ≤ Mklm(x)

for all t ∈ ω, where EG[Mklm(X)] = mklm < ∞ for all k, l,m = 1, . . . , s.
A6: For a distribution L, let τL = sup{x: L(x) < 1} denote the upper bound of
the support of L. Then, τG ≤ τH , where equality may hold except when H is
continuous at τG, and G(τG)−G(τG−) > 0.
A7: The conditions of Lemma 1 and Theorem 5 of Wang (1999) hold. These
are essentially conditions on the first two moments of ψk(x, t), k = 1, ..., s,
when t = θ and on the continuity of their derivatives with respect to elements
of t at t = θ .

Theorem 3.1 Under the above conditions, with probability tending to 1 as n→∞,
there exist solutions θ̂n of the density power divergence estimating Eq. (4) such that:

(1) θ̂n is consistent for estimating θ ;
(2) n1/2(θ̂n − θ) is multivariate normal with (vector) mean zero and covariance

matrix J (G, θ)−1C(ψ, θ,G,H)J (G, θ)−1, where C(·, ·, ·, ·) is as defined in
equation (2.15) of Wang (1999) with our G and H replacing F and G in the
notation of that paper.
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To keep the description simple, we have limited the statement of the theorem to
the existence of one sequence of consistent roots to the estimating equation. How-

ever, if there exists a compact set K ⊂ IRs such that inf
t∈K

∣∣∣∣
∫
ψj(z, t)dG(z)

∣∣∣∣ > 0,

for 1 ≤ j ≤ s, then any sequence of solutions to the estimating equation converges
to the best fitting parameter θ [Wang, 1999; Theorem 3(ii)]. Expressions (3.2) of
Wang give the basic form of the influence functions for our estimators.

4 Numerical studies

4.1 Simulation results: exponential distributions

Consider the lifetime distribution to be the one parameter exponential with density
fλ(x) = λe−λx, x ≥ 0, referred to as exp(λ). Hence, the first term in Eq. (2) is

∞∫

0

f 1 +α
λ (z) dz = λα

1 + α
.

The second term in Eq. (2) may be written as
(

1 + 1

α

) ∫
f αλ (z) dĜn(z) =

(
1 + 1

α

)
λα

∑
j

gn(yj ) e−λαyj .

Here, the yj s are the set of failure times plus all the censored values greater than
the largest failure time and gn(yj ) is the mass attributed to yj by the completed
Kaplan–Meier estimator (recall that if Y(n) is not a failure, then the residual mass
is assigned equally to all censored observations larger than Y(n)). To obtain the
minimum divergence estimator of λ, we therefore minimise

d∗
α(g, f ) = λα

1 + α
− 1 + α

α
λα

∑
j

gn(yj )e
−λαyj

with respect to λ for fixed α. This leads to the estimating equation for λ,

α − (1 + α)2
∑
j

(1 − λyj ) gn(yj ) e−λαyj = 0,

which can be solved numerically, using, for example, the Newton–Raphson
procedure.

A modest numerical study is performed to compare the performance of the
maximum likelihood estimator (MLE) and the minimum divergence estimator
(MDE) developed in this paper in the exponential model with or without con-
tamination for various values of α. A sample is generated from exp(5) and 0, 5,
10, 15 or 20% of the observations are contaminated by exp(1.5) successively. We
have used an exponential censoring scheme with the censoring rate determined
so as to keep the expected proportions of censoring under the true distribution at
10 or 20%: when the true distribution is exp(5), to keep the expected proportion



348 S. Basu et al.

of censoring at 10%, the censoring distribution is taken to be exp(5/9); when the
expected proportion of censoring is 20%, the censoring distribution is exp(5/4).
The values of α are chosen to be 0.001, 0.01, 0.1, 0.2, 0.25, 0.5, 0.75 and 1.0.
For given levels of contamination and censoring, the MLE and MDE for each
value of α are calculated for a randomly generated exponential sample of size
50 and the whole procedure is repeated 500 times. The mean squared errors be-
tween the MLE and the true parameter, MSE(MLE), and between the MDE and
the true parameter, MSE(MDE), are computed. Empirical efficiency is defined to
be the ratio of MSE(MLE):MSE(MDE) so that efficiency greater than 1 implies
the density-based estimator is performing better than the MLE. The results of the
simulation study are given in Table 1.

The general observations from the empirical efficiencies in Table 1 are as
follows. Under pure data (no contamination) the MDEs are generally less effi-
cient than the MLE, as one would expect. In this case the efficiencies are generally
decreasing functions of α. As the contamination proportion increases, however,
the MLE gets progressively worse. Even for moderate contaminations at 5–10%
levels, the estimators for relatively small values of α (say between 0.1 and 0.25)
are superior to the MLE. For the largest contamination proportion considered here
(20%) all estimators corresponding to α ≥ 0.1 outperform the MLE, some of
them substantially. However, the gains from using the robust estimates are reduced
somewhat when the censoring proportion increases.

An interesting suggestion made by a referee was to repeat the above exercise
with ‘short-tailed contamination’ in the form of an exp(15) distribution. This we
did although detailed results have not been added to the paper. Basically, this exer-
cise emphasises that the MDE, in line with most other robust estimators, is driven
by downweighting regions of low density. As the contamination here is in a high
density area, the MDE does not, in general, gain over the MLE. It retains good per-
formance for small α but can deteriorate badly for large values of α, particularly
for high amounts of contamination.

Table 1 Empirical efficiencies of MDE in exponential case

Censoring α Contamination
None 5% 10% 15% 20%

10% 0.001 0.9738 0.9378 0.9083 0.8921 0.8944
0.01 0.9777 0.9544 0.9278 0.9091 0.9100
0.1 0.9708 1.0845 1.1215 1.1095 1.0967
0.2 0.8976 1.0808 1.2356 1.3266 1.3240
0.25 0.8500 1.0439 1.2446 1.4062 1.4227
0.5 0.6314 0.8189 1.0799 1.4659 1.6300
0.75 0.5118 0.6844 0.9261 1.3508 1.5822
1.0 0.4477 0.6096 0.8401 1.2635 1.5120

20% 0.001 0.9342 0.9406 0.9194 0.9085 0.9115
0.01 0.9413 0.9502 0.9303 0.9183 0.9199
0.1 0.9722 1.0230 1.0348 1.0307 1.0206
0.2 0.9335 1.0214 1.0993 1.1539 1.1493
0.25 0.8945 0.9895 1.0990 1.2003 1.2103
0.5 0.6748 0.7649 0.9291 1.2128 1.3453
0.75 0.5459 0.6356 0.7951 1.1198 1.3121
1.0 0.4787 0.5692 0.7239 1.0539 1.2640
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4.2 Simulation results: Weibull distributions

Now consider the lifetime distribution to be the two parameter Weibull with density
given by

fa,b(x) =
(
b

a

) (x
a

)b−1
e−(x/a)b , a, b > 0, x ≥ 0,

denoted Weibull (a, b); a and b are scale and shape parameters, respectively. For
the Weibull density, the first term in Eq. (2) may be written as

(
b

a

)α ∞∫

0

zα(1− 1
b
)e−(1+α)zdz

which equals

(
b

a

)α (
1

1 + α

)α(1− 1
b
)+1



(
α

(
1 − 1

b

)
+ 1

)

provided that b > α/(1 + α) (which is assured for b > 1/2 if 0 ≤ α ≤ 1). For
b ≤ α/(1 + α) this term is infinite, which means that for any given α, the MDE of
b will always be greater than α/(1 + α). The second term in Eq. (2) reduces to

(
1 + α

α

) (
b

a

)α ∑
j

gn(yj )
(yj
a

)α(b−1)
e−α(yj /a)b .

Random samples of size n = 50 are generated from a Weibull(2, 5) distribution
and the censoring scheme is taken to be exp(0.0575) for an expected censoring
proportion of 10% and exp(0.1222) for an expected censoring proportion of 20%.
Contamination is introduced through exp(1.5) and the contaminating proportion
is varied as in the case of exponential lifetime distribution; note that the contam-
ination is (largely) to the left of the true distribution in this case. The MLE of b
is found by solving the appropriate likelihood estimating equation utilizing the
bisection method. Once b is estimated, the MLE of a is immediately available. To
obtain the MDEs of a and b, we do a bivariate grid search. Mean squared errors
and their ratio, the empirical efficiency, are calculated separately for the scale and
shape parameters and the results are presented in Tables 2 and 3, respectively. The
number of replications is again 500.

For the Weibull distribution, in general, the performance of the MDE compared
to MLE is superior than in the case of the exponential distribution, both in magni-
tude and scope. At higher levels of contamination and larger values of α the MDE
is between 2.5 to 8 times better than the MLE in terms of empirical efficiency. Even
at moderate levels of contamination, the superiority of the MDEs, including those
for larger values of α, are clearly apparent.
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Table 2 Empirical efficiencies of MDE for the scale parameter a in the Weibull case.

Censoring α Contamination
None 5% 10% 15% 20%

10% 0.001 0.9839 0.9984 0.9890 0.9831 0.9763
0.01 0.9802 1.0412 1.0435 1.0291 1.0153
0.1 0.9697 1.5182 1.7027 1.6979 1.5073
0.2 0.9543 1.8063 2.4346 2.8238 2.4815
0.25 0.9306 1.8509 2.6907 3.3910 3.1885
0.5 0.8348 1.7944 3.0735 4.8071 7.0624
0.75 0.7329 1.6132 2.8926 4.7488 8.4722
1.0 0.6408 1.4474 2.6568 3.2915 6.3208

20% 0.001 0.9834 0.9976 0.9849 0.9588 0.9491
0.01 0.9845 1.0448 1.0302 0.9974 0.9822
0.1 0.9660 1.4707 1.6550 1.5893 1.4610
0.2 0.9395 1.6887 2.3168 2.6244 2.3812
0.25 0.9139 1.7302 2.5336 3.2183 3.0225
0.5 0.8023 1.6512 2.8039 5.0254 6.2407
0.75 0.6963 1.4828 2.6251 5.1667 7.3060
1.0 0.6028 1.3020 2.3426 3.7405 5.6013

Table 3 Empirical efficiencies of MDE for the shape parameter b in the Weibull case

Censoring α Contamination
None 5% 10% 15% 20%

10% 0.001 1.0646 1.0969 1.0864 1.0709 1.0517
0.01 1.0601 1.1573 1.1282 1.0959 1.0633
0.1 1.0438 2.0538 1.8054 1.4986 1.2292
0.2 0.9570 2.8471 3.0339 2.4424 1.6174
0.25 0.9098 3.0811 3.6374 3.0703 1.9448
0.5 0.6915 2.8991 4.8740 5.6297 4.2573
0.75 0.5397 2.4816 4.7189 6.0842 5.6305
1.0 0.4657 2.1752 4.3537 5.9878 6.1775

20% 0.001 1.0534 1.2029 1.1737 1.1270 1.1041
0.01 1.0552 1.2730 1.2174 1.1481 1.1163
0.1 1.0022 2.2253 1.9601 1.4758 1.2933
0.2 0.9235 2.9974 3.2399 2.2520 1.7134
0.25 0.8795 3.1039 3.8048 2.8244 2.0623
0.5 0.6900 2.8162 4.8515 5.4431 4.4253
0.75 0.5573 2.4046 4.4592 6.1037 5.7111
1.0 0.4663 2.1928 4.2664 6.3243 6.1143

4.3 Data example

Next we apply this procedure to a real example taken from Efrom (1988). Data are
available from a study comparing radiation therapy alone (arm A) and radiation
therapy and chemotherapy (arm B) for the treatment of head and neck cancer. There
were 51 patients assigned to arm A of the study of which 9 were lost to follow-up
and, therefore, censored; alternatively, 45 patients were assigned to arm B of the
study of which 14 were lost to follow-up. Note that censoring levels are fairly high
in these data sets, approximately 20 and 30%, respectively. Efron (1988) makes
various analyses of these data, which show radiation and chemotherapy B to be
more effective in terms of survival times. Our focus here is on the appropriateness
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or otherwise of certain parametric models for these data, basing our analysis on a
standard model for such data, the Weibull distribution.

The MLEs and the MDEs of the two Weibull parameters are given for various
values of the tuning parameter α in Tables 4 and 5. There are very considerable
changes in both parameter estimates with α including, importantly, a change from
b̂ < 1 (MLE and small α MDE) to b̂ > 1 (larger α MDE).

Figures 1 and 2 illustrate the results for Arms A and B, respectively. On each
figure is shown: a kernel density estimate formed by kernel smoothing the Kaplan–
Meier estimator (e.g. Wand and Jones, Sect. 6.2.3), using a bandwidth subjectively
chosen not to oversmooth the data; the Weibull model fitted by MLE; the Weibull
model fitted by MDE with α = 1; and a further curve to be discussed below. What
is clearly shown by the kernel density estimate in each case is a main body of data
to the left, together with some much more long-lived individuals to the right. (The
precise nature of the long tail may not be very well reflected by the kernel den-
sity estimate, especially when there are several large censored observations as in
Arm B.)

The MLE Weibull fits are monotone decreasing because b̂ < 1, striking an
uneasy compromise between accommodating the main body and the long tail of
the data, and consequently failing to capture either. The robust Weibull fits, with
b̂ > 1, provide a wholly better fit to the main body of the data at the expense of
essentially ignoring the long tail. As such, this is entirely successful from the robust
fitting viewpoint taken by this paper (and the whole of the robustness literature).

Table 4 Analysis of Efron data assuming Weibull model: Arm A

α Scale, â Shape, b̂
MLE 0 399.24 0.91

MDE 0.001 418.18 0.98
0.01 417.72 0.98
0.1 412.72 0.99
0.2 402.51 1.00
0.25 395.31 1.02
0.5 321.90 1.16
0.75 252.85 1.44
1.0 249.47 1.47

Table 5 Analysis of Efron data assuming Weibull model: Arm B

α Scale, â Shape, b̂
MLE 0 925.45 0.76

MDE 0.001 789.23 0.91
0.01 790.07 0.91
0.1 791.81 0.90
0.2 789.26 0.90
0.25 785.13 0.90
0.5 726.72 0.93
0.75 551.53 1.03
1.0 343.07 1.31
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Fig. 1 Kernel density estimate (dotted line), MLE Weibull fit (dashed line), MDE α = 1 Weibull
fit (solid line) and MLE two component mixed Weibull fit (dot-dashed line) for Arm A of the
Efron (1988) data

Table 6 Maximum likelihood parameter estimates for Efron data assuming two component
Weibull mixture model

Arm A Arm B
p̂ 0.82 0.35

First Component scale, â 241.53 156.00
shape, b̂ 1.47 4.08

Second Component scale, â 1428.11 1800.00
shape, b̂ 9.17 0.90

However, particularly in cases, as here, with substantial ‘contamination’, it can be
argued that the contamination is in fact of interest too and should also be modelled.
The results of fitting two component Weibull mixtures to the data by maximum
likelihood are, therefore, also shown on Figs. 1 and 2. (The corresponding param-
eter estimates, in an obvious notation, are given in Table 6.) In Fig. 1, the mixed
Weibull distribution confirms the robust Weibull fit as being appropriate for the
main body of data and adds a small second component to cover the tail. In Fig. 2,
the mixed Weibull distribution takes a rather different form, that of a narrow peak
to the left and a long flat tail to the right. Further alternative parametric models
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Fig. 2 Kernel density estimate (dotted line), MLE Weibull fit (dashed line), MDE α = 1 Weibull
fit (solid line) and MLE two component mixed Weibull fit (dot-dashed line) for Arm B of the
Efron (1988) data

with heavier tails (e.g. the F ?) might be an even better full-modelling way forward
in this case.

This last part of our analysis reflects the usual tension between robust concen-
tration on the majority of the data and full modelling of all aspects of the data that
is ubiquitous in the literature.

5 Some remarks on choice of α

We have only little to contribute regarding appropriate choice of α. First, some
insight can be gained by looking at parameter estimates (and corresponding fit-
ted densities) for a range of values of α. Second, for low levels of censoring and
contamination, small values of α, say between 0.05 and 0.25, tend to be appropri-
ate. Third, the optimal value of α increases with increased levels of both censor-
ing and, particularly, contamination. Values from 0.5 up to and including the ‘L2
estimation’ choice of α = 1 (Scott, 2001), as made in our data example, then seem
more appropriate. Fourth, despite the negative views expressed in Sect. 5 of Basu
et al. (1998), in the non-censored-survival situation, some progress has been made
on automatic data-based selection of α; see Hong and Kim (2001) and Warwick
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and Jones (2005). Unfortunately, it is not at all easy to adapt the latter approach to
the survival data scenario, which is why we have not done so here.

Acknowledgements The authors are very grateful to two anonymous referees for suggestions
which improved the quality and correctness of this paper.

6 Appendix

6.1 Proof of part (1) of Theorem 3.1

To prove the existence, with probability tending to 1, of a sequence of solutions to
the estimating equation given in Eq. (4) which is consistent, we shall consider the
behaviour of the density power divergence, given by Eq. (3), as a function of t , on
a sphere Qa with center at θ and radius a. We will show that for sufficiently small
a the probability that Dn(t) > Dn(θ) tends to 1 for all points t on the surface of
Qa , and hence thatDn(t) has a local minimum in the interior ofQa . It will follow
that for any a > 0, with probability tending to 1 as n → ∞, the density power
divergence estimating equations have a solution θ̂n(a) within Qa .

To study the behaviour of Dn(t) on Qa , we expand Dn(t) around θ . Thus

Dn(θ)−Dn(t) = −
s∑
k=1

Ak(tk − θk)− 1

2

s∑
k=1

s∑
l=1

Bkl(tk − θk)(tl − θl)

+1

6

s∑
k=1

s∑
l=1

s∑
m=1

(tk − θk)(tl − θl)(tm − θm)

×
∫
γklm(z)Mklm(z)dĜn(z)

= S1 + S2 + S3,

say, where

Ak = ∂

∂tk
Dn(t)|t = θ , Bkl = ∂2

∂tk∂tl
Dn(t)|t = θ , 0 ≤ |γklm(x)| ≤ 1,

the last by assumption A5. First, note that

Ak =
∫

∂

∂tk
Vt (z)dĜn(z),

so that it converges (using assumptions A3, A6 and Proposition 1 of Wang, 1999),
with probability tending to 1, to {∂D(t)/∂tk}|t=θ = 0 as n → ∞. Similarly,
Bkl → Jkl with probability tending to 1 (using assumptions A4, A6 and Prop-
osition 1 of Wang, 1999). For any given a it follows that |Ak| < a2 and hence
|S1| < sa3 with probability tending to 1. Next,

2S2 = −
s∑
k=1

s∑
l=1

Jkl(tk − θk)(tl − θl)+
s∑
k=1

s∑
l=1

(−Bkl + Jkl)(tk − θk)(tl − θl).
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It follows from an argument similar to that for S1 that the absolute value of the sec-
ond term of 2S2 is less that s2a4 with probability tending to 1. The first term of 2S2 is
a negative (nonrandom) quadratic form in the variables (tk − θk). By an orthogonal
transformation this can be reduced to a diagonal form

∑
i λiξ

2
i with

∑
i ξ

2
i = a2.

As the λs are all negative, by ordering them as λs ≤ λs−1 ≤ . . . ≤ λ1 < 0, one
gets

∑
i λiξ

2
i ≤ λ1a

2. Combining the first and the second terms, there exist c > 0,
a0 > 0 such that for a < a0, S2 < −ca2, with probability tending to 1. Finally, with
probability tending to 1,

∫
γklm(z)Mklm(z)dĜn(z) < 2mklm, and hence |S3| < ba3

onQa where b = (
∑

k

∑
l

∑
m mklm)/3. Combining these inequalities, we see that

max(S1 + S2 + S3) < −ca2 + (b+ s)a3, which is less than zero if a < c/(b+ s).
Thus, for sufficiently small a there exists a sequence of roots θ̂n = θ̂n(a) such

that P(||θ̂n − θ || < a) → 1 where || · || represents the L2 norm. It remains to
show that we can determine such a sequence independently of a. Let θ∗

n be the root
closest to θ . This exists because the limit of a sequence of roots is again a root by
the continuity of Dn(t) as a function of t . Then clearly P(||θ∗

n − θ || < a) → 1.
This concludes the proof.
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