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Abstract Let (X, Y ) be a random vector which follows in its upper tail a bivariate
extreme value distribution with reverse exponential margins. We show that the
conditional distribution function (df) of X + Y , given that X + Y > c, converges
to the df F(t) = t2, t ∈ [0, 1], as c ↑ 0 if and only if X, Y are tail independent.
Otherwise, the limit isF(t) = t . This is utilized to test for the tail independence of
X, Y via various tests, including the one suggested by the Neyman–Pearson lemma.
Simulations show that the Neyman–Pearson test performs best if the threshold c
is close to 0, whereas otherwise it is the Kolmogorov–Smirnov test that performs
best. The mathematical conditions are studied under which the Neyman–Pear-
son approach actually controls the type I error. Our considerations are extended to
extreme value distributions in arbitrary dimensions as well as to distributions which
are in a differentiable spectral neighborhood of an extreme value distribution.

Keywords Bivariate extremes · Pickands dependence function · Tail indepen-
dence · Tail dependence parameter · Neyman–Pearson test · Kolmogorov–Smirnov
test · Fisher’s κ · Chi-square goodness-of-fit test · Differentiable spectral neigh-
borhood · Generalized Pareto distribution

1 Introduction

Let (X, Y ) be a random vector (rv) with values in (−∞, 0]2, whose distribution
function (df) H(x, y) coincides, for x, y ≤ 0 close to 0, with a max-stable or
extreme value df (EV) G with reverse exponential margins, i.e.,

G(x, 0) = G(0, x) = exp(x), x ≤ 0,
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and

Gn
(x
n
,
y

n

)
= G(x, y), x, y ≤ 0, n ∈ N.

It is well-known that G can be represented as

G(x, y) = exp

(
(x + y)D

(
x

x + y

))
, x, y ≤ 0,

where D : [0, 1] → [1/2, 1] is the Pickands dependence function (see Pickands
(1981), Galambos ((1987), Theorem 5.4.5), Resnick ((1987), Proposition 5.11)). It
is absolutely continuous and convex, satisfiesD(0) = D(1) = 1, and its derivative
D′(z) has values between −1 and 1. The casesD(z) = 1 andD(z) = max(z, 1−z),
z ∈ [0, 1], characterize the cases of independence and complete dependence of the
margins of G. We refer to Falk and Reiss ((2005), Sect. 2), for elementary deriva-
tions of the basic properties of D.

Examples are the Marshall–Olkin df (Marshall and Olkin 1976), the bivariate
Gumbel df of type B (Gumbel 1960; Johnson and Kotz 1972 p. 251), or the Hüsler–
Reiss EV (Hüsler and Reiss 1989). For well-organized accounts of the current state
of research of the theory of multivariate extreme value distributions we refer to
Kotz and Nadarajah ((2000), Chapter 3), and to Coles ((2001), Chapter 8).

Let now (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ). If diagnostic
checks of (X1, Y1), . . . , (Xn, Yn) suggest X, Y to be independent in their upper
tail, then modeling with dependencies leads to the over estimation of probabilities
of extreme joint events. Some inference problems caused by model mis-specifi-
cation are, for example, discussed in Dupuis and Tawn (2001). Testing for tail
independence is, therefore, mandatory in a data analysis of extreme values.

In Sect. 2 we establish the fact that the conditional distribution ofX+Y , given
X + Y > c, has a limiting df F(t) = t2, t ∈ [0, 1], as c ↑ 0 if and only if
D(z) = 1, z ∈ [0, 1]—i.e., if and only if X and Y are tail independent. If D is not
the constant function 1, then the limiting df is that of the uniform distribution on
[0, 1]: F(t) = t , t ∈ [0, 1].

This result will be utilized to define tests for the tail independence of X and Y
which are suggested by the Neyman–Pearson lemma as well as via the goodness-
of-fit tests that are based on Fisher’s κ , on the Kolmogorov-Smirnov test as well as
on the chi-square goodness-of-fit test, applied to the exceedancesXi + Yi > c in
the sample (X1, Y1), . . . , (Xn, Yn). Numerous simulations which we carried out
indicate that the Neyman–Pearson test (NPT) has the smallest type II error rate,
closely followed by the Kolmogorov–Smirnov test and the chi-square test, whereas
Fisher’s κ almost fails. The NPT does not, however, control the type I error rate
if the threshold c is too far away from 0. The other three tests control the type I
error rate for any c. Note that a multivariate EV with arbitrary one-dimensional
margins is transformed to an EV G with reverse exponential margins by simple
corresponding transformations of its margins.

In accordance with the work of Geffroy (1958, 1959) and Sibuya (1960), X
and Y are said to be tail independent or asymptotically independent if the tail
dependence parameter

χ := lim
c↑0
P(Y > c|X > c)
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equals 0. Note that χ = 2(1 −D(1/2)) and, thus, the convexity of D(z) implies
that χ = 0 is equivalent to the condition D(z) = 1, z ∈ [0, 1].

Recent attention given to the statistical properties of asymptotically indepen-
dent distributions is largely a result of a series of articles by Ledford and Tawn
(1996, 1997, 1998). Coles et al. (1999) give an elementary synthesis of the theory.

Peng (1999) proposed a consistent tail dependence parameter estimator and
established its asymptotic normality; see also the discussion in Kotz and Nadara-
jah ((2000), Sect. 3.2.1). Such a result could also be used to test for the asymptotic
independence ofX and Y . For a review of the statistical estimation in multivariate
extreme value models we refer to Kotz and Nadarajah ((2000), Sect. 3.6). For a
directory of the coefficients of tail dependence we refer to Heffernan (2000).

In Sects. 3 and 4 we investigate the NPT in more detail. In Sect. 3 we determine
the rate at which c has to converge to 0 such that the NPT actually controls the
type I error. In Sect. 4 we compute the asymptotic power of the NPT by consider-
ing a triangular array (X(n)1 , Y

(n)
1 ), . . . , (X(n)n , Y

(n)
n ) of rvs, whose tail dependence

parameter χn converges to 0 as n increases.
In Sect. 5 we extend our considerations to distributions, which are in a certain

neighborhood of an EV. In Sect. 6 we investigate generalized Pareto distributions
and in Sect. 7 we consider extreme value distributions in arbitrary dimension.

2 The bivariate case

We assume in the following that the rv (X, Y ) has a df H(x, y), which coincides,
for x, y close to 0, with the EVG(x, y) = exp((x + y)D(x/(x + y)), where D is
an arbitrary Pickands dependence function.

Lemma 2.1 We have for c < 0 close to 0

P(X + Y ≤ c) = exp(c)− c

1∫

0

exp(cD(z))
(
D(z)+D′(z)(1 − z)

)
dz.

Proof The following arguments have been taken from Ghoudi, Khoudraji, and
Rivest (1998). The conditional df of X + Y , given X = u < 0, is for c close to 0

P(X + Y ≤ c|X = u) = P(Y ≤ c − u|X = u)

= lim
ε↓0

P(Y ≤ c − u,X ∈ [u, u+ ε])

P (X ∈ [u, u+ ε])

= lim
ε↓0

G(u+ε, c−u)−G(u, c−u)
ε

ε

exp(u+ε)−exp(u)

= G(u, c − u)

exp(u)

(
D
(u
c

)
+D′

(u
c

) c − u

c

)

= exp
(
cD

(u
c

)
− u

)(
D
(u
c

)
+D′

(u
c

) c − u

c

)

if u > c, and

P(X + Y ≤ c|X = u) = 1 if u ≤ c.
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Hence we obtain

P(X + Y ≤ c)

=
0∫

−∞
P(Y ≤ c − u|X = u) exp(u) du

=
0∫

c

exp
(
cD

(u
c

))(
D
(u
c

)
+D′

(u
c

) c − u

c

)
du+ exp(c)

= exp(c)− c

1∫

0

exp(cD(u))
(
D(u)+D′(u)(1 − u)

)
du.

The following auxiliary result is actually one of the main results of the present
paper.

Lemma 2.2 We have uniformly for t ∈ [0, 1] as c ↑ 0

P(X + Y > ct |X + Y > c) =
{
t2(1 +O(c)), if D(z) = 1, z ∈ [0, 1],
t (1 +O(c)) elsewhere.

Proof From Lemma 2.1 and the Taylor expansion of exponentials we obtain uni-
formly for t ∈ [0, 1] and c close to 0

P(X + Y > ct |X + Y > c)

= 1 − exp(ct)+ ct
∫ 1

0 exp(ctD(u))
(
D(u)+D′(u)(1 − u)

)
du

1 − exp(c)+ c
∫ 1

0 exp(cD(u)) (D(u)+D′(u)(1 − u)) du

= −ct + ct
∫ 1

0 D(u)+D′(u)(1 − u) du+O
(
(ct)2

)

−c + c
∫ 1

0 D(u)+D′(u)(1 − u) du+O
(
c2
)

= t (1 +O(c))

if D is not the constant function 1. This follows from partial integration:

1∫

0

D(u)+D′(u)(1 − u) du = 2

1∫

0

D(u) du− 1 ∈ (0, 1]

and the fact that D(z) ∈ [1/2, 1] and that D(0) = 1.
If D(z) is the constant function 1, then we obtain uniformly for t ∈ [0, 1] and

c close to 0

P(X + Y > ct |X + Y > c)

= 1 − exp(ct)+ ct exp(ct)

1 − exp(c)+ c exp(c)

= −ct − (ct)2/2 + ct (1 + ct)+O
(
(ct)3

)

−c − c2/2 + c(1 + c)+O
(
c3
)

= t2(1 +O(c)).
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If X and Y are tail independent, then (X + Y )/c, conditional on X + Y > c,
has by Lemmas 2.1 and 2.2 for c close to 0 the df

Fc(t) := P(X + Y > tc|X + Y > c)

= 1 − (1 − tc) exp(tc)

1 − (1 − c) exp(c)

= t2(1 +O(c)), 0 ≤ t ≤ 1. (1)

Otherwise, the conditional df converges to the uniform df on [0,1].
Suppose now that we have n independent copies (X1, Y1), . . . , (Xn, Yn) of

(X, Y ). Fix c < 0 and consider only those observationsXi +Yi among the sample
that satisfy Xi + Yi > c. Denote these by C1, C2, . . . , CK(n) in the order of their
outcome. ThenCi/c, i = 1, 2, . . . are iid with a common dfFc, if c is large enough,
and they are independent of K(n), which is binomial B(n, q)—distributed with
q = 1 − (1 − c) exp(c). This is a consequence of Theorem 1.4.1 in Reiss (1993).

The first test which we consider is suggested by the Neyman–Pearson lemma.
We have to decide, roughly, whether the df of Vi := Ci/c, i = 1, 2, . . . is equal
to either the null hypothesis F(0)(t) = t2 or the alternative F(1)(t) = t , 0 ≤ t ≤ 1.
Assuming that these approximations of the df of Vi := Ci/c are exact and that
K(n) = m > 0, the optimal test for testing F(0) against F(1) is based on the
loglikelihood ratio

T (V1, . . . , Vm) := log

(
m∏
i=1

1

2Vi

)
= −

m∑
i=1

log(Vi)−m log(2),

and F(0) is rejected if T (V1, . . . , Vm) gets too large. Note that −2 log(Vi) has a df
1 − exp(−x), x ≥ 0, under F(0), and hence 2(T (V1, . . . , Vm)+m log(2)) has the
df 1 − exp(−x)∑0≤j≤m−1 x

j/j !, x ≥ 0, under F(0).
The p value of the optimal test derived from the Neyman–Pearson lemma is,

therefore,

pNP = exp (−2(T (V1, . . . , Vm)+m log(2)))

×
∑

0≤j≤m−1

(2(T (V1, . . . , Vm)+m log(2)))j

j !

= exp

(
2

m∑
i=1

log(Vi)

) ∑
0≤j≤m−1

(−2
∑m

i=1 log(Vi)
)j

j !

≈ �

(
2
∑m

i=1 log(Vi)+m

m1/2

)
, (2)

if m is large by the central limit theorem, where � denotes the df of the standard
normal df.

Next we consider the goodness-of-fit tests based on Ci/c to test for the tail
independence of X and Y . Conditional on K(n) = m > 0, the rvs

Ui := Fc(Ci/c) = 1 − (1 − Ci) exp(Ci)

1 − (1 − c) exp(c)
, 1 ≤ i ≤ m,
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are by Eq. 1 independent and uniformly distributed on (0, 1), if X and Y are tail
independent and c is close to 0.

Consider the corresponding order statistics

U1:m ≤ · · · ≤ Um:m

and denote, with U0:m := 0, Um+1:m := 1, by

Sj := Uj :m − Uj−1:m, 1 ≤ j ≤ m+ 1

the m+ 1 spacings. Consider

Mm := max
j≤m+1

Sj

and

κm := (m+ 1)Mm.

Then, κm is the Fisher’s κ-statistic, conditional onK(n) = m. It is typically used in
the time series analysis for testing for white noise; see, for example, Fuller (1976).
Given K(n) = m > 0, κm has the df

P (κm ≤ x) = Gm+1

(
x

m+ 1

)
,

where

Gm+1(x) =
m+1∑
j=0

(−1)j
(
m+ 1

j

)
(max(0, 1 − jx))m, x > 0;

see, e.g. Theorem 3 in Sect. I.9 of Feller (1971).
Note that Gm+1((x + log(m+ 1))/(m+ 1)) →m→∞ exp(−e−x), x ∈ R, and

that κK(n) − log(K(n) + 1) →n→∞ ∞ in probability if the threshold c = cn ↑ 0
satisfies ncn → ∞, nc2

n → 0 as n → ∞ and ifD(z) is not the constant function 1.
This follows from elementary computations.

Given that K(n) = m > 0, the hypothesis that X and Y are tail independent
is, therefore, rejected if the p value

pκ := 1 −Gm+1

(
κm

m+ 1

)
= 1 −Gm+1 (Mm)

is small, typically if pκ ≤ 0.05. A table of the critical values of Fisher’s κ-test is
given in Fuller (1976).

An alternative is the Kolmogorov–Smirnov test applied to U1, . . . , Um, condi-
tional on K(n) = m. Denote by F̂m(t) := m−1∑m

i=1 1[0,t](Ui) the empirical df of
U1, . . . , Um and by

�m := m1/2 sup
t∈[0,1]

|F̂m(t)− t |

the Kolmogorov–Smirnov statistic. The hypothesis that X and Y are tail indepen-
dent is rejected if the approximate p value

pKS := 1 −K(�m)
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is small. ByK we denote the Kolmogorov distribution. The following rule is quite
common. For m > 30, the hypothesis of the independent tails of X, Y is rejected
if �m > cα , where c0.05 = 1.36 and c0.01 = 1.63 are the critical values for the
type I errors 0.05 and 0.01.

Afurther alternative is the chi-square goodness-of-fit test applied toU1, . . . , Um,
conditional on K(n) = m > 0. Divide the interval [0, 1] into k consecutive and
disjoint intervals I1, . . . , Ik and consider

χ2
m,k :=

k∑
i=1

(mi −mpi)
2

mpi
,

wheremi is the number of observations among U1, . . . , Um that fall into the inter-
val Ii and pi is the length of Ii , 1 ≤ i ≤ k. Ifm is large, i.e. ifmpi > 5, 1 ≤ i ≤ k,
the hypothesis that X and Y are tail independent is rejected if the approximate p
value

pχ2 := 1 − χ2
k−1(χ

2
m,k)

is small. By χ2
k−1 we denote the chi-square distribution with k − 1 degrees of

freedom.
For a general discussion of the Kolmogorov–Smirnov and the chi-square

goodness-of-fit test we refer to Chapters 7 and 8 of Sheskin (2004).
The following figures exemplify numerous simulations that we carried out to

evaluate the performance of each of the four tests for the tail independence defined
above. Figure 1 shows quantile plots of 100 independent realizations of each of
the p values pNP, pκ , pKS and pχ2 , based on K(n) = m = 25 exceedances under
the hypothesis H0 of the independence of X and Y .

The 100 p values were ordered, i.e., p1:100 ≤ · · · ≤ p100:100, and the points
(i/101, pi:100), 1 ≤ i ≤ 100, were plotted for each test. The threshold is c = −0.5
and the chi-squared statistic uses k = 4 intervals of equal length.

The three almost straight lines formed by the quantile plots pertaining to the
goodness-of-fit tests in Fig. 1 indicate that each of them has the correct type I error
rate. The NPT, however, does not control the type I error rate; its distribution is
affected by the very small threshold c = −0.5. Figure 2 indicates that the value
c = −0.1 is sufficiently close to 0 to ensure that the NPT also controls the type I
error rate. The horizontal lines in each plot are drawn at the 5% level; a p value
below that level usually leads to a rejection of H0.

Next we simulate deviations from the independence and consider (X, Y ) hav-
ing a Marshall–Olkin df as well as a Gumbel type B df. The Marshall–Olkin df
with parameter λ ∈ [0, 1] is defined by

Gλ(x, y) = exp (x + y − λmax(x, y)) = exp

(
(x + y)Dλ

(
x

x + y

))
,

where

Dλ(z) = 1 − λmin(z, 1 − z), z ∈ [0, 1].

The Gumbel type B df with a parameter λ ≥ 1 is the df

Gλ(x, y) = exp
(
− ((−x)λ + (−y)λ)1/λ

)
= exp

(
(x + y)Dλ

(
x

x + y

))
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Fig. 1 Quantile plots of 100 values of pNP, pKS, pκ and pχ2 , with the underlying df exp(x + y),
x, y ≤ 0, and 25 exceedances over the threshold c = −0.5

with the dependence function

Dλ(z) = (
zλ + (1 − z)λ

)1/λ
, z ∈ [0, 1].

The plots in Figs. 3 and 4 were generated in the same way as in Fig. 1, but
this time with tail dependent X, Y . Figure 3 illustrates the test for tail indepen-
dence with the underlying Marshall–Olkin df with the parameter λ = 0.5, which
coincides with the tail dependence parameter.

Figure 4 was generated with the underlying Gumbel type B df with the param-
eter λ = 2, whose tail dependence parameter is χ = 2 − 21/λ = 0.5858. The
distribution of the p values represents the performance of each of the four tests.

It turns out that the distributions of pNP, pχ2 and pKS are now shifted to the
left under dependence, i.e. their type II error rate is quite small, with the NPT
for independence having the smallest error rate, followed by the Kolmogorov–
Smirnov test. Since the distribution of pκ is almost not affected, the test for the
independence of X and Y based on Fisher’s κ fails.
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Fig. 2 Quantile plots of 100 values of pNP, pKS, pκ and pχ2 , with the underlying df exp(x + y),
x, y ≤ 0, and 25 exceedances over the threshold c = −0.1

3 Type I error of the NPT

We suppose in the following again that (X, Y ) is a random vector with values in
(−∞, 0]2, whose df coincides, for x, y ≤ 0 close to 0, with an EVG with reverse
exponential margins.

Let (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ). Choose c < 0
and consider only those rvs (Xi +Yi)/c with (Xi +Yi)/c ≤ 1. Denote these again
by V1, V2, . . . , VK(n).

The limiting NPT for testing H0 : Fc(t) = t2 against Fc(t) = t , based on
V1, . . . , VK(n), has by (2) the approximate p value

pNPT := �


K(n)−1/2

∑
i≤K(n)

(2 log(Vi)+ 1)


 .

In the sequel we provide a more detailed analysis of the NPT. First we investi-
gate the question; under which conditions on the sequence of thresholds
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Fig. 3 Quantile plots of 100 values of pNP, pKS, pκ and pχ2 , with the underlying Marshall–Olkin
df with λ = 0.5 and 25 exceedances over the threshold c = −0.1

c = c(n) ↑ 0, the NPT controls the type I error, i.e., the corresponding p value is
asymptotically uniformly distributed on (0, 1)

pNPT →D U(0, 1)

in the case of tail independence. By U(0, 1) we denote the uniform distribution
on (0, 1) and by →D the convergence in distribution as the sample size n tends to
infinity. ByN(µ, σ 2)we denote the normal distribution on the real line with mean
µ and variance σ 2.

Lemma 3.1 Suppose that χ = 0. If c = c(n) satisfies nc2 →n→∞ ∞ and
nc4 →n→∞ λ ≥ 0, then we obtain

K(n)−1/2
∑
i≤K(n)

(2 log(Vi)+ 1) →D N

(
21/2

9
λ1/2, 1

)
.

The NPT controls, therefore, the type I error iff λ = 0, i.e., iff nc4 →n→∞ 0.
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Fig. 4 Quantile plots of 100 values of pNP, pKS, pκ and pχ2 , with the underlying Gumbel df with
λ = 2 and 25 exceedances over the threshold c = −0.1

Corollary 3.1 We have under the conditions of the preceding lemma

pNPT →D U(0, 1) iff λ = 0.

The fact that pNPT converges to 0 in probability, if the underlying continu-
ously differentiable dependence functionD is different from the constant function
1, will be established in a more general setup in Sect. 5; see the discussion after
Corollary 5.2.

Proof The assertion in Lemma 3.1 will be a consequence of a series of facts, which
we list in the following.

From Lemma 2.1 we obtain in the case χ = 0

P(X + Y ≥ ct) = 1 − exp(ct)(1 − ct), 0 ≤ t ≤ 1,
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if c is close enough to 0. The density of V is, consequently, in the case χ = 0

fc(t) := ∂

∂t

P (X + Y ≥ ct)

P (X + Y ≥ c)

= c2t exp(ct)

1 − exp(c)(1 − c)

= 2t

(
1 + c

(
t − 2

3

)
+O

(
c2
))
, (3)

uniformly for t ∈ [0, 1].
We have, moreover,

pc := P(X + Y ≥ c) = 1 − exp(c)(1 − c) = c2

2
(1 +O(c)). (4)

Further, we have by (3) for k ∈ N

E((2 log(V ))k) = 2k
1∫

0

logk(t)fc(t) dt

= 2k
1∫

0

logk(t)2t

(
1 + c

(
t − 2

3

)
+O

(
c2
))

dt

= 2k+1

1∫

0

logk(t)t dt + c2k+1

1∫

0

logk(t)t

(
t − 2

3

)
dt +O

(
c2
)

= (−1)kk!

(
1 + c

((
2

3

)k+1

− 2

3

))
+O

(
c2
)
. (5)

In particular we obtain that

E(2 log(V )) = −1 + 2

9
c +O

(
c2
)
,

Var(2 log(V )) = 1 − 8

27
c +O

(
c2
)
,

and the third moment of 2 log(V ) is uniformly bounded in c.
From the fact that K(n)/(npc) →n→∞ 1 in probability and, that thus,

K(n)/(nc2/2)→n→∞ 1 in probability, the independence of K(n) and V1, V2, . . .
and the Berry–Esseen theorem one concludes
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K(n)−1/2
∑
i≤K(n)

(2 log(Vi)+ 1)

= K(n)−1/2
∑
i≤K(n)

(2 log(Vi)− E(2 log(V )))+K(n)1/2(E(2 log(V ))+ 1)

= K(n)−1/2
∑
i≤K(n)

(2 log(Vi)− E(2 log(V )))+K(n)1/2
(

2

9
c +O

(
c2
))

→D N

(
λ1/2 21/2

9
, 1

)
,

which completes the proof of Lemma 3.1.

4 Asymptotic power of the NPT

In this section we investigate the asymptotic power of the NPT. To this end, we
consider a triangular array (X(n)i , Y

(n)
i ), i ≤ n, n ∈ N, of iid rvs in each row, such

that (X(n)i , Y
(n)
i ) follows an EV with a dependence function Dn defined below,

which converges to 1 as n increases. We then compute the limiting distribution, as
n increases, of the p value pNPT, evaluated for these rvs in the n-th row.

The convex combination of two dependence functions is again a dependence
function. Choose, therefore, an arbitrary dependence functionD different from the
constant 1 and consider

Dn(z) := 1 − ϑn + ϑnD(z) = 1 − ϑn(1 −D(z))

with

ϑn := ϑn−1/2,

where ϑ ≥ 0 is an arbitrary number. Hence,Dn is a convex combination ofD and
the constant 1, if n is large enough such that ϑn ≤ 1.

For the corresponding tail dependence parameter we obtain

χn = 2(1 −Dn(1/2)) = ϑn2(1 −D(1/2)) = ϑnχ,

where χ = 2(1 −D(1/2)) is the tail dependence parameter corresponding to D.
In what follows we will compute the asymptotic power of the NPT. Precisely,

we will compute the asymptotic distribution of the approximate p value

pNPT = �


K(n)−1/2

∑
i≤K(n)

(
2 log(V (n)i )+ 1

) .

Theorem 4.1 If c = c(n) satisfies nc2 →n→∞ ∞ and nc4 →n→∞ 0, then we
obtain

pNPT →D �


ξ − ϑ21/2

1∫

0

1 −D(z) dz


 ,

where ξ is a standard normal distributed rv.
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Proof V (n) has by Lemma 2.1 the density

gϑn(t) = ∂

∂t
P
(
V (n) ≤ t

)

= 1

pc(n)

∂

∂t
P
(
X(n) + Y (n) ≥ tc

)

= 1

pc(n)


−c exp(ct)+ c

1∫

0

exp (ctDn(z)) (1 + tcDn(z)) un(z) dz




=:
1

pc(n)
g̃ϑn(t), 0 ≤ t ≤ 1,

where

un(z) := Dn(z)+D′
n(z)(1 − z) = Dn(z)+ ϑnD

′(z)(1 − z), 0 ≤ z ≤ 1,

and

pc(n) = P
(
X
(n)
i + Y

(n)
i ≥ c

)

= 1 − exp(c)+ c

1∫

0

exp (cDn(z))
(
Dn(z)+D′

n(z)(1 − z)
)

dz.

Now consider

f̃c(t) := pcfc(t) = c2t exp(ct), 0 ≤ t ≤ 1,

where pc, fc are defined in (3), (4). Then we have uniformly for t ∈ [0, 1]

g̃ϑn(t)

f̃c(t)
− 1 = ϑn

tc


−2

1∫

0

1 −D(z) dz+O(c)


 . (6)

This can be observed as follows. Note that
∫ 1

0 un(z) dz = 2
∫ 1

0 Dn(z) dz − 1,
Dn(z)− 1 = −ϑn(1 −D(z)) and that D′

n(z) = ϑnD
′(z):

g̃ϑn(t)

f̃c(t)
− 1

=
−c exp(ct)+ c

1∫
0

exp (ctDn(z)) (1 + ctDn(z)) un(z) dz

c2t exp(ct)
− 1

= 1

ct


−1 +

1∫

0

exp (ct (Dn(z)− 1)) (1 + ctDn(z)) un(z) dz− ct



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= 1

ct


−1 +

1∫

0

(1 + ct (Dn(z)− 1)) (1 + ctDn(z)) un(z) dz

− ct +O
(
c2ϑ2

n

)



= 1

ct


−1 +

1∫

0

un(z)+ ct (Dn(z)− 1) un(z)+ ctDn(z)un(z) dz

− ct +O
(
c2ϑn

)



= 1

ct


2

1∫

0

Dn(z)− 1 dz+O (cϑn)




= ϑn

ct


−2

1∫

0

1 −D(z) dz+O(c)


 ,

which is (6).
We have, moreover,

pc(n)

pc
− 1 = ϑn

c


−4

1∫

0

1 −D(z) dz+O(c)


 . (7)

This follows by repeating the arguments in the derivation of (6):

pc(n)

pc
− 1

= 1 − exp(c)+ c
∫ 1

0 exp (cDn(z)) un(z) dz

1 − exp(c)(1 − c)
− 1

= c
∫ 1

0 exp (c (Dn(z)− 1)) un(z) dz− c

exp(−c)− (1 − c)

= c
∫ 1

0 un(z)− 1 dz+ c2
∫ 1

0 (Dn(z)− 1) un(z) dz+O
(
c3ϑ2

n

)
c2

2 (1 +O(c))

= 2c
∫ 1

0 Dn(z)− 1 dz+ c2
∫ 1

0 (Dn(z)− 1) un(z) dz+O
(
c3ϑ2

n

)
c2

2 (1 +O(c))

= ϑn

c

−4
∫ 1

0 1 −D(z) dz+O(c)

1 +O(c)

which is (7).
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From (3), (5) and (7) we obtain

E
(
2k logk

(
V (n)

))

=
1∫

0

2k logk(t)gϑn(t) dt

= pc

pc(n)

1∫

0

2k logk(t)

(
1 +

(
g̃ϑn(t)

f̃c(t)
− 1

))
fc(t) dt

= 1

1 +
(
pc(n)

pc
− 1

)
2∫

0

2k logk(t)


1 − ϑn

ct


2

1∫

0

1 −D(z) dz

+O(c)




 fc(t) dt

= c

c − ϑn

(
4
∫ 1

0 1 −D(z) dz+O(c)
)

1∫

0

2k logk(t)fc(t) dt

−
ϑn

(
2
∫ 1

0 1 −D(z) dz+O(c)
)

c − ϑn

(
4
∫ 1

0 1 −D(z) dz+O(c)
)

1∫

0

2k+1 logk(t)(1 +O(c)) dt

= c

c − ϑn

(
4
∫ 1

0 1 −D(z) dz+O(c)
) (−1)kk!

(
1 + c

((
2

3

)k+1

− 2

3

)
+O

(
c2
))

−
ϑn

(
2
∫ 1

0 1 −D(z) dz+O(c)
)

c − ϑn

(
4
∫ 1

0 1 −D(z) dz+O(c)
) (−1)kk!(1 +O(c)).

Hence, we have in particular

E
(
2 log

(
V (n)

))+ 1 =
−ϑn

(
2
∫ 1

0 1 −D(z) dz+O(c)
)

c − ϑn

(
4
∫ 1

0 1 −D(z) dz+O(c)
) +O(c)

and

Var
(
2 log

(
V (n)

)) →n→∞ 1;

note that ϑn/c →n→∞ 0.
From the fact thatK(n)/(npc(n)) →n→∞ 1 in probability, wherepc(n)/

(
c2/2

)
→n→∞ 1 by (7), the independence of K(n) and V

(n)
1 , V

(n)
2 , . . . and the
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Berry–Esseen theorem we now obtain

K(n)−1/2
∑
i≤K(n)

(
2 log

(
V
(n)
i

)
+ 1

)

= K(n)−1/2
∑
i≤K(n)

(
2 log

(
V
(n)
i

)
− E

(
2 log

(
V (n)

)))

+K(n)1/2 (E (2 log
(
V (n)

))+ 1
)

→D N


−ϑ21/2

1∫

0

1 −D(z) dz, 1


 .

This completes the proof of Theorem 4.1.

5 Differentiable spectral neighborhood of an EV

In this section we extend the results of Sects. 2 and 3 to a rv (X, Y ), whose dfH is
in a certain neighborhood of an EV G with the dependence function D. A typical
example is Mardia (1970) df

M(x, y) = 1

exp(−x)+ exp(−y)− 1
, x, y ≤ 0.

The dfM has reverse exponential margins, but it is not max–stable. Precisely, it is
tail equivalent with G(x, y) = exp(x + y), i.e.,

lim
x+y↑0

1 −M(x, y)

1 − exp(x + y)
= 1

and its margins are, therefore, tail independent:

lim
c↑0
P(Y > c|X > c) = 0.

The neighborhood of an EV G(x, y) = exp ((x + y)D(x/(x + y))) will be
defined in terms of the spectral decomposition of an arbitrary dfH(x, y), x, y ≤ 0:
Consider for z ∈ [0, 1] and c ≤ 0

Hz(c) := H(c(z, 1 − z)) = P

(
max

(
X

z
,
Y

1 − z

)
≤ c

)
,

where the rv (X, Y ) has the df H . With z kept fixed, Hz(·) is a univariate df on
(−∞, 0], and H1, H0 are the marginal dfs of X and Y . The df H is obviously
uniquely determined by the set of univariate dfs {Hz(·) : z ∈ [0, 1]}. This is the
spectral decomposition ofH , which has turned out to be quite a helpful tool in the
multivariate extreme value theory; see Falk and Reiss (2005).

We require in the following that the partial derivatives

hz(c) := ∂

∂c
Hz(c) and gz(c) := ∂

∂z
Hz(c) (8)

of Hz(c) exist for c close to 0 and any z ∈ [0, 1] and that they are continuous.
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We require, moreover, that hz(c) satisfies the expansion

hz(c) = a(z)+ cA(z)+O(c2) as c ↑ 0 (9)

uniformly for z ∈ [0, 1], where a : [0, 1] → [0,∞) satisfies a(0) = a(1) = 1 and
A : [0, 1] → R is an integrable function.

From Theorem 3.1 in Falk and Reiss (2005) we obtain that a(z) is actually a
Pickands dependence function, i.e., a(z) = D(z), z ∈ [0, 1], and, thus, we could
equivalently replace the function a(z) in condition (9) by D(z). From Theorem
3.1 in Falk and Reiss (2005) we obtain, moreover, that H(x, y) is in the bivariate
domain of attraction of the EV G with the dependence function D = a, which
means, that

lim
n→∞H

n
((x
n
,
y

n

))
= exp

(
(x + y)D

(
x

x + y

))
, x, y ≤ 0.

Finally, we have

lim
c↑0
P(Y > c|X > c) = 2(1 −D(1/2)),

and, thus, we have the tail independence of X and Y if and only if D(z) = 1,
z ∈ [0, 1].

Note that the condition (9) immediately implies thatHz satisfies the von Mises
condition

lim
c↑0

−chz(c)
1 −Hz(c)

= 1,

which, in turn, implies thatHz is in the (univariate) domain of attraction of exp(x),
x ≤ 0, for any z ∈ [0, 1]; see, e.g. Resnick ((1987), Proposition 1.16).

A dfH is now said to be in the differentiable spectral neighborhood of the EV
G with a dependence function D if its spectral decomposition satisfies conditions
(8) and (9) with a(z) = D(z).

Note that G itself has the spectral decomposition

Gz(c) = exp(cD(z)), c ≤ 0, z ∈ [0, 1],

and hence it satisfies conditions (8) and (9), if D′(z) is continuous, with

hz(c) = exp(cD(z))D(z) = D(z)+ cD(z)2 +O(c2)

and

gz(c) = exp(cD(z))cD′(z).

Mardia’s df satisfies, for instance, conditions (8) and (9) with a(z) = 1 andA(z) =
2 − z2 − (1 − z)2.

The following result extends Lemma 2.1 to a df H , which satisfies condition
(8). Recall that H1(c) = H(c(1, 0)), c ≤ 0, is the first marginal distribution of H .



Testing for tail independence 279

Lemma 5.1 Suppose that the df H(x, y), x, y ≤ 0, of (X, Y ) satisfies the condition
(8). Then we have for c close to 0

P(X + Y ≤ c) = H1(c)−
1∫

0

chz(c)+ gz(c)(1 − z) dz.

Proof Repeating the arguments in the proof of Lemma 2.1, we obtain for 0 > u > c

P (X + Y ≤ c|X = u)

= 1

h1(u)
lim
ε↓0

H(u+ ε, c − u)−H(u, c − u)

ε

= 1

h1(u)
lim
ε↓0

Hu+ε
c+ε
(c + ε)−Hu

c
(c)

ε

= 1

h1(u)

(
hu
c
(c)+ gu

c
(c)
c − u

c2

)

by making use of Taylor’s formula and the continuity of the partial derivatives of
Hz(c).

Since P(X + Y ≤ c|X = u) = 1 if u ≤ c, we obtain by integration and
substitution, for c close to 0

P(X + Y ≤ c)

= H1(c)+
0∫

c

h u
c
(c)+ gu

c
(c)
c − u

c2
du

= H1(c)−
1∫

0

chz(c)+ gz(c)(1 − z) dz.

Corollary 5.1 1. We obtain for (X, Y ) with the df H(x, y), x, y ≤ 0, in a differ-
entiable spectral neighborhood of exp(x + y)

Fc(t) = P(X + Y > ct |X + Y > c) = t2 (1 +O(c))

as c ↑ 0, uniformly for t ∈ [0, 1], provided that 3
∫
A(z) dz > A(0) + A(1).

This condition is actually rather weak, since we have in general the inequality

A(z) ≥ A(1)z2 + A(0)(1 − z)2, z ∈ [0, 1],

and, hence, 3
∫ 1

0 A(z) dz ≥ A(0)+ A(1) anyway.
2. If the df H of (X, Y ) satisfies conditions (8) and (9) with a(z) = D(z), which

is not the constant function 1, then we obtain

Fc(t) = P(X + Y > ct |X + Y > c) = t (1 +O(c))

as c ↑ 0, uniformly for t ∈ [0, 1].
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Proof From Lemma 5.1 we obtain for c close to 0

P(X + Y > ct |X + Y > c) (10)

=
∫ 0
ct
h1(x) dx + ∫ 1

0 cthz(ct)+ gz(ct)(1 − z) dz∫ 0
c
h1(x) dx + ∫ 1

0 chz(c)+ gz(c)(1 − z) dz

= I

II
,

where

I :=
0∫

ct

1 + xA(1)+O
(
x2
)

dx +
1∫

0

ct
(
D(z)+ ctA(z)+O

(
(ct)2

))
dz

+
1∫

0

gz(ct)(1 − z) dz,

II :=
0∫

c

1 + xA(1)+O
(
x2
)

dx +
1∫

0

c
(
D(z)+ cA(z)+O

(
c2
))

dz

+
1∫

0

gz(c)(1 − z) dz.

Using partial integration we obtain

1∫

0

gz(c)(1 − z) dz

= Hz(c)(1 − z)

∣∣∣
1

0
+

1∫

0

Hz(c) dz

= −H0(c)+
1∫

0

Hz(c) dz

= 1 −H0(c)−
1∫

0

1 −Hz(c) dz

=
0∫

c

h0(y) dy −
1∫

0

0∫

c

hz(u) du dz

=
0∫

c

1 + yA(0)+O
(
y2
)

dy −
1∫

0

0∫

c

D(z)+ A(z)u+O
(
u2
)

du dz

= c




1∫

0

D(z) dz− 1


+ c2

2




1∫

0

A(z) dz− A(0)


+O

(
c3
)
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and

1∫

0

gz(ct)(1 − z) dz

= ct




1∫

0

D(z) dz− 1


+ (ct)2

2




1∫

0

A(z) dz− A(0)


+O

(
(ct)3

)
.

Substituting the above two expansions in Eq. (10), we obtain

P(X + Y > ct |X + Y > c)

=
2ct

(∫ 1
0 D(z) dz− 1

)
+ (ct)2

2

(
3
∫ 1

0 A(z) dz− A(1)− A(0)
)

+O((ct)3)

2c
(∫ 1

0 D(z) dz− 1
)

+ c2

2

(
3
∫ 1

0 A(z) dz− A(1)− A(0)
)

+O(c3)
.

Finally, one obtains from elementary computations for arbitrary t ∈ (0,∞), if
D(z) = 1, z ∈ [0, 1]

0 ≤ lim
c↑0

P(Y > c|X > tc)

|c| = A
(
t
t+1

)
(t + 1)2 − A(0)− A(1)t2

2t

and, hence,

A

(
t

t + 1

)
≥ A(0)

(t + 1)2
+ A(1)

(
t

t + 1

)2

.

Considering z = t/(t + 1), we obtain

A(z) ≥ A(0)(1 − z)2 + A(1)z2, z ∈ [0, 1],

which completes the proof. 
�
To ensure that df Fc has a density with respect to the Lebesgue measure, we

refine condition (9) on hc as follows. We require the expansion

hz(c) = a(z)+ cA(z)+ r(z, c), (11)

uniformly for z ∈ [0, 1] and c close to 0, where a : [0, 1] → [0,∞] satisfies
a(0) = a(1) = 1, A : [0, 1] → R is an integrable function and r(z, c) = O(c2)
uniformly for z ∈ [0, 1]. We require, moreover, that Bz(c) := (∂/∂c)r(z, c) exists
for z ∈ [0, 1] and that Bz(c) = O(c) uniformly for z ∈ [0, 1].

Lemma 5.2 Suppose that conditions (8) and (11) are satisfied. Then

fc(t) = ∂

∂t
Fc(t) = ∂

∂t
P (X + Y ≥ ct |X + Y ≥ c)

exists for t ∈ (0, 1) and c close to 0. We have, moreover,

fc(t) =
{

1 +O(c), if a(z) in (11) is not the constant function 1
2t (1 +O(c)), if a(z) = 1 and 3

∫ 1
0 A(z) dz > A(0)+ A(1).
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Proof By Lemma 5.1 we have for t ∈ (0, 1) and c close to 0

P(X + Y ≥ ct) = 1 −H1(ct)+
1∫

0

cthz(ct)+ gz(ct)(1 − z) dz.

From the proof of Corollary 5.1 we obtain

1∫

0

gz(ct)(1 − z) dz = 1 −H0(ct)−
1∫

0

1 −Hz(ct) dz.

As a consequence we obtain for t ∈ (0, 1) and c, ε close to 0

Fc(t + ε)− Fc(t)

= P(X + Y ≥ c(t + ε))− P(X + Y ≥ ct)

P (X + Y ≥ c)

=:
I

II
,

where

II = 2c

1∫

0

a(z)− 1 dz+ c2

2

1∫

0

3A(z)− A(0)− A(1) dz+O
(
c3
)

(12)

and

I = H1(ct)−H1(c(t + ε))+ c(t + ε)

1∫

0

hz(c(t + ε)) dz− ct

1∫

0

hz(ct) dz

+ H0(ct)−H0(c(t + ε))+
1∫

0

Hz(c(t + ε))−Hz(ct) dz

= H1(ct)−H1(c(t + ε))+ cε

1∫

0

hz(c(t + ε)) dz+ εc2t

1∫

0

A(z) dz

+ ct

1∫

0

r(z, c(t + ε))− r(z, ct) dz

+ H0(ct)−H0(c(t + ε))+
1∫

0

Hz(c(t + ε))−Hz(ct) dz.
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Hence, we obtain

lim
ε→0

I

ε
= −h1(ct)c + c

1∫

0

hz(ct) dz+ c2t

1∫

0

A(z) dz+ c2t

1∫

0

Bz(ct) dz

−h0(ct)c + c

1∫

0

hz(ct) dz

= −2c − A(1)c2t + 2c

1∫

0

a(z)+ ctA(z) dz+ c2t

1∫

0

A(z) dz

−A(0)c2t +O
(
c3t2

)

= 2c

1∫

0

a(z)− 1 dz+ c2t

1∫

0

3A(z)− A(0)− A(1) dz+O
(
c3t2

)
.

Altogether we get

lim
ε→0

Fc(t + ε)− Fc(t)

ε

= 2c
∫ 1

0 a(z)− 1 dz+ c2t
∫ 1

0 3A(z)− A(0)− A(1) dz+O
(
c3t2

)

2c
∫ 1

0 a(z)− 1 dz+ c2

2

∫ 1
0 3A(z)− A(0)− A(1) dz+O

(
c3
) ,

which implies the assertion in Lemma 5.2. 
�
Suppose now that the df H of (X, Y ) satisfies conditions (8) and (11), and

denote by V a rv with df Fc. Then we obtain for c close to 0 and k ∈ N

E
(
(2 log(V ))k

) = 2k
1∫

0

logk(t)fc(t) dt

=
{

2k(−1)kk! +O(c), if fc(t) = 1 +O(c)

(−1)kk! +O(c), if fc(t) = 2t (1 +O(c)).

The following result shows that the NPT controls the type I error if the under-
lying df is in a differentiable spectral neighborhood of G(x, y) = exp((x +
y)D(x/(x + y))) with D = 1. If D �= 1, then the p value converges to 0 in
probability as the sample size n increases. Note that P(X + Y ≥ c) is by (12) of
order c2, if a(z) = 1 in condition (11), and of order c, if a(z) is not the constant
function 1. This explains the different conditions on the sequence c = c(n) of
thresholds in the two parts of the following result.

Corollary 5.2 Suppose that the df H of (X, Y ) satisfies conditions (8) and (11).

1. If c = c(n) satisfies nc2 →n→∞ ∞ and nc4 →n→∞ 0, then we obtain

pNPT = �


K(n)−1/2

∑
i≤K(n)

(2 log(Vi)+ 1)


 →D U(0, 1),



284 M. Falk, R. Michel

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Fisher’s Kappa

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Chi-Square

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Neyman-Pearson

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Kolmogorov-Smirnov

Fig. 5 Quantile plots of 100 values of pNPT, pKS, pκ and pχ2 , with the underlying Mardia df and
25 exceedances over the threshold c = −0.5

if a(z) = 1 in condition (11) and 3
∫ 1

0 A(z) dz > A(0)+ A(1).
2. If a(z) is not the constant function 1, then we have

pNPT →n→∞ 0

in probability, if c = c(n) satisfies nc →n→∞ ∞ and nc3 →n→∞ 0.

Note that an EV G with the dependence function D satisfies condition (11)
with a(z) = D(z), A(z) = D2(z) and

r(z, c) = D(z) (exp(cD(z))− 1 − cD(z)) .

The preceding result implies, therefore, in particular that the p value pNPT con-
verges to 0 as n → ∞, if the underlying df G is an EV with a continuously
differentiable dependence function D, which is different from the constant func-
tion 1. This result supplements Corollary 3.1.

Figures 5 and 6 display quantile plots of 100 values of pNPT, pχ2 , pKS and pκ ,
which are based on 25 exceedancesCi/c, 1 ≤ i ≤ 25, over the threshold c = −0.5
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Fig. 6 Quantile plots of 100 values of pNPT, pKS, pκ and pχ2 , with the underlying Mardia df and
25 exceedances over the threshold c = −0.1

in Fig. 5 and over the threshold c = −0.1 in Fig. 6, with the underlying Mardia dis-
tribution. Recall that Mardia’s distribution has independent tails. The simulations
show that the threshold c = −0.5 seriously affects the type I error rate of the NPT
as well as of the Kolmogorov–Smirnov and the chi-square test. This is due to the
fact that the threshold c = −0.5 is not close enough to 0 to give approximately the
independence of the tails. For the threshold c = −0.1, the simulations indicate
that all four tests for the tail independence of the margins have the correct type I
error rate. These example illustrate the practical significance of the choice of the
threshold c.

6 Generalized Pareto distributions

Along with a bivariate EVG comes a generalized Pareto df (GP)

W(x, y) := 1 + log(G(x, y)) = 1 + (x + y)D

(
x

x + y

)
,
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defined for all x, y ≤ 0 with log(G(x, y)) ≥ −1. Like in the univariate case, the
class of GPs plays an important role for instance in multivariate peaks-over-thresh-
old models (POT) or for the rate of convergence of multivariate maxima. The EV
G is in particular in the spectral δ–neighborhood of W with δ = 1:

1 −Gz(c) = (1 −Wz(c)) (1 +O(c)),

uniformly for z ∈ [0, 1] as c ↑ 0, where Hz(c) = H(c(z, 1 − z)), c ≤ 0, z ∈
[0, 1], denotes again the spectral decomposition of a df H defined on (−∞, 0]2.
Note that each univariate margin of W is the uniform distribution on (−1, 0).

Let the random variables U , V have df FU and FV and let

χ(q) := P
(
V > F−1

V (q)|U > F−1
U (q)

)

be the tail dependence parameter at the level q ∈ (0, 1); see Reiss and Thomas
((2001), Eq. 2.57). We have

χ(q) = χ +O(1 − q)

if (U, V ) follows a bivariate EV, and

χ(q) = χ = 2(1 −D(1/2)), q ≥ 1/2,

for bivariate GPs; see (9.24) and (10.8) in Reiss and Thomas (2001).
Tail independence χ = 0 is, therefore, characterized for a GP W(x, y) =

1 + (x + y)D(x/(x + y)) by χ(q) = 0 for large values of q or, equivalently, by
D(z) = 1, z ∈ [0, 1], and, hence, by W(x, y) = 1 + x + y. Note, however, that
W(x, y) = 1 + x + y is the df of (U,−1 − U), where U is uniformly distributed
on (−1, 0), i.e., we have the tail independence χ = 0 for a GP if and only if we
have complete dependence V = −1 − U , which sounds a bit weird.

Assume now that the df H(x, y) of (U, V ) coincides, for x, y close to 0, with
the general GPW(x, y) = 1 + (x + y)D(x/(x + y)). Repeating the arguments in
the proof of Lemma 2.1 one obtains the following result.

Lemma 6.1 We have for c < 0 close to 0

P(U + V ≤ c) = 1 + 2c


1 −

1∫

0

D(u) du


 .

The preceding result shows that we have P(U + V ≥ c) = 0 for c close to 0
if and only if D(z) = 1, i.e., if and only if U and V are tail independent. If they
are not tail independent, then the conditional distribution of (U +V )/c, given that
U + V > c, is for c close to 0 the uniform distribution on [0, 1]:

P(U + V > tc|U + V > c) = t, t ∈ [0, 1].

Testing for the tail independence ofU,V in the case of an upper GPtail is, therefore,
equivalent to testing for P(U + V ≥ c) = 0 for some c < 0.
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7 Extension to a general dimension

In this section we extend the results of Sect. 2 to an EV in arbitrary dimension d. Let,
therefore, in the sequelX = (X1, . . . , Xd) be a rv with values in (−∞, 0]d , whose
dfH(x1, . . . , xd) coincides for (x1, . . . , xd) close to 0 with an EVG(x1, . . . , xd)
with reverse exponential margins, i.e.,

G(0, . . . , 0, xk, 0, . . . , 0) = exp(xk), xk ≤ 0, 1 ≤ k ≤ d,

and

Gn
(x1

n
, . . . ,

xd

n

)
= G(x1, . . . , xd).

Again, G can be represented as

G(x1, . . . , xd) = exp

((∑
k≤d

xk

)
D

(
x1∑
k≤d xk

, . . . ,
xd−1∑
k≤d xk

))
,

where D : {(z1, . . . , zd−1) ∈ [0, 1]d−1 :
∑

k≤d−1 zk ≤ 1} → [1/d, 1] is the Pick-
ands dependence function in d dimensions. It is continuous, convex, and the cases
D(z1, . . . , zd−1) = 1 andD(z1, . . . , zd−1) = max(z1, . . . , zd−1, 1 −∑

k≤d−1 zk)
characterize the cases of independence and complete dependence of the margins;
refer to Falk and Reiss (2005) for details.

Note that for c < 0 close to 0

P

(∑
k≤d

Xk ≤ c

)
= exp(c)

∑
0≤j≤d−1

(−c)j
j !

ifX1, . . . , Xd are independent in their upper tails, i.e., ifD(z1, . . . , zd) is the con-
stant function 1. The following lemma is, therefore, an immediate consequence.

Lemma 7.1 If X1, . . . , Xd are independent in their upper tails, then we have
uniformly for t ∈ [0, 1] as c ↑ 0

Fc,d(t) := P

(∑
k≤d

Xk > ct

∣∣∣
∑
k≤d

Xk > c

)

= 1 − exp(ct)
∑

0≤j≤d−1(−ct)j /j !

1 − exp(c)
∑

0≤j≤d−1(−c)j /j !

= td(1 +O(c)).

Suppose next that X1, . . . , Xd are not tail independent, i.e., suppose that the
dependence functionD(z1, . . . , zd−1) is not a constant. IfD has continuous partial
derivatives of order d , then there exists c0 < 0 such that

∑
k≤d Xk has a density

f (c) = const +O(c), c0 ≤ c < 0,

on (c0, 0), see Falk and Reiss (2005).
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If we assume that const �= 0, then we obtain

P

(∑
k≤d

Xk > ct

∣∣∣
∑
k≤d

Xk > c

)
= t (1 +O(c))

uniformly for t ∈ [0, 1] as c ↑ 0.
As in Sect. 2 we can, therefore, test for the tail independence of X1, . . . , Xd

by testing for the uniform distribution of

Ui := Fc,d(Ci/c) = 1 − exp(Ci)
∑

0≤j≤d−1(−Ci)j /j !

1 − exp(c)
∑

0≤j≤d−1(−c)j /j !
, 1 ≤ i ≤ K(n),

where Ci = ∑
k≤d X

(i)
k , i ≤ K(n), are those observations among a sample

(X
(j)

1 , . . . , X
(j)

d ), 1 ≤ j ≤ n, of independent copies of (X1, . . . , Xd), where∑
k≤d X

(i)
k > c. The conclusions in Sect. 2 on the application of Fisher’s κ , the

Kolmogorov–Smirnov test and the chi-square goodness-of-fit test now carry over.
Conditional onK(n) = m, the optimal test suggested by the Neyman–Pearson

lemma for testing F(0)(t) = td against F(1)(t) = t , 0 ≤ t ≤ 1, based on Vi = Ci/c,
1 ≤ i ≤ m, uses the loglikelihood ratio

T (V1, . . . , Vm) = log

(
m∏
i=1

1

dV d−1
i

)

= −(d − 1)
m∑
i=1

log(Vi)−m log(d).

Note that −d log(Vi) has the df 1 − exp(−x), x ≥ 0, under F(0) and, hence,
(d/(d− 1))(T (V1, . . . , Vm)+m log(d)) has the df 1 − exp(−x)∑0≤j≤m−1 x

j/j !
under F(0).

The p value of the optimal test derived from the Neyman–Pearson lemma is
now

pNP = exp

(
− d

d − 1
(T (V1, . . . , Vm)+m log(d)

)

×
∑

0≤j≤m−1

(
d
d−1 (T (V1, . . . , Vm)+m log(d))

)j
j !

= exp

(
d

m∑
i=1

log(Vi)

) ∑
0≤j≤m−1

(−d∑m
i=1 log(Vi)

)j
j !

≈ �

(
d
∑m

i=1 log(Vi)+m

m1/2

)

if m is large.
Note that by the preceding results the points (Ci/c)d , 1 ≤ i ≤ K(n), should

tend to be uniformly distributed on [0, 1] in the case of independence, whereas
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otherwise they should tend to accumulate near 0. This could be utilized for a quick
visual check for tail independence.

By Proposition 5.27 in Resnick (1987) we have the joint tail independence of
X1, . . . , Xd , i.e., D(z) = 1, 0 ≤ z ≤ 1, if and only if we have the pairwise tail
independence limc↑0 P(Xj > c|Xi > c) = 0, i �= j . The above tests in the mul-
tivariate setup can be viewed, therefore, as being simultaneous tests for pairwise
tail independence.

Consider next an EV Gα1,... ,αd , where the i-th marginal Gi is an arbitrary
standard extreme value df

Gi(x) = exp(ψαi (x)), 1 ≤ i ≤ d,

where

ψα(x) :=




−(−x)α, x < 0, if α > 0,
−xα, x > 0, if α < 0,
− exp(−x), x ∈ R, if α = 0,

defining, thus, the family of (reverse) Weibull, Fréchet and the Gumbel distribu-
tion exp(ψα(x)). Up to a location or scale shift, Gα1,... ,αd is the family of possible
d–dimensional EV.

Note that

Gα1,... ,αd

(
ψ−1
α1
(x1), . . . , ψ

−1
αd
(xd)

) = G1,... ,1(x1, . . . , xd), xi < 0, 1 ≤ i ≤ d,

where G1,... ,1 = G has reverse exponential margins.
If the df of the rv (X1, . . . , Xd) coincides in its upper tail with Gα1,... ,αd , then

the df of (ψα1(X1), . . . , ψαd (Xd)) coincides ultimately withG. We can test, there-
fore, for the tail independence of (X1, . . . , Xd) by applying the preceding results
to
∑

i≤d ψαi (Xi) in place of
∑

i≤d Xi .
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