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Abstract Motivated from the bandwidth selection problem in local likelihood den-
sity estimation and from the problem of assessing a final model chosen by a certain
model selection procedure, we consider estimation of the Kullback–Leibler diver-
gence. It is known that the best bandwidth choice for the local likelihood density
estimator depends on the distance between the true density and the ‘vehicle’ para-
metric model. Also, the Kullback–Leibler divergence may be a useful measure
based on which one judges how far the true density is away from a parametric
family. We propose two estimators of the Kullback-Leibler divergence. We derive
their asymptotic distributions and compare finite sample properties.

Keywords Kernel smoothing · Local likelihood density estimation · Bandwidth ·
Kullback–Leibler divergence

1 Introduction

Local likelihood methods hold considerable promise in density estimation. They
offer unmatched flexibility and adaptivity as the resulting density estimators inherit
both of the best properties of nonparametric approaches and parametric inference.
They operate with a locally weighted log-likelihood where the local weights are
determined by a kernel function and a bandwidth and are applied to the likelihood of
the selected parametric model F . When the true density is far from the parametric
model, they have the best properties of nonparametric approach if the bandwidth is
taken small. On the other hand, when the true density is close to the parametric
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model, they give the best performance of parametric inference, too, if the band-
width is chosen large. The latter property is not possessed by the conventional
smoothing techniques such as the ordinary kernel density estimation. See, among
others, Eguchi and Copas (1998), Hjort and Jones (1996), Park et al. (2002) and
Park et al. (2006) for more details. Thus, estimating a measure of distance between
the true density and the selected parametric model provides an important clew to
determine a proper size of the bandwidth so that these potential advantages of local
likelihood methods can be realized.

In this paper, we consider estimation of the Kullback–Leibler (KL) divergence
between the true density and a selected parametric model. The KL divergence
(Kullback and Leibler 1951) has been widely studied in statistical literature as
a central index measuring qualitative similarity between two probability distri-
butions. It is closely related to the notion of entropy in the context of statistical
physics. For given two probability distributions with density functions g and f ,
the KL divergence of f from g is defined by

D(g, f ) =
∫
g(x) log

g(x)

f (x)
dx. (1)

Let g denote the true density function and F = {f (·, θ) : θ ∈ �} be a selected
statistical model for the data distribution g, where � is a subset of IRp. When g
actually belongs to F , the minimal value, min

θ∈�
D (g, f (·, θ)), of the KL divergence

is zero. On the other hand, if g is separate from F with detectable or undetectable
degree of model misspecification, the minimal KL divergence is strictly positive.
In the model selection context, only the first term on the right hand side of

D (g, f (·, θ)) = −
∫

{log f (x, θ)}g(x) dx +
∫

{log g(x)}g(x) dx

is relevant since the second term does not depend on the model. See Akaike
(1973, 1974) and Konishi and Kitagawa (1996) for a detailed account of the
problem of estimating

∫ {log f (x, θ̂)}g(x) dx in the context of model selection,
where θ̂ is an estimator of θ based on the model F . However, the neglected term∫ {log g(x)}g(x) dx is an important counterpart of the KL divergence. When a sta-
tistical model F is chosen by some model selection criterion, it would be of much
interest to estimate the minimal value of D(g, f (·, θ)) over f (·, θ) ∈ F as it
provides a useful tool for goodness-of-fit tests for the chosen model F .

We propose two estimators of the minimal KL divergence. They are based on
the local likelihood method in density estimation. We derive their asymptotic dis-
tributions. These asymptotic results are presented in the usual smoothing context
of the bandwidth tending to zero as the sample size tends to infinity. Along with the
theoretical properties of the estimators, we present some numerical results which
compare the finite sample performance of the two estimators. We note that work-
ing on large bandwidth asymptotics is not relevant in the context of estimating the
minimal KL divergence. When the bandwidth tends to infinity, the local likelihood
density estimator converges to a member of the parametric family which minimises
D (g, f (·, θ)). Thus, the resulting estimator of the minimal KL divergence, which
is obtained by substituting the density estimator for the true g in min

θ∈�
D (g, f (·, θ)),

always converges to zero.
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This paper is organised as follows. In Sect. 2, the two estimators of the min-
imal KL divergence are introduced and their theoretical properties are presented.
In Sect. 3, the two estimators are compared through a simulation study. Technical
proofs are deferred to the Appendix.

2 Estimation of Kullback–Leibler divergence

Let D(g, f ) denote the KL divergence between the two density functions g and
f , defined at Eq. (1). Let F = {f (·, θ) : θ ∈ �} with � ⊂ IRp be a selected
parametric model, where

f (z, θ) = µ(z) exp{t (z)Tθ − ψ(θ)} (2)

for some fixed function µ(z) ≥ 0. We choose to work with the exponential family
Eq. (2) as the parametric model for simplicity of the presentation. Our methods
and theory are still valid for more general parametric families. Write f (·, θG) for
the best parametric approximation to the true density in the sense of minimizing
the KL divergence D (g, f (·, θ)). We note that θG satisfies∫

{t (z)− ψ ′(θ)}g(z)dz = 0. (3)

In this section, we introduce two estimators of the minimal KL divergence
D

(
g, f (·, θG)), and provide their asymptotic distributions.

2.1 Definition of estimators

The minimal KL divergence involves the true density g and the parameter value
θG, which we need to estimate. For estimation of g, we consider the general
class of local likelihood introduced by Eguchi and Copas (1998). Let u(z, θ) =
(∂/∂θ) log f (z, θ). Define

�n(x, θ) = 1

n

n∑
i=1

u(Xi, θ)K

(
Xi − x

h

)

−1

n

n∑
i=1

ξ

[
K

(
Xi − x

h

)
, EθK

(
Xi − x

h

)]

×Eθu(X1, θ)K

(
X1 − x

h

)
. (4)

Here and below, Eθ denotes the expectation with respect to f (·, θ). Also,K is the
kernel function which is usually a probability density function, and h is a positive
constant called the bandwidth. For the function ξ(·, ·), we follow Park et al. (2002)
by assuming that ξ(u, v) = β(v)+γ (v)(u/v) for sufficiently smooth β and γ near
v = 0, and requiring that γ (0) �= 1. We also assume

Eθ

{
ξ

[
K

(
X1 − x

h

)
, EθK

(
X1 − x

h

)]}
= 1
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for consistency of the local likelihood procedure when the true density g actually
belongs to the parametric family F . Examples of ξ that satisfy these conditions
include ξ(u, v) ≡ 1 of Hjort and Jones (1996) and ξ(u, v) = (1 − u)/(1 − v) of
Copas (1995).

Incorporating the specific form of the working parametric model given at
Eq. (2), the local likelihood equation at (4) is given by

�n(x, θ) = 1

n

n∑
i=1

{t (Xi)− ψ ′(θ)}K
(
Xi − x

h

)

−1

n

n∑
i=1

ξ

[
K

(
Xi − x

h

)
, EθK

(
Xi − x

h

)]

×Eθ
{
t (X1)− ψ ′(θ)

}
K

(
X1 − x

h

)
. (5)

Let θ̂Ln (x) denote a solution of the equation �n(x, θ) = 0. The local likelihood
estimator of g is then given by

ĝn(x) = f (x, θ̂Ln (x)).

The estimator θ̂Ln (x) aims at the solution of the equation E�n(x, θ) = 0, which we
denote by θLh (x). The function f (·, θLh (x)) is the best ‘local’approximation, near x,
among the working parametric family F to the true density g. The bandwidth h
determines the degree of the local approximation. If h tends to infinity, the function
�n(x, θ) converges to n−1 ∑n

i=1{t (Xi)−ψ ′(θ)} so that θLh (x) goes to the ‘global’
approximant θG regardless of x. On the other hand, if h tends to zero, it converges
to the solution of the equation lim

h→0
E�n(x, θ) = 0, which is the value of θ such that

g(x) = f (x, θ). The latter property follows from the fact that

lim
h→0

Eh−1�n(x, θ) = {t (x)− ψ ′(θ)}{1 − γ (0)}{g(x)− f (x, θ)}.

Next, let θ̂Gn denote the parametric maximum likelihood estimator of θG. It is
given by the maximizer of the full likelihood

Ln(θ) =
n∑
i=1

log f (Xi, θ)

based on F . It satisfies the full likelihood equation

ψ ′(θ) = 1

n

n∑
i=1

t (Xi).

The best local approximation θLh (x) depends on x, so does its estimator θ̂Ln (x),
while the ‘global’ or parametric best approximation θG and its estimator θ̂Gn do not
depend on x.
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Now, we define the two estimators of D
(
g, f (·, θG)). The first estimator is

defined by D̂1n = D
(
ĝn, f (·, θ̂Gn )

)
, i.e.

D̂1n = −
∫

log

{
f (x, θ̂Gn )

ĝn(x)

}
ĝn(x) dx

=
∫ [

t (x)T {θ̂Ln (x)− θ̂Gn } − {ψ(θ̂Ln (x))− ψ(θ̂Gn )}
]
ĝn(x) dx. (6)

For the definition of our second estimator, let θ̂Ln,−i (x) be the leave-one-out (or
cross-validatory) version of θ̂Ln (x). It is the solution of the estimating equation
�n,−i (x, θ) = 0, where �n,−i is the leave-one-out version of �n defined at Eq. (5)
with the i-th observation deleted. Define ĝn,−i (x) = f (x, θ̂Ln,−i (x)). Now, let θ̂Gn,−i
denote the leave-one-out version of the parametric maximum likelihood estimator
θ̂Gn . It satisfies the equation ψ ′(θ) = (n− 1)−1 ∑

j �=i t (Xj ). The second estimator
is defined by

D̂2n = −1

n

n∑
i=1

log

{
f (Xi, θ̂

G
n,−i )

ĝn,−i (Xi)

}
. (7)

It is obtained by plugging the leave-one-out estimators ĝn,−i and θ̂Gn,−i into the
empirical version −n−1 ∑n

i=1 log{f (Xi, θG)/g(Xi)} of the minimal KL diver-
gence.

Remark 2.1 In the definition of the second estimator, one may use θ̂Gn and ĝn instead
of the leave-one-out estimators θ̂Gn,−i and ĝn,−i , respectively. This yields D̃2n =
−n−1 ∑n

i=1 log
{
f (Xi, θ̂

G
n )/ĝn(Xi)

}
. However, the latter estimator would produce

some ‘overfitting’bias since the empirical distribution corresponds more closely to
θ̂Gn and ĝn than does the true distribution g. In fact, Akaike’s AIC is a clever device
to correct this overfitting bias of θ̂Gn for estimatingEg log f (X, θG). Also, it is well
known that the leave-one-out version n−1 ∑n

i=1 log f (Xi, θ̂Gn,−i ) is asymptotically
equivalent to the AIC (Stone 1977). See Konishi and Kitagawa (1996) for more
details. Jackknifing is an alternative procedure for correcting the overfitting bias of
the estimator D̃2n.A jackknife estimator of the bias is given by (n−1)(D̃2n(·)−D̃2n)

where D̃2n(·) = −{n(n−1)}−1
∑ ∑
i �=j

log
{
f (Xj , θ̂

G
n,−i )/ĝn,−i (Xj )

}
and the result-

ing bias-corrected estimator equals nD̃2n−(n−1)D̃2n(·). The jackknife estimator is
more complicated than our leave-one-out cross-validatory estimator D̂2n. See Efron
(1982) or Ripley (1996) for a general comparison between the cross-validation and
jackknifing.

2.2 Theoretical properties

We provide some theoretical properties of the estimators defined at Eqs. (6) and (7),
in the usual smoothing context of the bandwidth, h, tending to zero as the sample
size tends to infinity. To describe their asymptotic properties, let N be the p × p
matrix which has

∫
yi+jK(y) dy as its (i, j)-th component (i, j = 0, . . . , p− 1),
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and writeη for thep-dimensional vector with its i-th element being
∫
yp+iK(y) dy.

Let e0 be the p-dimensional unit vector (1, 0, . . . , 0). Define

c1 = eT
0N

−1η

∫
Bp(x){1 − log[f (x, θG)/g(x)]} dx,

Bp(x) = (p!)−1
[
(∂p/∂yp){g(y)− f (y, θL0 (x))}

]
y=x ,

where θL0 (x) denotes the solution of the equation limh→0 E�n(x, θ) = 0.
For the first estimator D̂1n, it may be proved under the assumptions stated in

the Appendix that as n → ∞

D̂1n = −
∫

log

{
f (x, θG)

g(x)

}
ĝn(x) dx (8)

+hp eT
0N

−1η

∫
Bp(x) dx + op(h

p + n−1/2).

Also, it can be shown under the assumptions stated in the Appendix that as n → ∞

−
∫

log

{
f (x, θG)

g(x)

}
ĝn(x) dx

= D − hp eT
0N

−1η

∫
Bp(x) log

{
f (x, θG)

g(x)

}
dx (9)

+ n−1/2Zn + op(h
p + n−1/2),

where D ≡ D
(
g, f (·, θG)

)
and Zn is asymptotically normal with mean zero and

variance given by

σ 2
1 = eT

0N
−1e0 E log2

{
f (X1, θ

G)

g(X1)

}
−

{
E log

f (X1, θ
G)

g(X1)

}2

. (10)

Thus, we obtain the following theorem. Proofs of Eqs. (8), (9) and (10) will be
given in the Appendix.

Theorem 2.1 Suppose that h → 0 and nh2/(log n)2 → ∞ as n tends to infinity.
Then, under the assumptions stated in the Appendix, we have

√
n

(
D̂1n −D − c1h

p + op(h
p)

) −→ N
(
0, σ 2

1

)
.

Next, for the second estimator D̂2n, we find

1

n

n∑
i=1

log

{
f (Xi, θ̂

L
n,−i (Xi))

g(Xi)

}
= c2h

p + op(h
p + n−1/2), (11)

where c2 = eT
0N

−1η
∫ Bp(x) dx. Also,

n−1
n∑
i=1

log f (Xi, θ̂
G
n,−i ) = n−1

n∑
i=1

log f (Xi, θ
G)+Op(n

−1). (12)
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A sketch of a proof for Eq. (11) will be also given in the Appendix. From Eqs. (11)
and (12), we can deduce that D̂2n is also asymptotically normal with mean c2h

p

and variance now given by

σ 2
2 = var

[
log

{
f (X1, θ

G)

g(X1)

}]
.

Theorem 2.2 Under the same assumptions of Theorem 2.1, we have
√
n

(
D̂2n −D − c2h

p + op(h
p)

) −→ N
(
0, σ 2

2

)
.

The theorems imply that the first-order asymptotic properties of the two esti-
mators do not depend on the function ξ , which appears in the definition of the
local likelihood equation, except for the requirement that γ (0) �= 1. This has been
already seen by Park et al. (2002) in the context of density function estimation.

For the variance terms, it can be shown that eT
0N

−1e0 ≥ 1. In fact, ifK is sym-
metric and

∫
K=1, then eT

0N
−1e0 = 1 for p=1 and 2. For p=3 and 4, it equals

µ4/(µ4 − µ2
2) = {

1 − (µ2
2/µ4)

}−1
which is greater than one since µ4 > µ2

2 by
Liapounov’s inequality. Here,µj denotes the j -th moment of the kernelK . In gen-

eral for p ≥ 3, eT
0N

−1e0 = {1 −N12N22N21}−1 where N21 = (
µ1, . . . , µp−1

)T
,

N12 = NT
21, and N22 denotes the (p − 1) × (p − 1) matrix whose components

are µi+j for i, j = 1, . . . , p − 1. Since N is positive definite and so is N−1,
eT

0N
−1e0 > 0, i.e., N12N22N21 < 1. Furthermore, since N22 is also positive defi-

nite, N12N22N21 > 0. This establishes eT
0N

−1e0 > 1. Thus, we observe σ 2
1 ≥ σ 2

2
for all p. The bias terms c1 and c2 for the two estimators are not comparable in
general. But, c2 has a simpler formula than c1, and our simulation study in the next
section suggests that c2, the bias factor for the second estimator, is less than c1 in
the simulation settings.

The above theorems can be used to define confidence intervals for D. Estima-
tors of the bias factors ci could be built in by using estimators of the derivatives of
g− f (·, θL0 (x)) at every x. But this would considerably complicate the procedure.
The construction is greatly simplified if one does ‘under-smoothing’. Suppose that
h tends to zero faster than n−1/(2p). Then, the bias terms are negligible compared to
the variance. In this case, asymptotic confidence intervals forD can be constructed
by estimating σ 2

i only. For example, σ 2
2 may be estimated by

σ̂ 2
2 = n−1

n∑
i=1

[
log

{
f (Xi, θ̂

G
n,−i )

ĝn,−i (Xi)

}
− (−D̂2n)

]2

.

Confidence intervals forD may be used for goodness-of-fit tests for the parametric
model F . Note that D = 0 when g ∈ F . If a confidence interval for D contains
zero, one may accept the hypothesis that the actual distribution belongs to the
chosen model F .

Remark 2.2 When the true density g belongs to F , both σ 2
1 and σ 2

2 are zero, and so
are the bias factors c1 and c2. In view of Theorems 2.1 and 2.2, this means D̂1n and
D̂2n converge toD at a rate faster than n−1/2. A higher order asymptotic analysis is
required to obtain non-degenerate limit distributions in this case. Derivation of the
limit distribution with the exact rate of convergence when g ∈ F is an interesting
future research problem.
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3 Numerical properties

We compare the small sample performance of the two estimators D̂1n and D̂2n. We
consideredN(θ, 1) as the parametric modelf (·, θ).The true density was taken to be

g(x) ≡ gβ(x) = 2φ(x)�(βx),

where φ and� are the standard normal density and its distribution function. This is
the so-called skewed normal distribution of Azzalini (1985), and was also consid-
ered by Eguchi and Copas (1998). Here, β acts as a discrepancy parameter. When
β = 0, the density g is identical to φ. As |β| increases, it becomes increasingly
skewed. In this setting, we find

θG = EX =
√

2

π

β√
1 + β2

.

The minimal KL divergence D(g, f (·, θG)) is a symmetric function of β.
We generated 500 pseudo samples of size n=400 from gβ for β=0 and 1. The

standard normal density was taken for the kernel function K . We took ξ(·, ·)≡1,
which corresponds to the U-version of Hjort and Jones (1996). Table 1 shows the
squared biases and variances of the two estimators when the optimal bandwidths
were used. For each β and for each estimator, the optimal bandwidth was obtained
to minimize the Monte Carlo approximation of the mean squared error which is
the average of 500 values of the squared error.

Figure 1 compares the quantile plots of the squared errors of D̂1n and D̂2n which
employ the optimal bandwidths. For this, we computed 500 values of D̂1n and D̂2n,
and calculated 500 values of the squared errors d1 = (D̂1n−D)2 and d2 = (D̂2n−
D)2. Then, we arranged them in increasing order. Write d(1)1 ≤ d

(2)
1 ≤ · · · ≤ d

(500)
1

and d(1)2 ≤ d
(2)
2 ≤ · · · ≤ d

(500)
2 , respectively, for the arranged squared devia-

tions. Figure 1 shows the quantile plots {(i/500, d(i)1 )}500
i=1 and {(i/500, d(i)2 )}500

i=1

for each β. Figure 2 depicts the densities of the centered estimators D̂1n −D and
D̂2n −D. From the table and figures, we find that D̂2n performs always better than
D̂1n.

Table 1 Squared biases and variances of the estimators, multiplied by 104

β D̂1n D̂2n

Sq. bias Variance Sq. bias Variance

0 5.953 4.982 0.810 5.480
1 13.104 6.212 0.462 3.689
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Fig. 1 Quantile functions of the squared errors of the estimators. Dot-dashed curves correspond
to D̂1n, and solid curves are for D̂2n
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Fig. 2 Density plots of the estimators recentered at the true value D. Line types are the same as
in Fig. 1

4 Appendix

A.1 Assumptions

Define u0(x, y) = lim
h→0

u
(
x, θLh (y)

)
and

U(x, y) =
(
u0(x, y),

∂

∂x
u0(x, y), . . . ,

1

(p − 1)!

∂p−1

∂xp−1
u0(x, y)

)
.

We make use of the following assumptions in the proofs of the main results in this
paper.

(C1) The functions µ(·) and g(·) are supported on a compact set X ;



336 Y.K. Lee and B.U. Park

(C2) � is a compact set;
(C3) The equations E�n(x, θ) = 0 and lim

h→0
E�n(x, θ) = 0 have the unique solu-

tions θLh (x) and θL0 (x), respectively;
(C4) E�n(x, θ) converges to lim

h→0
E�n(x, θ) uniformly on X ×�, and lim

h→0
E�n(x, θ)

is continuous on X × H;
(C5) ψ is three times continuously partially differentiable on �;
(C6) The densities g and f (·, θ) have p continuous derivatives for all θ ∈ �;
(C7) U(x, y) is invertible for all x ∈ X and all y in a neighborhood of x;
(C8) β and γ have two continuous derivatives at zero;
(C9) The kernelK is twice continuously differentiable, nonnegative, bounded and

supported on a compact set with non-empty interior;
(C10) The bandwidth h tends to zero as the sample size n goes to infinity.

A.2 Proof of (8)

We decompose D̂1n by

D̂1n =
∫

log

{
g(x)

f (x, θG)

}
ĝn(x) dx +

∫
log

{
ĝn(x)

g(x)

}
ĝn(x) dx

−
∫

log

{
f (x, θ̂Gn )

f (x, θG)

}
ĝn(x) dx. (13)

By (C3) the second term in the decomposition Eq. (13) can be written as∫
{t (x)− ψ ′(θLh (x))}T{θ̂Ln (x)− θLh (x)}ĝn(x) dx

+
∫

{t (x)− ψ ′(θL0 (x))}T {θLh (x)− θL0 (x)}ĝn(x) dx + Rn1, (14)

where Rn1 has a faster order of convergence than the two preceding integrals. Call
the two integrals at Eq. (14), J1 and J2. Write In(x, θ) = −h−1E {(∂/∂θ)�n(x, θ)},
and let

Sn(x) = ḟ (x, θLh (x))
TIn(x, θ

L
h (x))

−1h−1�n(x, θ
L
h (x))

From (4.1) of Park, Kim and Jones (2002), it follows that

ĝn(x) = f (x, θLh (x))+ Sn(x)+Op

(
log n

nh

)
(15)

uniformly for x ∈ X . This follows from the fact that

θ̂Ln (x)− θLh (x) = In(x, θ
L
h (x))

−1h−1�n(x, θ
L
h (x))+Op

(
log n

nh

)
(16)

uniformly for x ∈ X . Furthermore, by a similar argument for the proof of Theorem
6 of Eguchi, Kim and Park (2003), we may deduce that uniformly for x ∈ X

{
t (x)− ψ ′(θL0 (x))

}T {
θLh (x)− θL0 (x)

} = {g(x)}−1eT
0N

−1ηBp(x)hp
+o(hp). (17)
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Plugging Eq. (17) into the second integral at (14) yields

J2 = hp eT
0N

−1η

∫
Bp(x) dx + op(h

p).

We will prove J1 = op(n
−1/2). Let Kh(u) = h−1K(h−1x). Define

φn(x, y)

= {
t (x)− ψ ′(θLh (x))

}T
In(x, θ

L
h (x))

−1
[{t (y)− ψ ′(θLh (x))}Kh(y − x)

− ξ
(
hKh(y−x), hEθLh (x)Kh(X1−x)

)
EθLh (x)

{
t (X1)−ψ ′(θLh (x))

}
Kh(X1− x)

]
,

and write φ̃n(y) = Eφn(X1, y). Then, by using (16) we obtain

J1 = 1

n

n∑
j=1

φ̃n(Xj )+ 1

n

n∑
j=1

∫
φn(x,Xj ){ĝn(x)− f (x, θLh (x))} dx

+1

n

n∑
j=1

∫
φn(x,Xj ){f (x, θLh (x))− g(x)} dx +Op

(
log n

nh

)
. (18)

Note that E{φ̃n(X1)} = 0 from the definition of θLh (x), i.e. from the fact that
Eφn(x,X1) = 0 for all x. Also, it may be proved that var(φ̃n(X1)) = o(1). This
follows from the fact that φ̃n(x) = o(1) for x in the interior of X . Thus, the first
term on the right hand side of Eq. (18) equals op(n−1/2). Now, by Eq. (15) the
second term in the expansion Eq. (18) can be written as

1

n2

n∑
i=1

n∑
j=1

∫
φn(x,Xi)φn(x,Xj )f (x, θ

L
h (x)) dx +Op

(
log n

nh

)
.

The above double summation equals n−2 ∑n
i=1

∫
φ2
n(x,Xi)f (x, θ

L
h (x)) dx, which

has an order of magnitude Op(n
−1h−1), plus a degenerate U-statistic whose var-

iance is of order O(n−2h−1). Thus, the second term in the expansion of J1 has
the rate Op (log n/(nh)). From the fact that θLh (x) − θL0 (x) = O(hp) uniformly
for x ∈ X , it immediately follows that the third term in the expansion equals
Op(n

−1/2hp). This shows∫
log

{
ĝn(x)

g(x)

}
ĝn(x) dx = hp eT

0N
−1η

∫
Bp(x) dx + op(h

p + n−1/2). (19)

Next, we treat the third integral in the decomposition (13). It can be written as

(θ̂Gn − θG)T
∫

{t (x)− ψ ′(θG)}ĝn(x) dx + Rn2, (20)

where Rn2 is of lower order than the first term. By using Eq. (3) we may show that
the integral at Eq. (20) has the order of magnitude Op{n−1/2 + hp + log n/(nh)}.
Since θ̂Gn − θG = Op(n

−1/2), we obtain
∫

log

{
f (x, θ̂Gn )

f (x, θG)

}
ĝn(x) dx = Op

(
1

n
+ hp√

n
+ log n

n3/2h

)
. (21)

Combining Eqs. (13), (19) and (21) completes the proof of (8).
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A.3 Proofs of (9) and (10)

By Eqs. (15) and (17), it is enough to show that

n var

[∫
log

{
g(x)

f (x, θG)

}
Sn(x) dx

]

= n

∫ ∫
log

{
g(x)

f (x, θG)

}
log

{
g(y)

f (y, θG)

}
E {Sn(x)Sn(y)} dx dy (22)

converges to σ 2
1 . Write p(v) = (1, v, . . . , vp−1)T. Define

L1(x, y, h) = L
(2,2)
h (x − y)DhU(x, y)

Tg(x)

− γ (0)L(2,1)h (x − y)DhU(y, y)
Tg(x)

− γ (0)L(1,2)h (x − y)DhU(y, y)
Tg(y)

+ γ (0)2L(1,1)h (x − y)DhU(y, y)
Tg(x),

L2(x, y) = {1 − γ (0)}2
( ∫

p (t)K(t) dt
)( ∫

p (t)TK(t) dt
)

×DhU(y, y)
Tg(x)g(y),

where L(i,j)h (w) = h−1L(i,j)(h−1w) for i, j=1, 2 and

L(1,1)(w) =
(∫

p (t)K(t) dt
)(∫

p (t)TK(t) dt
) ∫

K(t)K(t + w) dt,

L(1,2)(w) =
(∫

p (t)K(t) dt
) ∫

p (t)TK(t)K(t − w) dt,

L(2,1)(w) =
∫
p (t)K(t)K(t + w) dt

(∫
p (t)TK(t) dt

)
,

L(2,2)(w) =
∫
p (t)p (t)TK(t)K(t + w) dt.

Let ζi = ∫
yiK(y) dy. Write N1 for the p× p matrix whose (i, j)-th entry equals

ζi+j − γ (0)ζiζj . Also, write M1 for the p× p matrix whose (i, j)-th entry equals
ζi+j − 2γ (0)ζi + γ (0)2ζiζj . Let Dh denote the p× p diagonal matrix whose i-th
diagonal element equals hi (i=0, . . . , p−1). Then, as in the proof for Theorem 2
of Park et al. (2002), it can be shown that

nE {Sn(x)Sn(y)}
= eT

0N
−1
1 {L1 (x, y, h)−L2(x, y)}

{
U(y, y)T

}−1
D−1
h N

−1
1 e0{1+O(h)}. (23)

By plugging Eq. (23) into Eq. (22) and using the fact

∫ {
L(2,2)(w)− γ (0)L(2,1)(w)− γ (0)L(1,2)(w)+ γ (0)2L(1,1)(w)

}
dw = M1,
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we obtain

n var

[∫
log

{
g(x)

f (x, θG)

}
Sn(x) dx

]
−→ eT

0N
−1
1 M1N

−1
1 e0 E log2

{
g(X1)

f (X1, θG)

}

−
[
E log

{
g(X1)

f (X1, θG)

}]2

.

As noted in Park et al. (2002), eT
0N

−1
1 M1N

−1
1 e0 = eT

0N
−1NN−1e0 = eT

0N
−1e0.

This completes the proofs of (9) and (10).

A.4 Proof of (11)

By (C3) again, we have

1

n

n∑
i=1

log

{
f (Xi, θ̂

L
n,−i (Xi))

g(Xi)

}

= 1

n

n∑
i=1

{
t (Xi)− ψ ′(θLh (Xi))

}T {
θ̂Ln,−i (Xi)− θLh (Xi)

}

+1

n

n∑
i=1

{
t (Xi)− ψ ′(θL0 (Xi))

}T {
θLh (Xi)− θL0 (Xi)

} + Rn3, (24)

where Rn3 has a faster order of convergence than the other terms in the expansion.
First, we treat the first term in the expansion. By Eq. (16), it equals

1

n(n− 1)

∑ ∑
i �=jφn(Xi,Xj )+Op

(
log n

nh

)
. (25)

We find the projection of the U-statistic at Eq. (25) onto the space of sums of inde-
pendent random variables, and then decompose it into two orthogonal terms. For
this, define φ∗

n(x, y) = φn(x, y) − φ̃n(y). Then, we may write the U-statistic at
Eq. (25) by

1

n

n∑
i=1

φ̃n(Xi)+ 1

n(n− 1)

∑ ∑
i �=jφ

∗
n(Xi,Xj ). (26)

The first term of Eq. (26) equals op(n−1/2) as is shown in the proof of (8). The
second term of Eq. (26) has mean zero and the variance of orderO(n−2h−1). This
follows from the fact that

E
{
φ∗
n(X1, X2)|X1

} = E
{
φ∗
n(X1, X2)|X2

} = 0.

Thus, the first term in the expansion Eq. (24) equals op(n−1/2). By Eq. (17), the
second term in the expansion Eq. (24) equals hp eT

0N
−1η

∫ Bp(x) dx + op(h
p).

This completes the proof of (11).
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