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Abstract Waiting time distributions of simple and compound runs and patterns
have been studied and applied in various areas of statistics and applied proba-
bility. Most current results are derived under the assumption that the sequence is
either independent and identically distributed or first order Markov dependent. In
this manuscript, we provide a comprehensive theoretical framework for obtaining
waiting time distributions under the most general structure where the sequence con-
sists of r-th order (r ≥ 1) Markov dependent multi-state trials. We also show that
the waiting time follows a generalized geometric distribution in terms of the essen-
tial transition probability matrix of the corresponding imbedded Markov chain.
Further, we derive a large deviation approximation for the tail probability of the
waiting time distribution based on the largest eigenvalue of the essential transition
probability matrix. Numerical examples are given to illustrate the simplicity and
efficiency of the theoretical results.

Keywords Runs and patterns · Markov chain imbedding · Transition probability
matrix · Large deviation approximation

1 Introduction

Let {Xt } = {X−∞, . . . , X−1, X0, X1, . . . , X∞} be a sequence of m-state (m ≥ 2)
trials defined on the set S = {b1, b2, . . . , bm}, and let � denote a simple pattern
of length k if � is composed of a specified sequence of k symbols from S, i.e.,
� = bi1, . . . bik ; the symbols bi in the pattern � may be repeated. For example, in
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a sequence of Bernoulli trials (m = 2), the success run of size k, � = S . . . S, is a
simple pattern of size k.

Let �1 and �2 be two simple patterns of lengths k1 and k2, respectively. We
say that �1 and �2 are two distinct patterns if neither �1 belongs to �2 nor �2
belongs to �1. We define the union {�1}∪ {�2} as the occurrence of either pattern
�1 or pattern �2. For simplicity, we denote the union of two patterns by �1 ∪ �2
throughout the manuscript. A pattern � is referred to as a compound pattern if it
is a union of l (l ≥ 1) distinct simple patterns �1, . . . , �l , i.e., � = ∪l

i=1�i .
Given a simple pattern � = bi1 . . . bik , we define a waiting time random variable

W(�) as

W(�) = inf{n : n ∈ J+, n ≥ k, Xn−k+1 = bi1, . . . , Xn = bik }, (1)

where J+ = {1, 2, . . . , }. Throughout this article, we assume that the counting
of symbols toward forming the pattern � starts at t = 1. For a compound pattern
� = ∪l

i=1�i , we define the waiting time random variable W(�) as

W(�)= inf{n : n ∈ J+, occurrence of any pattern �1, . . . , �l at the n-th trial}.
(2)

It follows from the above definition that mathematically, the waiting time W(�)
of a compound pattern � = ∪l

i=1�i can always be represented as

W(�) = inf{W(�1), W(�2), . . . , W(�l)}, (3)

where W(�i) are the waiting time random variables of the simple patterns �i ,
i = 1, . . . , l, defined by Eq. (1). For this reason, the waiting time W(�) of a
compound pattern is often referred to as the sooner waiting time of l distinct
simple patterns.

Waiting time distributions of runs and patterns, such as geometric, geometric
of order k, negative binomial, and sooner and later, have been applied success-
fully in numerous areas of statistics and applied probability. Over the past several
decades, the theory of waiting time distributions has become an indispensable tool
for studying applications in fields such as DNA sequence homology and the relia-
bility of engineering systems. A considerable amount of literature treating waiting
time distributions was published in the last century, but most formulae were ob-
tained through combinatoric analysis under the restriction that {Xt } is a sequence
of independent and identically distributed (i.i.d.) two- or multi-state trials. The
recent book by Balakrishnan and Koutras (2002) provides excellent information
on past and current developments in this area. Recently, Fu and Koutras (1994),
Koutras and Alexandrou (1995, 1997), Fu (1996), Lou (1996), Koutras (1997),
Aki and Hirano (1999), Han and Aki (2002a), Han and Aki (2002b), and Fu and
Chang (2002) studied waiting time problems, via various techniques including
finite Markov chain imbedding, for the case where {Xt } is a sequence of first or-
der Markov dependent two- or multi-state trials. Han and Hirano (2003) treated
the waiting times for compound patterns generated by two patterns in a sequence
of multi-state first-order Markov dependent trials using the generating function
technique. Aki and Hirano (2004) further studied waiting time problems for a two-
dimensional pattern. The recent book by Fu and Lou (2003) provides some details
and results for this approach. However, there are no general results for the waiting
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time distributions of simple or compound patterns when {Xt } is a sequence of r-th
(r ≥ 1) order Markov dependent multi-state trials.

This manuscript mainly studies the waiting time distributions for simple and
compound patterns under the general setting where {Xt } consists of a sequence
of r-th order homogeneous Markov dependent multi-state trials. We show that the
waiting time of a specified run or pattern � (simple or compound) has a general ge-
ometric distribution in the following sense: there exists an imbedded finite Markov
chain {Yt } defined on a state space �(�) with a transition probability matrix of the
form

M =
(

N C

O I

)
, (4)

such that, for n ≥ r + 1,

P(W(�) = n) = ξNn−r−1(I − N)1′, (5)

or

P(W(�) ≥ n) = ξNn−r−11′, (6)

where ξ is the initial distribution at the r-th trial induced by the ergodic distribution
of the r-th order Markov dependent trials {Xt }, I denotes an identity matrix, and
1 is a row vector with each entry equal to one. The matrix N is referred to as the
essential transition probability matrix, and is defined by Eq. (4). The two equations
(5) and (6) are equivalent, but Eq. (6) is easier to deal with mathematically; hence
we will focus on the tail probability given by Eq. (6) throughout the manuscript.
Some characteristics of the waiting time distribution of W(�), such as the mean
and the probability generating function, are also studied. Further, we provide a
large deviation approximation for the tail probability of W(�) in the sense that

lim
n→∞

1

n
log P(W(�) ≥ n) = −β, (7)

where β = − log λ[1] and λ[1] is the largest eigenvalue of the essential transition
probability matrix N . More precisely, the tail probability P(W(�) ≥ n) can be
approximated by its exponential rate β in the sense that there exists a constant
c, which is mainly a function of the largest eigenvalue λ[1] and its corresponding
eigenvector η[1], such that

P(W(�) ≥ n) ∼ c exp{−nβ}. (8)

This manuscript is organized in the following way. Section 2 sets up the notation,
and studies the ergodic distribution induced by the higher order Markov depen-
dent multi-state trials. Section 3 treats mainly the exact distribution of the waiting
time of a simple pattern, and Sect. 4 considers the waiting time of a compound
pattern. Section 5 provides the generating function, the mean and the large deviation
approximation. Section 6 gives numerical examples along with some discussion
for possible extensions of our approach.
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2 Notation and the r-th order markov chain

Let {Xt } be a sequence of irreducible, aperiodic and homogeneous r-th order Mar-
kov dependent m-state random variables (trials) defined on the state space S =
{b1, . . . , bm}. For r ≥ 1, let

Sr = {x = x1 . . . xr : xi ∈ S, i = 1, . . . , r}

be the set of all possible outcomes of r trials, with Card(Sr ) = mr . Given x ∈ Sr ,
we define the r-th order transition probabilities for the homogeneous Markov chain
{Xt }:

P(Xt = b|Xt−r = x1, . . . , Xt−1 = xr) = px•b (9)

for every b ∈ S and x ∈ Sr , probabilities which are independent of t . This is
equivalent to saying that, for every t ,

P(Xt−r+1 . . . Xt = x2x3 . . . xrb|Xt−r . . . Xt−1 = x1 . . . xr) = px•b. (10)

Since {Xt } is an irreducible, aperiodic and homogeneous Markov chain, it fol-
lows from Eq. (10) that the ergodic probabilities πx exist for every x ∈ Sr , and
that

πx = P(Xt−r+1 . . . Xt = x) = P(Xτ−r+1 . . . Xτ = x) (11)

for any t and τ . Denote by π = (πx : x ∈ Sr ) the ergodic distribution of x on
Sr . It is well known that the ergodic distribution π is the solution of the following
equations:

πA = π , (12)

and

∑
x∈Sr

πx = 1, (13)

where A = (pxy) is an mr × mr matrix, and for x, y ∈ Sr ,

pxy =
{

px•b if y = Lr−1(x)b, b ∈ S

0 otherwise,
(14)

with Lr−1(x) = x2 . . . xr , the subsequence consisting of the last (r − 1) symbols
of x. The ergodic distribution π generated by the homogeneous Markov chain will
play an important role in forming the initial distribution for the imbedded Markov
chain of W(�).
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3 Waiting time distribution of a simple pattern

Let � = bi1 . . . bik be a specified simple pattern of length k. We study separately
the distribution of the waiting time W(�) for the two cases k ≤ r and k > r .
Before we present general results we would like to provide a simple example with
k ≤ r .

Example 1 Let S = {F, S}, r = 3, S3 = {FFF, FFS, FSF, FSS, SFF, SFS,
SSF , SSS}, and {Xt }∞−∞ be an irreducible, aperiodic and third order homogeneous
Markov chain having the transition probabilities

{px•b : x ∈ S3, b ∈ S} = {pFFF ·F , pFFF ·S, . . . , pSSS·F , pSSS·S}.
Given the transition probabilities px·b defined above, it follows from Eqs. (12) and
(13) that the ergodic distribution π = (πx : x ∈ Sr ) = (πFFF , πFFS, . . . , πSSF , πSSS)
is the solution of the equations

πA = π and
∑
x∈S3

πx = 1,

where the transition probability matrix A is determined via Eq. (14) as

A =

FFF

FFS

FSF

FSS

SFF

SFS

SSF

SSS




pFFF ·F pFFF ·S 0 0 0 0 0 0

0 0 pFFS·F pFFS·S 0 0 0 0

0 0 0 0 pFSF ·F pFSF ·S 0 0

0 0 0 0 0 0 pFSS·F pFSS·S
pSFF ·F pSFF ·S 0 0 0 0 0 0

0 0 pSFS·F pSFS·S 0 0 0 0

0 0 0 0 pSSF ·F pSSF ·S 0 0

0 0 0 0 0 0 pSSS·F pSSS·S




.

Given a simple pattern � = SS with k = 2, suppose that we are interested in
finding the exact distribution of the waiting time W(�), where we begin counting
symbols toward the pattern � at time t = 1. Let us consider the first three trials
X1X2X3 = x ∈ S3 and define the subsets

S3
2(�) = {SSF, SSS} = {x : W(�) = 2, x ∈ S3},

S3
3(�) = {FSS} = {x : W(�) = 3, x ∈ S3},

and

S3
α(�) = S3

2(�) ∪ S3
3(�) = {SSF, SSS, FSS}.

Since we count toward the pattern starting from t = 1, it follows from the definition
of W(�) given by Eq. (1) that P(W(�) = 1) ≡ 0, P(W(�) = 2) = πSSF + πSSS

and P(W(�) = 3) = πFSS .
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We construct the imbedded homogeneous Markov chain {Yt }∞4 on the state
space

�(�) = {FFF, FFS, FSF, SFF, SFS, α},
where {α} = {SSF, SSS, FSS} represents an absorbing state. Note that every
state in the state space �(�) has pattern length k, and �(�) ⊆ Sr . The initial
distribution of Y3 is given by

ξ 3 = (P (Y3 = x) : x ∈ �(�)) = (πFFF , πFFS, πFSF , πSFF , πSFS, πSSF +πSSS +πFSS),

and the transition probability matrix of the imbedded Markov chain has the form

M =

FFF

FFS

FSF

SFF

SFS

α




pFFF ·F pFFF ·S 0 0 0 0

0 0 pFFS·F 0 0 pFFS·S
0 0 0 pFSF ·F pFSF ·S 0

pSFF ·F pSFF ·S 0 0 0 0

0 0 pSFS·F 0 0 pSFS·S

0 0 0 0 0 1




=
(

N C

0 1

)
.

For n ≥ 4, since {Yt }∞4 is an imbedded Markov chain for W(�), it follows
from the Chapman-Kolmogorov equation that

P(W(�) ≥ n|ξ 3) = P(Yn ∈ �(�) − {α}|ξ 3)

= ξ 3M
n−4(1, 1, 1, 1, 1, 0)′

= (πFFF , πFFS, πFSF , πSFF , πSFS)N
n−4(1, 1, 1, 1, 1)′.

In view of the above detailed example, we consider that the following general
results hold for the initial and waiting time distributions of a simple pattern �.

Lemma 3.1 Assume {Xt }∞−∞ is a sequence of irreducible, aperiodic, and r-th order
homogeneous Markov dependent m-state trials with the transition probabilities
px·b, x ∈ Sr and b ∈ S. Given a specified simple pattern � = bi1bi2 . . . bik of
length k ≤ r , and assuming that counting toward the pattern starts from t = 1,
then

(i) for every x ∈ Sr , the ergodic probability πx exists,
(ii) P(W(�) ≥ r + 1, X1X2 . . . Xr = x) = πx , for all x ∈ {Sr − Sr

α}, and
(iii)

P(W(�) = j) =
∑
x∈Sr

j

πx, (15)

where

Sr
j = {x : W(�) = j and x ∈ Sr}, (16)
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for all j = k, . . . , r , and

P(W(�) ≤ r) =
∑
x∈Sr

α

πx,

where

Sr
α = ∪r

j=kS
r
j .

Proof Since {Xt } is an irreducible, aperiodic and homogeneous Markov chain,
the existence of the ergodic probabilities πx for all x ∈ Sr is guaranteed, and the
ergodic distribution π = (πx : x ∈ Sr ) is the solution of Eqs. (12) and (13) (see
Feller 1968).

It follows from the Definition (16) that for every k ≤ j ≤ r ,

P(W(�) = j and X1 . . . Xr = x) = πx, for every x ∈ Sr
j . (17)

Results (ii) and (iii) are then immediate consequences of Eq. (17). This completes
the proof. ��

Let us group all the x ∈ Sr
α as an absorbing state α, and define the state space

for the imbedded Markov chain {Yt }∞r of the waiting time random variable W(�) as

�(�) = {Sr − Sr
α} ∪ {α}. (18)

We define a mapping 〈·, ·〉�(�): �(�) × S → �(�) as, for every given x ∈ �(�)
and b ∈ S,

y = 〈x, b〉�(�) =




α if x = α and b ∈ S

Lr−1(x)b if x �= α and Lr−1(x)b /∈ Sr
α

α if x �= α and Lr−1(x)b ∈ Sr
α.

(19)

In view of our Example 3.1 and Lemma 3.1, the following results hold.

Theorem 3.1 Assuming � is a simple pattern with length k ≤ r , the waiting time
random variable W(�) is Markov chain imbeddable. The imbedded Markov chain
{Yt }∞r defined on the state space �(�) given by Eq. (18) has

(i) the initial distribution, at t = r ,

ξ r = (ξ : ξα), (20)

where ξ = (πx; x ∈ �(�) − {α}) and ξα = ∑
x∈Sr

α
πx ,

(ii) the transition probability matrix

M = (pxy) = �(�) − α
α

(
N C

0 1

)
, (21)

where the transition probabilities are given by, for every x, y ∈ �(�),

pxy =




px•b if x ∈ �(�) − {α}, y = 〈x, b〉�(�), and b ∈ S

1 if x = y = α

0 otherwise,

(22)

with 〈·, ·〉�(�) given by Eq. (19), and
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(iii) for n < k, P(W(�) = n) = 0, for k ≤ n ≤ r , P(W(�) = n) = ∑
x∈Sr

n
πx ,

and for n ≥ r + 1,

P(W(�) ≥ n) = ξNn−r−11′. (23)

Proof Since {Xt } is a sequence of irreducible, aperiodic and r-th order homoge-
neous Markov dependent trials, it follows from Lemma 3.1 that, for t = r and
for every x ∈ {Sr − Sr

α}, we have P(W(�) ≥ r + 1, X1 . . . Xr = x) = πx . For
x ∈ Sr

α , it is easy to see that

ξα = P(W(�) ≤ r) = P(x ∈ Sr
α) =

∑
x∈Sr

α

πx .

It follows that Yr has a distribution ξ r = (ξ : ξα) on �(�), where ξ = (πx : x ∈
�(�) − {α}) and ξα = ∑

x∈Sr

α
πx . This completes the proof of Result (i).

For t ≥ r + 1, we define a homogeneous Markov chain {Yt } on the state space
�(�) with the transition matrix M = (pxy). Given Yt−1 = x, x ∈ �(�) and
Xt = b, b ∈ S, we define

Yt = 〈Yt−1, Xt 〉�(�), (24)

where 〈·, ·〉�(�) is defined by Eq. (19). It follows from the above definition that,
for every t = r, r + 1, . . . , Yt = x contains the necessary information about the
r-th order Markov dependency and the subpattern of �. For every x ∈ �(�), we
define a subset in �(�):

[x, S] = {y : y ∈ �(�), y = 〈x, b〉�(�), b ∈ S}. (25)

Note that [α, S] = {α}. It clearly follows from the definitions of Eqs. (19) and (24)
that the transition probabilities are defined as: for x, y ∈ �(�),

pxy =




px•b if x ∈ �(�) − {α}, y = 〈x, b〉�(�) and b ∈ S

1 if x = y = α

0 if y /∈ [x, S].

This completes the proof of Result (ii). The first two parts of Result (iii) are con-
cluded directly from Lemma 3.1 (iii). For n ≥ r + 1, since W(�) ≥ n if and only
if Yn−1 /∈ {α}, the last part of Result (iii) is a direct consequence of the identity

P(W(�) ≥ n) = P(Yn−1 ∈ �(�) − {α}),
the Chapman–Kolmogorov equation, and Eq. (21). ��

For the case of k > r , we define a set of essential subsequences for the pattern
� = bi1 . . . bir bir+1 . . . bik with length longer than r but less than or equal to k − 1,

Sr
+ = {bi1 . . . bir+1, bi1 . . . bir+2 , . . . , bi1 . . . bik−1} with α = bi1 . . . bik = �,

(26)

and define the state space for the imbedded Markov chain {Yt } as

�(�) = Sr ∪ Sr
+(�) ∪ {α}. (27)
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Note that every state x in �(�) defined by Eq. (27) has to have length l greater
than or equal to r but less than or equal to k (i.e. r ≤ l ≤ k). Here we need to
extend our definition of 〈x, b〉�(�) given by Eq. (19) to cover the cases where the
state space �(�) contains states longer than r . For x = x1 . . . xl , r ≤ l ≤ k, with
x ∈ �(�) and b ∈ S, we define

〈x, b〉�(�) =
{

α if x = α and for all b ∈ S

y if x ∈ �(�) − {α}, (28)

where y is the longest subsequence of {x1x2 . . . xlb, x2x3 . . . xlb, . . . , xl−r+2xl−r+3
. . . xlb} in �(�). This operation 〈·, ·〉�(�) is based on the forward and backward
counting principle given by Fu (1996), and we define Yt = 〈Yt−1, Xt 〉�(�). Fol-
lowing from the definition of 〈·, ·〉�(�), if Yt = α, it means � has occurred before
or at time t .

Remark 1 Theorem 3.1 (iii) can be viewed as the conditional probability distribu-
tion in the following sense: for n ≥ r + 1 and x ∈ �(�) − {α},

P(W(�) ≥ n|(x1, . . . , xr) = x) = (0, . . . , 0, 1, 0, . . . , 0)Nn−r−11,

where (0, . . . , 0, 1, 0, . . . , 0) is the unit vector corresponding to x. The conditional
probability is useful when studying more complicated problems. The proof of this
result is an immediate consequence of Theorem 3.1 (iii) with given (x1, . . . , xr) =
x and (0, . . . , 0, 1, 0, . . . , 0) as the initial probability.

Theorem 3.2 For k > r , the waiting time random variable W(�) is finite Markov
chain imbeddable. The imbedded Markov chain {Yt } defined on the state space
�(�) given by Eq. (27) has

(i) the initial distribution, at t = r ,

ξ r = (π : 0),

where ξ r is a 1 × (mr + k − r) vector, π = (πx; x ∈ Sr ) is a 1 × mr row
vector, and 0 = (0, . . . , 0) is a 1 × (k − r) row vector,

(ii) the imbedded Markov chain Yt = 〈Yt−1, Xt 〉�(�), t = r + 1, . . . , has the
transition probability matrix

M = (pxy) = �(�) − α
α

(
N C

0 1

)
,

where the transition probabilities of the Markov chain {Yt } are given by

pxy =




pLr(x)•b if x �= α, y = 〈x, b〉�(�) and b ∈ S

1 if x = y = α

0 otherwise,

(29)

with Lr(x) representing the last r symbols of x, and
(iii) for n ≥ k,

P(W(�) ≥ n) = ξNn−r−11′, (30)

where ξ is equivalent to ξ r without the last coordinate, i.e. ξ r = (ξ : 0).
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Proof Since the counting toward pattern � starts at t = 1, then at the time t = r ,
P(Yr = x) = πx for all x ∈ Sr , where πx are the ergodic probabilities on Sr

induced by the r-th order Markov chain {Xt }. Further, P(Yr = x) = 0 for all
x ∈ S+, as every state in Sr

+ has length longer than r . Therefore Yr has the distri-
bution ξ r = (π : 0) on �(�). This proves Result (i).

Note that α is an absorbing state, i.e. if Yi = α then Yj = α for all j ≥ i
and pαα = 1. Since {Xt } is a sequence of r-th order Markov dependent trials, and
since every x ∈ �(�) − {α} has length longer than or equal to r , then for Xt = b,
b ∈ S and y = 〈x, b〉�(�), the transition probability from x to y has to be pLr(x)•b.
Further, if x ∈ �(�) − {α} and if y �= 〈x, b〉�(�) for any b ∈ S, then there is zero
probability to transition from state x to state y. This proves Result (ii). Since {Yt }
forms a homogeneous Markov chain with transition probability matrix

M = (pxy) = �(�) − α

α

(
N C

0 1

)
(31)

and initial distribution ξ r = (ξ : 0) at t = r , Result (iii) is an immediate conse-
quence of the identity

P(W(�) ≥ n) = P(Yn−1 ∈ �(�) − {α}),
the Chapman–Kolmogorov equation, and the structure of Eq. (31). This completes
the proof. ��

4 Waiting time of a compound pattern

The results in Theorems 3.1 and 3.2 apply to the waiting time of a simple pattern,
and can be extended to the waiting time of a compound pattern � = ∪l

i=1�i ,
a union of l distinct simple patterns. Before we state our general results for the
waiting time distribution of a compound pattern, we again would like to first illus-
trate the construction of imbedded Markov chain {Yt } by providing the following
example.

Example 2 Let {Xt } be a sequence of 3rd (r = 3) order Markov dependent two-
state trials. Consider a compound pattern � = �1 ∪ �2 generated by two distinct
simple patterns �1 = SS and �2 = FFFFF with lengths k1 = 2 and k2 = 5,
respectively. Since k1 < r < k2, following Theorems 3.1 and 3.2, we define

S3 = {FFF, FFS, FSF, FSS, SFF, SFS, SSF, SSS}
S3

2(�1) = {SSS, SSF }, S3
3(�1) = {FSS}, (32)

and S3
+(�2) = {FFFF }.

Further, we define

α1 ≡ {SSS, SSF, FSS} and α2 ≡ {FFFFF } (33)

as absorbing states for the state space �(�) defined by

�(�) = {S3 − ∪3
j=2S

3
j (�1)} ∪ {α1, α2} ∪ S3

+(�2)

= {FFF, FFS, FSF, SFF, SFS, FFFF, α1, α2}. (34)
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Again, for each x ∈ �(�) and b ∈ S, we define, similarly to Eq. (28), a mapping
〈., .〉�(�): �(�) × S → �(�) as

〈x, b〉�(�) =
{

αi if x = αi, i = 1, 2, and b ∈ S

y if x ∈ �(�) − {α1, α2},
(35)

wherey is the longest subsequence of {x1x2 . . . xlb, x2x3 . . . xlb, . . . , xl−r+2. . .xlb}
in �(�) and r ≤ l ≤ max(k1, k2).

The imbedded Markov chain {Yt } associated with the compound pattern � =
�1 ∪ �2 is defined as

Yt = 〈Yt−1, Xt 〉�(�), for t ≥ r + 1, (36)

with transition probability matrix

M =

FFF

FFS

FSF

SFF

SFS

FFFF

α1

α2




0 pFFF ·S 0 0 0 pFFF ·F 0 0

0 0 pFFS·F 0 0 0 pFFS·S 0

0 0 0 pFSF ·F pFSF ·S 0 0 0

pSFF ·F pSFF ·S 0 0 0 0 0 0

0 0 pSFS·F 0 0 0 pSFS·S 0

0 pFFF ·S 0 0 0 0 0 pFFF ·F

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




=
(

N C

O I

)
. (37)

Given the parameters {px•b : x ∈ Sr and b ∈ S}, the initial distribution is

ξ 3 = (πFFF , πFFS, πFSF , πSFF , πSFS, 0, πSSS + πSSF + πFSS, 0) (38)

and the waiting time distribution of W(�) is given by

P(W(�)≥n)=(πFFF , πFFS, πFSF , πSFF , πSFS, 0)Nn−4(1, 1, 1, 1, 1, 1)′. (39)

Remark 2 The two absorbing states α1 and α2 could be grouped together as one
single absorbing state α. This will not affect the computation of the distribution
of the waiting time random variable W(�). In this case, the system first enters the
state α when the compound pattern � = �1 ∪ �2 has occurred.

Let �1, . . . , �m be m distinct simple patterns with lengths k1, . . . , km, respec-
tively, and let � = ∪m

i=1�i be the compound pattern generated by the distinct
simple patterns �i . We assume that k1, . . . , kg ≤ r < kg+1, . . . , km. We define

(i) for i = 1, . . . , g,

Sr
−(�i) = {x : x ∈ Sr and pattern �i occurred in the first r trials }

= ∪r
j=ki

Sr
j (�i), (40)

and

Sr
−(�) = ∪g

i=1S
r
−(�i), (41)
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(ii) for i = g + 1, . . . , m,

Sr
+(�i) = {all the sequential subpatterns of �i with

length greater than r but less than ki}
= {bi1 . . . bir+1, . . . , bi1 . . . biki−1}, (42)

and

Sr
+(�) = ∪m

i=g+1S
r
+(�i), (43)

(iii)

Sα = Sr
−(�) ∪ {�g+1, . . . , �m}, (44)

and the state space

�(�) = {Sr − Sr
−(�)} ∪ Sr

+(�) ∪ {α}, (45)

where all x ∈ Sα are grouped as an absorbing state α.

Further, we define the mapping 〈., .〉��
: �(�) × S → �(�) for the compound

pattern �, analogous to Eqs. (28) and (35), as

〈x, b〉�(�) =
{

α if x = α and all b ∈ S

y if x ∈ �(�) − {α}, (46)

wherey is the longest subsequence of {x1x2. . .xlb, x2x3 . . . xlb, . . . , xl−r+2 . . . xlb}
in �(�) and r ≤ l ≤ max(k1, . . . , km). It follows from Eqs. (40) to (46) that the
imbedded homogeneous Markov chain {Yt }∞r may be defined as

Yt = 〈Yt−1, Xt 〉�(�)

on the state space �(�) with the transition probability matrix

M = (pxy) = �(�) − α

α

(
N C

0 1

)
, (47)

where the transition probabilities P(Yt = y|Yt−1 = x) = pxy are defined by the
following equation: for x, y ∈ �(�),

pxy =




pLr(x)•b if x �= α, y = 〈x, b〉�(�), b ∈ S

1 if x = y = α

0 otherwise.

(48)

Note again that the state Yt contains implicitly two pieces of essential information:
(1) the longest sequential subpattern of � at time t , and (2) the r-th order Markov
dependent sequence at time t . In view of our construction of the imbedded Markov
chain and Eqs. (40, 41, 42, 43, 44, 45, 46, 47, 48), the following theorem holds.
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Theorem 4.1 If {Xt }∞−∞ is a sequence of irreducible, aperiodic and homogeneous
r-th order Markov dependent m-state trials, and � = ∪m

i=1�i is a compound
pattern generated by m simple patterns, then the imbedded Markov chain {Yt }∞r
of the waiting time W(�), defined on the state space �(�) given by Eq. (45), has

(i) the initial distribution, at t = r ,

ξ r = (ξ(x), x ∈ �(�))

= ((ξ(x), x ∈ {Sr − Sr
−(�)}) : (ξ(x), x ∈ Sr

+(�)) : (ξ(x), x = α)),

where

ξ(x) =




πx if x ∈ {Sr − Sr
−(�)}

0 if x ∈ Sr
+(�)∑

x∈Sr

−(�)
πx if x = α,

(49)

with the transition probability matrix M given by Eqs. (47) and (48), and
(ii) for n ≥ r + 1,

P(W(�) ≥ n) = ξNn−r−11′, (50)

where ξ = (ξ(x), x ∈ �(�) − {α}).
Proof The proof is very similar to the proofs of Theorems 3.1 and 3.2. The results
are immediate consequences of our construction of Eqs. (40, 41, 42, 43, 44, 45, 46,
47, 48). We leave the details for the reader. ��

Further, if we are also interested in knowing the individual probabilitiesP(W(�)
= W(�i) = n) for i = 1, . . . , m, we have to set �1 = α1, . . . , �m = αm as
absorbing states, as in Example 4.1. We expect the following result holds.

Theorem 4.2 Given � = ∪m
i=1�i , then for n ≥ r + 1,

P(W(�) = W(�i) = n) = ξNn−r−1C ′(αi), (51)

where N is defined by Eq. (47) and C ′(αi) = (pxαi
: x ∈ �(�) − {α1, . . . , αm})′,

the i-th column of matrix C.

Proof For every 1 ≤ i ≤ m, it follows from Theorem 4.1 that

P(W(�) = W(�i) = n) =
∑

x∈�(�)−{α1,... ,αl}
P(Yn−1 = x)P (Yn = αi |Yn−1 = x)

=
∑

x∈�(�)−{α1,... ,αl}
ξNn−r−1pxαi

e′
x

= ξNn−r−1C ′(αi),

where ex = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector associated with x. ��
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5 Generating functions, spectrum analysis, and large deviation
approximation

Let λ[1], . . . λ[d] be the ordered eigenvalues of the essential transition probability
matrix N , such that |λ[1]| ≥ |λ[2]| ≥ · · · ≥ |λ[d]|, and let η′

[1], . . . , η′
[d] be the

column eigenvectors corresponding to the eigenvalues λ[i], i = 1, . . . , d, respec-
tively. Note that since N is a substochastic matrix and since its eigenspace has
the same dimension as NB>, it follows from the Perron–Frobenius Theorem (see
Seneta 1981) that the largest eigenvalue λ[1] is unique and 1 > λ[1] > |λ[2]| ≥ 0.
Define

	W(�)(s) =
∑

n=r+1

snP (W(�) ≥ n), for |s| < 1/λ[1].

The following general results hold for the probability generating function of the
waiting time distribution of a compound pattern � = ∪m

i=1�i .

Theorem 5.1 Assume that {Xt }∞−∞ is a sequence of irreducible, aperiodic and
homogeneous r-th order (r ≥ 1) Markov dependent multi-state trials with transi-
tion probabilities px•b, x ∈ Sr and b ∈ S, and that � = ∪m

i=1�i is a compound
pattern generated by m distinct simple patterns �i with lengths k1, . . . , kg ≤
r < kg+1, . . . , km. Then the generating function of the waiting time distribution of
W(�) is

ϕW(�)(s) =
r∑

j=1

sj
∑

x∈∪g

i=1S
r

j (�i)

πx + srξ1′ +
(

1 − 1

s

)
	W(�)(s), (52)

where πx , x ∈ Sr , are ergodic probabilities defined by Lemma 3.1, ξ is defined by
Eq. (20),

	W(�)(s) =
d∑

i=1

cis
r+1ξη′

[i]

1 − λ[i]s
, for |s| < 1/λ[1], (53)

and ci , for i = 1, 2, . . . , d, are the coefficients of 1′ = ∑d
i=1 ciη

′
[i].

Note that, if {Xt } is a sequence of i.i.d. trials (r = 0), it is easy to see that

r∑
j=1

sj
∑

x∈∪g

i=1S
r

j (�i)

πx ≡ 0, (54)

and

srξ1′ ≡ 1. (55)

The generating function ϕW(�)(s) in Eq. (52) then reduces to the well-known for-
mula (see Fu and Lou 2003)

ϕW(�)(s) = 1 +
(

1 − 1

s

)
	W(�)(s). (56)
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Proof Since 1′ can be represented as a linear combination of eigenvectors, i.e.
1′ = ∑d

i=1 ciη
′
[i] , it follows from the definition of 	W(�)(s), Eq. (20), and Theo-

rem 4.1 that

	W(�)(s) =
∞∑

n=r+1

snP (W(�) ≥ n)

= sr+1
∞∑

n=r+1

sn−r−1ξNn−r−1

(
d∑

i=1

ciη
′
[i]

)

=
d∑

i=1

sr+1
∞∑

n=r+1

ci(sλ[i])
n−r−1ξη′

[i]

=
d∑

i=1

cis
r+1ξη′

[i]

1 − λ[i]s
. (57)

The existence of Eq. (57) requires the convergence of all power series
∑∞

n=r+1

(sλ[i])
n−r−1, i = 1, . . . , d, and that requires |s| < 1/λ[1]. This completes the

proof of Eq. (53). It follows from the definition of ϕW(�)(s) and Theorem 4.1 that

ϕW(�)(s) =
∞∑

n=1

snP (W(�) = n)

=
r∑

n=1

snP (W(�) = n) +
∞∑

n=r+1

snP (W(�) = n), (58)

where

r∑
n=1

snP (W(�) = n) =
r∑

n=1

sn
∑

x∈∪g

i=1S
r

n(�i)

πx, (59)

and

∞∑
n=r+1

snP (W(�) = n) =
∞∑

n=r+1

snξNn−r−1(I − N)1′

=
∞∑

n=r+1

snξNn−r−11′ −
∞∑

n=r+1

snξNn−r1′

=
∞∑

n=r+1

snξNn−r−11′ − 1

s

∞∑
n=r+1

snξNn−r−11′ + srξ1′.

(60)

The result in Eq. (52) follows immediately from Eqs. (58), (59), and (60). This
completes the proof. ��
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Theorem 5.2 The mean waiting time of W(�) is given by

EW(�) =
r∑

j=1

P(W(�) ≥ j) +
w∑

i=1

Si, (61)

where P(W(�) ≥ 1) ≡ 1,

P(W(�) ≥ j) = 1 −
∑

x∈∪j−1
i=1 S

r

j

πx, j = 2, . . . , r, (62)

and (S1, . . . , Sw) is the solution of the simultaneous equations

Si = ξe′
i + (S1, . . . , Sw)Ne′

i , i = 1, . . . , w, (63)

where w is the size of the matrix N .

Proof Since EW(�) = ∑r
n=1 P(W(�) ≥ n) +∑∞

n=r+1 P(W(�) ≥ n), Eq. (62)
follows immediately from the definitions of P(W(�) ≥ n) and πx. Note that

∞∑
n=r+1

P(W(� ≥ n) =
w∑

i=1

∞∑
n=r+1

ξNn−r−1e′
i =

w∑
i=1

Si,

where Si = ∑∞
n=r+1 ξNn−r−1e′

i , which can be expressed as, for i = 1, . . . , w,

Si = ξe′
i +

∞∑
n=r+2

ξNn−r−2(Ne′
i )

= ξe′
i +

w∑
j=1

pji

∞∑
n=r+2

ξNn−r−2e′
j

= ξe′
i + (S1, . . . , Sw)Ne′

i .

This completes the proof. ��
Remark 3 The function 	W(�)(s) can also be obtained directly via the essential
transition probability matrix N by using the method of Fu and Chang (2002):

	W(�)(s) = φ1(s) + . . . + φw(s),

where (φ1(s), φ2(s), . . . , φw(s)) is the solution of the simultaneous equations

φi(s) = sr+1ξe′
i + s(φ1(s), φ2(s), . . . , φw(s))Ne′

i ,

for i = 1, . . . , w.

The tail probability P(W(�) ≥ n) can also be approximated via the proba-
bility of large deviation in terms of the largest eigenvalue and its corresponding
eigenvector.
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Theorem 5.3 Under the assumptions of Theorem 5.1, we have

(i) lim
n→∞

1

n
log P(W(�) ≥ n) = −β, (64)

where β = − log λ[1], and

(ii) lim
n→∞

P(W(�) ≥ n)

C∗λn
[1]

= 1, (65)

where C∗ = c1(ξη′
[1])λ

−r−1
[1] .

In view of Theorems 5.1 and 5.3, the waiting time random variable W(�) has a
general geometric distribution characterized by the essential transition probability
matrix N , and for large n, its tail probability P(W(�) ≥ n) depends mainly on
the largest eigenvalue λ[1] and its corresponding eigenvector η′

[1]:

P(W(�) ≥ n) ∼ C∗ exp{−nβ}, (66)

whereβ = − log λ[1] andC∗ = c1(ξη′
[1])λ

−r−1
[1] . Hence the tail probabilityP(W(�)

≥ n) converges to zero exponentially with a rate constant β = − log λ[1]. In view
of Theorem 5.3 (ii), numerically we expect the large deviation approximation in
Eq. (66) to perform well for moderate and large n; this can be seen in our numerical
examples presented in Sect. 6.

Proof (of Theorem 5.3) Since the essential transition probability matrix N is a
substochastic matrix, it follows from the Perron-Frobenius Theorem that the larg-
est eigenvalue, λ[1] > |λ[2]| ≥ . . . ≥ |λ[d]|, is unique with 1〉λ[1]〉0. Note that
1′ = ∑d

i=1 ciη
′
[i]. For n ≥ r + 1, we have

P(W(�) ≥ n) = ξNn−r−11′

=
d∑

i=1

ciλ
n−r−1
[i] ξη′

[i]

= C∗λn
[1]{1 + O((

|λ[2]|
λ[1]

)n)}, (67)

where C∗ = c1(ξη′
[1])λ

−r−1
[1] . Since d is fixed, and (

|λ[2]|
λ[1]

)n → 0 exponentially,
Result (i) is obtained directly by taking logarithms and dividing by n on both
sides of Eq. (67), followed by letting n → ∞. Result (ii) is also an immediate
consequence of Eq. (67). This completes the proof. ��
Remark 4 The coefficients ci , i = 1, . . . , d, can be computed by

ci = ei[η
′
[1], . . . , η′

[d]]
−11′, (68)

and can be used directly in Eq. (67) to obtain the exact probabilities for P(W(�) ≥
n).
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6 Numerical example and discussion

We will use Example 4.1 to illustrate our theoretical results, to check the efficiency
of the computations, and to confirm the accuracy of the large deviation approxi-
mation.

Let {Xt } be a sequence of 3rd order Markov dependent two-state trials with
transition probabilities pFFF ·F = 0.1, pFFF ·S = 0.9, pFFS·F = 0.15, pFFS·S = 0.85,
pFSF ·F = 0.2, pFSF ·S = 0.8, pFSS·F = 0.25, pFSS·S = 0.75, pSFF ·F = 0.3, pSFF ·S = 0.7,
pSFS·F = 0.35, pSFS·S = 0.65, pSSF ·F = 0.4, pSSF ·S = 0.6, pSSS·F = 0.45, and
pSSS·S = 0.55. Using the equations πA = π and πFFF +· · ·+πSSS = 1 gives the ergo-
dic probabilities πFFF = 0.0262, πFFS = 0.0786, πFSF = 0.0643, πFSS = 0.1643,
πSFF = 0.0786, πSFS = 0.15, πSSF = 0.1643, and πSSS = 0.2738.

For the compound pattern � = �1 ∪ �2, with �1 = SS and �2 = FFFFF ,
the tail probabilities of the waiting time of the compound pattern � are computed
through the equation P(W(�) ≥ n) = ξNn−41′ for n = 4, 5, · · · , using the
essential transition probability matrix N and the initial distribution ξ defined in
Example 4.1. For n = 1, 2, and 3, the probabilities P(W ≥ n) are calculated
directly from the ergodic distribution. The numerical results are provided in Fig. 1.

The largest eigenvalue and the corresponding eigenvector of N are λ[1] =
0.5860 andη[1] = (0.3189, 0.1774, 0.6931, 0.3752, 0.4140, 0.2725), respectively.
This yields the large deviation approximation

P(W(�) ≥ n) ∼= 3.0916 exp{n log λ[1]}
for large n. Table 1 provides a comparison of exact probabilities versus the large
deviation approximation for moderate and large n.

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

n

P
(W

(Λ
)=

n)

Fig. 1 The exact probabilities (solid lines) and the large deviation approximations (dashed line)
for the waiting time, P(W(�) = n), of the compound pattern � = �1 ∪ �2 in Example 4.1,
where �1 = SS and �2 = FFFFF
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Table 1 The exact probabilities and the large deviation approximations for P(W(�) ≥ n) of
Example 4.1

n Exact probability Large deviation Approximation

10 1.49681e-02 1.47725e-02
20 7.08312e-0.5 7.05871e-05
30 3.37598e-007 3.37286e-007
50 7.70143e-012 7.70092e-012
100 1.91825e-023 1.91825e-023
500 2.84318e-116 2.84318e-116
1000 2.61473e-232 2.61473e-232

The numerical computation of the exact probabilities P(W(�) ≥ n) via the
finite Markov chain imbedding approach is rather simple and efficient. In Example
4.1, for example, for the case n = 1,000, the CPU time is only a fraction of a
second on a current PC. The large deviation approximation performs extremely
well even when n is moderate (n = 30). In the limit of large n, the ratio of the
exact and the approximate probabilities tends to one.

For applications where the dimension of the transition probability matrix is
large, then, in the numerical evaluations for moderate and large values of n, the
computational time can be significantly reduced by taking advantage of the sparse
structure of the transition probability matrix (see, for example, the recursive equa-
tions presented in Fu and Lou 2003). Alternatively, various numerical methods for
obtaining several or all of the eigenvalues of the transition probability matrix, and
for calculating high powers of the matrix, can be applied effectively for moderate
values of n; for large n, our large deviation approximation should perform well.

Further, for a given pattern � (simple or compound) and a complete specifica-
tion of the transition probabilities px•b, the construction of the state space �(�)
and the transition probability matrix M of the imbedded Markov chain {Yt } can
be fully automated, based on Eqs. (22) and (29) or (48). Hence, obtaining the
distribution of patterns given by Eqs. (30) and (50) also can be fully automated.
Loosely speaking, all the results may be viewed as an extension of the application
of the forward and backward principle (Fu 1996) for r-th order Markov dependent
multi-state trials.

The extension of the results in Sects. 3, 4 and 5, for obtaining the distribution of
the random variable W(l, �), the waiting time of l patterns � (under non-overlap
counting), requires only the simple modification of adding an additional coordi-
nate to the state for the purpose of recording the number of patterns � that have
occurred. However, to find the probability generating function ϕW(l,�)(s) for higher
order Markov dependent sequences is somewhat complicated and tedious. We shall
not pursue this here.
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