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Abstract We propose a new summary statistic for marked point patterns. The
underlying principle is to compare the distance from a marked point to the near-
est other marked point in the pattern to the same distance seen from an arbitrary
point in space. Information about the range of interaction can be inferred, and the
statistic is well-behaved under random mark allocation. We develop a range of
Hanisch style kernel estimators to tackle the problems of exploding tail variance
earlier associated with J -function plug-in estimators, and carry out an exploratory
analysis of a forestry data set.

Keywords Empty space function · J -function · Marked point pattern · Mark
correlation function · Nearest neighbour distance distribution function · Product
density · Random labelling · Reduced second moment measure · Spatial
interaction · Spatial statistics

1 Introduction

Marked point patterns are spatial point configurations with a mark attached to
each point (Stoyan and Stoyan, 1994). The points could represent the locations in
(Euclidean) space of objects, while the marks capture additional information. The
latter could be a type label, in which case we also speak of a multivariate point
pattern (Cox and Lewis, 1972), a continuous measurement or shape descriptor, or
a combination of these.

The statistical analysis of such a pattern in general begins by plotting a few
summary statistics. Which statistic is used depends on taste and the type of mark.
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For discrete marks, cross versions of the classic nearest neighbour distance distri-
bution function G (Diggle, 1983) or the second order K-function (Ripley, 1988)
are popular. Alternatively, multivariate J -functions (Van Lieshout and Baddeley,
1999) may be used, or the mark correlation functions advocated by Penttinen and
Stoyan (1989) and Stoyan and Stoyan (1994). For real-valued marks, mark cor-
relation functions are typically used, at least if the marks are not binned so as to
reduce the situation to the case of discrete marks. It is often a good idea to plot a
range of summary statistics, as they tend to capture different aspects of the pattern
and thus provide complementary information.

In this paper, we focus on generalisations of the J -function introduced by
Van Lieshout and Baddeley (1996) to point processes with real-valued marks. The
underlying idea of this summary statistic is to compare distances seen from an
arbitrary fixed point 0 to the nearest point of the pattern—measured by the empty
space function F—to those seen from a typical point of the pattern, as captured by
the nearest neighbour distance function G. Thus, for (unmarked) point processes,

J (t) = 1 − G(t)

1 − F(t)

defined for all t ≥ 0 for which F(t) �= 1. For a Poisson process, J ≡ 1; values
J (t) > 1 indicate repulsion at range t , for clustered patterns the J -values tend to be
less than 1.

The power of the J -function in hypothesis testing was assessed in
Baddeley et al. (2000), Chen et al. (2001), and Thőnnes and Van Lieshout (1999).
Extensions to multivariate point processes were proposed by Van Lieshout and
Baddeley (1999), to germ grain models by Last and Holtmann (1999), and win-
dow based J -functions were suggested by Baddeley et al. (2000) and Chen et al.
(2001). For applications in agriculture, astronomy, forestry and geology, see Fox-
all and Baddeley (2002), Kerscher (1998), Kerscher et al. (1998), Kerscher et al.
(1999), Stein et al. (2001), or the recent theses of Chen (2003) and Paulo (2002).

The plan of this paper is as follows. In Sect. 2 we recall fundamental concepts
from Palm theory, including the Nguyen–Zessin formula. In Sect. 3 we define a
J -function for stationary marked point processes and discuss its behaviour under
a Poisson or random labelling assumption. The next section concerns representa-
tion theorems for the J -function in terms of the conditional intensity and product
densities, and explains the relationship with the reduced second moment measure.
We turn to estimation in Sect. 5, and discuss Hanisch style ratio-estimators for
the marked J -function, as well as kernel estimators for its derivative statistics. An
application of our statistic to a forestry data set of pine saplings is the topic of
Sect. 6. The paper is concluded with a summary and discussion.

2 Preliminaries and notation

In this section, we recall some fundamental concepts from Palm theory. Further
details can be found for example in the textbooks by Daley and Vere-Jones (1988);
or Stoyan et al. (1987).

Throughout this paper, let Y be a stationary marked point process on R
d with

marks in a complete, separable metric space M (typically a subset of an Euclidean
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space) and write P for its distribution. We assume that the (first order) moment mea-
sure, denoted by µ1, exists and is locally finite. Since Y is stationary, µ1 =λ�×νM ,
where λ is the intensity (assumed to be strictly positive to exclude trivial cases), �
is Lebesgue measure, and νM the mark distribution. If µ1 exists, so does a reduced
Palm distribution P !(x,m)(F ), where x ∈ R

d , m ∈ M , and F ∈ N , the σ -algebra
generated by the requirement that for all bounded Borel sets the number of points
with marks in Borel subsets of M is a finite random variable. For any Borel set
B ⊆ M for which νM(B) > 0, define a reduced Palm distribution P !x

B of Y with
respect to B at the point x ∈ R

d by

νM(B) P !x
B (F ) :=

∫

B

P !(x,m)(F ) dνM(m). (1)

The stationarity of Y implies that P !x
B (TxF ) takes the same value for �-almost all

x, where TxF ={y+x :y∈F } is the translation of F over x. In fact, we can choose
the reduced Palm distributions to be translates of a single probability distribution,
denoted by P !0

B (·).
We shall use the notation λ((x, m); y) for a Papangelou conditional intensity at

(x, m)∈R
d×M given the locally finite marked point pattern y elsewhere—provided

it exists—and write λB(x; y)=∫
B

λ((x, m); y) dνM(m) for its integral over a Borel
set B ⊆M . By stationarity, λB(x; Y + x) is a.s. constant in x except on a null set,
and we shall use the notation λB(0, Y ) as we did for the reduced Palm distribution.

Under the above assumptions, the following basic formulae

E


∑

y∈Y

g(y, Y \y)


 = λ

∫ ∫
E

!(0,m) [g((x, m), Y + x)] d�(x) dνM(m)

(2)

=
∫ ∫

E [g((x, m), Y ) λ((x, m); Y )] d�(x) dνM(m)

(3)

hold for all non-negative, measurable functions g (in the sense that the left hand
side is finite if and only if the right hand side is). The first equation expresses
the Campbell–Mecke formula [see e.g. Daley and Vere-Jones (1988), Proposition
12.1.IV] for stationary marked point processes, see equation (4.4.10) in Stoyan
et al. (1987). The last equation due to Nguyen and Zessin (1979) requires the exis-
tence of a conditional intensity. In particular, for any Borel mark set B for which
νM(B)>0,

E [g(Y ) λB(0; Y )] = λ νM(B) E
!0
B [g(Y )] . (4)

Second and higher order behaviour of Y may be captured by the n-th order fac-
torial moment measures µ(n) and their densities with respect to the n-fold product
measure of � × νM with itself, the product densities denoted by ρ(n). For n = 1,
µ(1) =µ1. Like the moment measure, µ(n) for n ≥2 is not necessarily locally finite,
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nor guaranteed to have a density. If it has, ρ(n) is permutation invariant and defined
by the integral equations

E


 �=∑

y1,...,yn∈Y

g(y1, . . . , yn)




=
∫

· · ·
∫

g(y1, . . . , yn) ρ(n)(y1, . . . , yn) d� × νM(y1) · · · d� × νM(yn) (5)

for all non-negative, measurable functions g ≥ 0. In the physics literature, the re-
latedn-point correlation functions are commonly used. They are defined recursively
in terms of product densities as follows:

ξ1 ≡ 1;
ρ(n)(y1, . . . , yn) = λn

∑n
k=1

∑
D1,...,Dk

ξn(D1)(yD1) · · · ξn(Dk)(yDk
)

(6)

where the last sum ranges over all {D1, . . . , Dk �= ∅} partitions of {1, . . . , n} in k
non-empty, disjoint sets, and yDj

= {yi : i ∈ Dj } is the corresponding partition of
marked points. For a stationary Poisson process, ρ(n) ≡ λn, so that for n > 1, the
ξn account for the excess due to n-tuples in comparison with the reference Poisson
process. Thus, ξn > 0 suggests clustering, while ξn < 0 tends to correspond to n-th
order inhibition.

To conclude this section, note that if µ(n) exists, then so does an n-point mark
distributionMx1,...,xn (B1×· · ·×Bn) forxi ∈R

d , Borel setsBi ⊆M , and i = 1, . . . , n.
For further details, see the textbooks by Daley and Vere-Jones (1988) and Stoyan
et al. (1987).

3 A J -function for marked point patterns

We begin this section with recalling two well-known summary statistics from spa-
tial statistics.

The empty space function F of Y is the cumulative distribution function of the
distance from an arbitrarily chosen origin to the nearest point of the process, that is

F(t) := P {Y ∩ (B(0, t) × M) �= ∅}

for t ≥ 0. Here we write B(0, t) for the closed ball of radius t centred at 0. The
nearest neighbour distance distribution function from a point with mark in B is
defined by

GB(t) := P !0
B {Y ∩ (B(0, t) × M) �= ∅}

for t ≥ 0 and Borel sets B ⊆ M of positive νM -mass, the cumulative distribution
function of the distance from a typical point of the process with mark in B to the
nearest other point of Y regardless of its mark.

The J -function compares F to GB , as made precise in the following definition.
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Definition 3.1 Let B be a Borel subset of M with νM(B) > 0. Then the J -function
with respect to mark set B is given by

JB(t) = 1 − GB(t)

1 − F(t)

and defined for all t ≥ 0 for which F(t) < 1.

To interpret JB(t), note that for an independently marked Poisson point process,
Slivnyak’s theorem implies that GB(t)=F(t) for all B and t , hence JB ≡ 1. Values
less than 1 occur when GB(t)>F(t), that is when nearest neighbour distances are
smaller than distances from the origin. Intuitively, such cases suggest clustering.
On the other hand, values larger than 1 occur when the empty spaces are small in
comparison to the distance from a point with mark in B to its nearest neighbour,
an indication of inhibition. Note though that Bedford and Van den Berg (1997)
showed that a J -function that is 1 on its domain of definition does not imply that
Y is a Poisson process.

If one recalls that νM(B) G!0
B (t) = νM(B) P !0

B {Y ∩ (B(0, t) × M) �= ∅} is the
almost everywhere constant value of

∫
B

P !(x,m){Y ∩ (B(x, t)×M) �= ∅} dνM(m),
the definition of JB(t) may be rewritten as a mixture

JB(t) = 1

νM(B)

∫
B

[
P !(x,m){Y ∩ (B(x, t) × M) �= ∅}

1 − F(t)

]
dνM(m) (7)

for �-almost all x ∈ R
d . Thus, JB(t) may be interpreted as an average over B of

J -functions with respect to a point marked m∈B at an arbitrarily chosen origin.

Definition 3.2 The marked point process Y has the random labelling property if
the marks of the points are conditionally i.i.d. given the point locations.

For marked point processes with the random labelling property, the J -function
is of a convenient form, as stated more precisely in the following result.

Proposition 3.1 Let X be a stationary point process on R
d with finite positive

intensity λ, randomly labelled with mark distribution νM , and write Y for the
marked point process thus obtained. Then, for all t ≥ 0 with F(t) < 1, the J -func-
tion of Y with respect to a Borel mark set B ⊆ M with νM(B) > 0 is given by
JB(t)=JX(t), the J -function of X.

Proof One needs to prove that the nearest neighbour distance distribution function
of X coincides with that of Y with respect to any mark set, i.e. that

1 − GB(t) = 1 − GX(t) (8)

for all Borel sets B ⊆M with νM(B) > 0. Here we use the notation GX for the near-
est neighbour distance distribution function of X, and shall use similar notations
PX and EX for the distribution of X and its expectation below. To prove Eq. (8),
fix such a B and let A be any bounded Borel set of positive d-dimensional volume.
Consider the measurable function

g((x, m), Y ) = 1A(x) 1B(m) 1{Y ∩ (B(x, t) × M) �= ∅}.
Now, the number of marked points falling in A is finite almost surely, with a finite
expectation. Hence the expected sum of g over the points in Y is finite and
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E


 ∑

(x,m(x))=y∈Y

g(y, Y \ {y})

 = E

[ ∑
x∈X∩A

1{(X \ {x}) ∩ B(x, t) �= ∅} 1B(m(x))

]

= νM(B) EX

[ ∑
x∈X∩A

1{(X \ {x}) ∩ B(x, t) �= ∅}
]

= λ νM(B)

∫

A

P !0
X {(X + x) ∩ B(x, t) �= ∅} d�(x)

= λ νM(B) �(A) GX(t)

because of the conditionally independent mark assignments and the Campbell–
Mecke formula for X.

On the other hand, since Y is stationary with µ1 = λ �×νM , where λ is the
intensity of X, by the Campbell–Mecke formula (Eq. 2)

E


∑

y∈Y

g(y, Y \ {y})

= λ

∫

A

∫

B

P !(0,m){(Y +x)∩(B(x, t)×M) �= ∅}d�(x)dνM(m)

= λ νM(B) �(A) GB(t).

We conclude that GX(t)=GB(t), and the desired result follows upon division
by 1 − F(t) on both sides of the Eq. (8). �	

4 Representation theorems

In this section, relationships between the J -function and fundamental marked point
process descriptors, namely the Papangelou conditional intensity and n-point cor-
relation functions, are explored. We shall obtain a connection with the widely used
second order K-function, and prove that the J -function with respect to any mark
set becomes flat beyond the joint range of interaction.

4.1 Representation in terms of Papangelou conditional intensity

The Nguyen–Zessin formula motivated the definition of the J -function, as it relates
expectations under the reduced Palm distribution to those under the distribution of
Y itself. Hence it should not come as a surprise that the J -function with respect to
a mark set can be expressed explicitly in terms of conditional intensities.

Proposition 4.1 Let Y be a stationary marked point process with finite positive
intensity λ for which a regular version of the conditional intensity exists that sat-
isfies the Nguyen–Zessin formula (Eq. 4), and B a Borel set in the mark space M
with νM(B) > 0. Then GB(t) < 1 for some t ≥ 0 implies F(t) < 1 and

JB(t) = E

[
λB(0; Y )

λ νM(B)

∣∣∣∣ Y ∩ (B(0, t) × M) = ∅
]

(9)

=
(

E
!0
B

[
λνM(B)

λB(0; Y )

∣∣∣∣ Y ∩ (B(0, t) × M) = ∅
])−1

. (10)
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Proof Let A be the event {Y ∩ (B(0, t)×M) = ∅}, so that F(t) = 1 if and only if
P(A) = 0. Apply the Nguyen–Zessin formula (Eq. 4) for the measurable function
g(Y ) = 1A(Y ) ≥ 0 to obtain

E [1A(Y ) λB(0; Y )] = λ νM(B) E
!0
B [1A(Y )] = λ νM(B) (1 − GB(t)) .

If P(A) = 0, so is the expectation in the left hand side of the above equality.
Since by assumption λ νM(B) > 0, necessarily GB(t) = 1. Hence GB(t) < 1 im-
plies P(A) > 0, or, equivalently, F(t) < 1. Thus, we may divide the left and right
hand side by λ νM(B) (1 − F(t)) to obtain Eq. (9).

Next, apply the Nguyen–Zessin formula to the functiong(Y )=1A(Y )/λB(0; Y )
(we shall show below that the function is well-defined). Then, from

λ νM(B) E
!0
B [1A(Y )/λB(0; Y )] = E [1A(Y )] = 1 − F(t),

we obtain Eq. (10) upon dividing both sides of the equation by 1 − GB(t). Note
that λB(0; Y ) > 0 almost surely with respect to the reduced Palm distribution P !0

B ,
since

λ νM(B) P !0
B {λB(0; Y ) = 0} = E [1{λB(0; Y ) = 0} λB(0; Y )] = 0,

hence the conditional expectation in Eq. (10) is well-defined. It follows that

λ νM(B) = λ νM(B) E
!0
B [1{λB(0; Y ) > 0}] = E [1{λB(0; Y ) > 0} λB(0; Y )]

≤ E [λB(0; Y )] = λ νM(B).

Hence

1{λB(0; Y ) > 0} λB(0; Y ) = λB(0; Y ) P − a.s.,

or, in other words, P {λB(0; Y ) = 0} = 0, and the function g(Y ) is well-defined. �	
The following corollary gives a useful interpretation of the J -statistic.

Corollary 4.1 Let Y be a stationary marked point process with finite positive inten-
sity λ for which a regular version of the conditional intensity exists that satisfies
the Nguyen–Zessin formula (Eq. 4). Then JB(t) ≥ 1 (respectively ≤ 1) if and only
if

Cov (λB(0; Y ), 1{Y ∩ (B(0, t) × M) = ∅}) ≥ 0

(respectively is non-positive).

Another corollary states that JB(t) is constant beyond the joint range of inter-
action.

Definition 4.1 A marked point process Y has joint interaction range s if for all
Borel sets B ⊆M with νM(B) > 0 its conditional intensity λB(0; Y ) is constant for
all realisations which contain no points in B(0, s).

Thus, for t greater than the joint interaction range, given that Y ∩(B(0, t)×
M) = ∅, the conditional intensity λB(0; Y )=λB(0; ∅).
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Corollary 4.2 If Y has joint interaction range s, 0<s <∞, then JB(t) is constant
for all t ≥s for which it is defined, and

JB(t) ≡ λB(0; ∅)

λ νM(B)
.

Note that neither F nor GB are constant beyond the joint interaction range.
For example, for a stationary planar Poisson process, λB(0; Y )≡λνM(B) does not
depend on Y . Nevertheless, F(t)=GB(t)=1 − exp

[−λπt2
]

is strictly increasing
and depends on the intensity, a fact that makes interpretation of its graph harder
than that of JB(t).

A widely used family of marked point process models with finite joint interac-
tion range is that of the pairwise interaction models. Such models have a conditional
intensity of the form

λ((u, m); y) = β(m)
∏
yj ∈y

γ ((u, m), yj )

for (u, m) �∈ y, where β and γ are non-negative measurable functions (cf. Baddeley
and Møller, 1989; Ripley and Kelly, 1977; Ripley, 1989 or Ogata and Tanemura,
1989). Note that these authors consider marked point processes in a bounded do-
main, but that, under conditions similar to those for existence of a conditional
intensity [cf. Sect. 5.5.3 in Stoyan et al. (1987)], a stationary extension on R

d can
be shown to exist. Typically β is bounded, and γ ≤ 1. It is easily verified that

JB(t) = 1

λ νM(B)

∫

B

β(m) E


∏

y∈Y

γ ((0, m), y)

∣∣∣∣∣∣ Y ∩ (B(0, t) × M) = ∅

 dνM(m)

wherever defined. If γ ((u, m), (v, n)) ≡ 1 for ||u − v|| > s, the J -function with
respect to B reduces to

JB(t) = 1

λ νM(B)

∫
B

β(m) dνM(m)

for t ≥s such that F(t) < 1.

4.2 Representation in terms of product densities

In astronomical folklore, the connection between the empty space function and the
product densities, or equivalently the n-point correlation functions, is well-known.
Indeed, White (1979) argues that the fact that F uses product densities of all orders
makes it particularly appropriate to detect clustering in galaxy catalogues. Here, we
shall give an expression of the J -function for marked point processes in terms of
n-point correlation functions, and consider in detail how to obtain a classic second
order analysis (Stoyan and Stoyan, 1994) by truncation.

We shall need the following lemma.
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Lemma 4.1 (White (1979))
LetY be a stationary marked point process. Suppose that all order factorial moment
measures exist as locally finite measures, and have a Radon–Nikodym derivative
ρ(n) with respect to the n-fold product of �×νM with itself, n∈N. Then the empty
space function can be written as

F(t) = −
∞∑

n=1

(−1)n

n!

∫

B(0,t)×M

· · ·
∫

B(0,t)×M

ρ(n)(y1, . . . , yn) d�

×νM(y1) · · · d� × νM(yn)

= 1 − exp




∞∑
n=1

(−λ)n

n!

∫

B(0,t)×M

· · ·
∫

B(0,t)×M

ξn(y1, . . . , yn) d�

× νM(y1) · · · d� × νM(yn)




where the ξn are given by Eq. (6).

The main result of this subsection is the following.

Proposition 4.2 Let Y be a stationary marked point process. Suppose that all order
factorial moment measures exist as locally finite measures, and have a Radon–Niko-
dym derivative ρ(n) with respect to the n-fold product of �×νM with itself, n∈N.
Then the J -function with respect to any Borel mark set B ⊆M with νM(B)>0 can
be written as

JB(t) = 1

νM(B)

[
νM(B) +

∞∑
n=1

(−λ)n

n!
JB

n (t)

]

for all t ≥ 0 for which F(t) < 1, where JB
n (t) is the common value of

∫
B

∫
B(0,t)×M

· · ·
∫

B(0,t)×M

ξn+1((a, m), y1 +a, . . . , yn +a) dνM(m) d�× νM(y1) · · · d�× νM(yn) for

�-almost all a ∈ R
d .

Proof By the Campbell–Mecke formula (Eq. 2), for any bounded Borel set A ⊂ R
d

of strictly positive Lebesgue measure �(A) > 0,

λ νM(B) �(A) (1 − GB(t))

= E


 ∑

(a,m)∈Y∩(A×B)

1{Y \ {(a, m)} ∩ (B(a, t) × M) = ∅}

 .

The expectation on the right hand side is well-defined and finite, since the first
order (factorial) moment measure exists as a locally finite measure. Now, by the
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inclusion-exclusion formula, the expectation may be rewritten as

E


 ∞∑

n=0

(−1)n

n!

�=∑
(a,m),y1,...,yn∈Y

1A×B(a, m) 1B(a,t)×M(y1) · · · 1B(a,t)×M(yn)




which by Eq. (5) is equal to
∑∞

n=0
(−1)n

n!

∫
A

f B
n (a, t) d�(a) with

f B
n (a, t) =

∫

B

∫

B(0,t)×M

· · ·
∫

B(0,t)×M

ρ(n+1)((a, m), y1 + a, . . . , yn + a)dνM(m)

×d� × νM(y1) · · · d� × νM(yn).

By stationarity, the factorial moment measures are translation invariant, hence for
all n ∈ N, f B

n (·, t) is almost everywhere constant, say f B
n (t). Of course, f B

0 ≡
λνM(B). From the recursion relation (Eq. 7), it follows that JB

n (t) is well-defined
too, with JB

0 ≡νM(B). In summary

λ νM(B) (1 − GB(t)) =
∞∑

n=0

(−1)n

n!
f B

n (t). (11)

In order to complete the proof, we need to show that the right hand side of
Eq. (11) is equal to λ (1 − F(t))

∑∞
n=0

(−λ)n

n! JB
n (t). To do so, use the definition of

the correlation functions, and split the partition into those terms that contain the
first marked point and those that do not. More precisely, Eq. (11) equals

λνM(B) + λ

∞∑
n=1

(−λ)n

n!

∑
D⊆{1,...,n}

JB
n(D)(t)

n−n(D)∑
k=1

∑
D1,...,Dk �=∅

∪Dj ={1,...,n}\D

In(D1) · · · In(Dk)

=
[
λ JB

0 (t) + λ

∞∑
n=1

(−λ)n

n!
JB

n (t)

]

×


1 +

∞∑
m=1

(−λ)m

m!

m∑
k=1

∑
D1,...,Dk �=∅

∪Dj ={1,...,m}

In(D1) · · · In(Dk)




where In is the n-fold integral over the Cartesian product of B(0, t)×M of the
n-point correlation functions with respect to the appropriate � × νM product
measure. By convention, multiplication by an empty sum is set to 1. Note that
the second term is 1 − F(t), by White’s lemma, and the desired representation
holds. �	

Proposition 4.2 requires the existence of factorial moment measures of all
orders. If such an assumption is not valid, one could truncate the alternating series
at some fixed n. Indeed, the approximation in terms of product densities up to
second order reads
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JB(t) − 1 ≈ −λ

νM(B)

∫

B




∫

B(0,t)×M

ξ2((0, m), y) d� × νM(y)


 dνM(m)

= −1

λ νM(B)

∫

B




∫

B(0,t)×M

(
ρ(2)((0, m), y) − λ2

)
d� × νM(y)


 dνM(m).

Thus,

JB(t) − 1 ≈ −λ [KB(t) − �(B(0, t))] (12)

where KB is the reduced second moment measure (see e.g. the textbooks by Ripley,
1988 and Stoyan and Stoyan, 1994) with respect to the mark set B. In other words,
λKB(t) is the expected number of further points within a radius t of a typical point
with mark in B (i.e. under P !0

B ). In terms of the 2-point mark distribution function,
Eq. (12) reads

JB(t) − 1 ≈ −λ

∫

B(0,t)

[
M0,x(B × M)

νM(B)
g(0, x) − 1

]
d�(x)

= −λ

∫

B(0,t)

[
kf (0, x) g(0, x) − 1

]
d�(x)

where g is the pair correlation function of the unmarked point process associated
with Y , which is proportional by a factor 1/λ2 to the second order product density,
and the functional kf is given by kf (0, x) = ∫

M

∫
M

f (m1, m2)dM0,x(m1, m2) with
f (m1, m2) = 1B(m1)/νM(B).

A typical second order analysis of marked point processes (Penttinen and
Stoyan, 1989; Stoyan and Stoyan, 1994) plots estimates of the pair correlation
function and kf (·, ·) for a suitably chosen non-negative, Borel measurable and inte-
grable function f . For a single positive real-valued mark, the function f (m1, m2) =
m1m2/µ

2 may be used, where µ = ∫
R+ mdνM(m) is the mean mark. For discrete

or binned labels, f (m1, m2) = 1A(m1) 1B(m2) /(νM(A) νM(B)) is a convenient
choice.The latter amounts to a crossJ -function analysis (see Sect. 7 orVan Lieshout
and Baddeley, 1999) with truncation at second order product densities.At this point,
it should be emphasised that, in spite of its popularity, the second order structure
does not provide a full description of the spatial interaction structure (Baddeley
and Silverman, 1984). Thus, it is wise to plot a range of summary statistics when
exploring spatial data.

Example 4.1 Let X be a stationary, isotropic, planar point process for which a
second order product density exists. Then

J (t) ≈ 1 − λ

∫

B(0,t)

(g(||x||) − 1) d�(x) = 1 − 2πλ

t∫

0

r (g(r) − 1) dr,

which is known as the ‘Gaussian approximation’ in astronomy (Kerscher, 1998).
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5 Estimation

Throughout this section, assume that Y is a stationary marked point process on R
d

with marks in a complete, separable metric space M with finite, positive intensity
λ. Thus, the first order moment measure and hence Palm kernels exist. Below, we
propose Hanisch style kernel estimators for the J -function and some associated
characteristics when Y is observed within a compact set W ⊆R

d of positive volume
�(W). We shall rely on the principle that Palm characteristics may be estimated by
averages over points of the marked point process (Stoyan et al. 1987, p. 130), i.e.
the estimator

̂λνM(B)E!0
B f (Y ) =

∑
y=(x,m)∈Y

1W(x) 1B(m) f ((Y − x) \ {(0, m)})
�(W)

is unbiased for any non-negative measurable function f by virtue of the Campbell–
Mecke formula (Eq. 2). For example, for the mark distribution we have

̂λ νM(B) =
∑

(x,m)∈Y

1W(x) 1B(m)

�(W)
,

for any Borel subset B of M and any compact set W ⊆ R
d of positive volume

�(W) > 0. For many f , care has to be taken with regard to edge effects caused
by the fact that not Y itself is observed, but rather Y ∩ (W × M). For such f ,
the estimator described above cannot be computed based on the available data.
This phenomenon known as the ‘edge effect’ is particularly irksome for irregularly
shaped windows W , and in higher dimensions.

In the approach of Hanisch (1984) for functions based on inter-point distances
such as the J -function, a solution for the edge effect problem lies in the observation
that on the event {d(x, ∂W)≥ d(x, Y )} the observed distance d(x, Y ∩(W ×M))
is equal to the true one d(x, Y ). Other types of edge-corrected estimators for F
and G are reviewed in many textbooks, including Cressie (1991, chapter 8), Ripley
(1988, chapter 3), Stoyan et al. (1987, pp. 122–131), as well as in Baddeley and Gill
(1997). We have chosen the Hanisch approach, as it leads to estimators that—in
contrast to other estimators—respect the monotonicity and continuity properties
of F and GB , and do not discard too much data. The plug-in principle then yields
ratio-unbiased estimators for JB . Unfortunately though, empirical evidence (see
e.g. Van Lieshout and Baddeley, 1996, 1999) suggests that the variance of ĴB(t)

will increase with t , causing a rather fluctuating tail behaviour of ĴB(t). To solve
this problem, we propose to combine edge correction with smoothing (Silverman,
1986) to obtain more robust estimators.

5.1 Cumulative distribution functions

The first result of this section concerns an edge-corrected estimator for the nearest
neighbour distance distribution function with respect to a mark set.
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Proposition 5.1 For any Borel set B ⊆ M with νM(B) > 0, define for t ≥ 0 such
that �(W�t ) > 0,

∑
yk∈Y∩(W×B)

[
1{bk > sk} 1{sk ≤ t}

�(W�sk )

]
(13)

with the convention that 0/0 = 0. Here, yk = (xk, mk) is a marked point, and
sk =d(xk, (Y∩(W ×M))\{(xk, mk)}), respectively, bk =d(xk, ∂W) are the Euclid-
ean distances from xk to the nearest other marked point in Y and to the boundary
of W . The notation W�t is used for the set {w ∈ W :d(w, ∂W)>t}. Then Eq. (13)
is an unbiased estimator of λ νM(B) GB(t) for all t ≥ 0 for which is defined; it is
a non-negative function that is increasing in t .

Proof First, note that whenever bk > sk , �(W�sk ) > 0, hence Eq. (13) is well-
defined for any t ≥ 0. Now, 1{d(xk,∂W) > d(xk, (Y ∩(W ×M))\{(xk, mk)})} =
1{d(xk, ∂W) > d(xk, Y \ {(xk, mk)})}, and, moreover, when the indicator func-
tions take the value 1, sk = d(xk, Y \{(xk, mk)}). Hence the sk in Eq. (13) may be
replaced by d(xk, Y \{(xk, mk)}).

The mapping (x, Y ) �→ d(x, Y ) on R
d ×N , the product space of R

d and the
configuration space N of locally finite marked point patterns y in R

d×M is jointly
measurable when restricted to W , and non-negative. Therefore,

E


 ∑

(x,m)∈Y∩(W×B)

1{x ∈ W�d(x,Y\{(x,m)})} 1{d(x, Y \ {(x, m)}) ≤ t}
�(W�d(x,Y\{(x,m)}))




= λ νM(B)

∫

W

E
!0
B

[
1{x ∈ W�d(0,Y )}

�(W�d(0,Y ))
1{d(0, Y ) ≤ t}

]
d�(x)

by stationarity and the Campbell–Mecke formula (Eq. 2). Since �(W�d(0,Y )) > 0
on the event {d(0, Y )≤ t}, an application of Fubini’s theorem yields that the expec-
tation of Eq. (13) reduces to

λ νM(B) E
!0
B [1{d(0, Y ) ≤ t}] = λ νM(B) GB(t).

Clearly, Eq. (13) is non-negative and increasing in t in the range for which it is
well-defined. �	

For the rectangular or circular windows that are typically encountered in spatial
statistics, the term �(W�s) can be evaluated explicitly.

The practitioner usually is interested in estimators of GB(t) rather than in those
of λ νM(B) GB(t). In the spirit of Stoyan and Stoyan (2000), who advocated to use
intensity estimators similar to estimators of the numerator, we choose to divide
Eq. (13) by

∑
yk∈Y∩(W×B)

[
1{bk > sk}
�(W�sk )

]
, (14)

again with 0/0 = 0. Note that Eq. (14) is well-defined with expectation λ νM(B)
GB(T −), where T := sup{t ≥0 : W�t �= ∅} = sup{t ≥ 0 : �(W�t )>0}.
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The Hanisch estimator for the empty space function is well known (Chiu and
Stoyan, 1998): for t ≤T :=max{s : #{i : bi ≥ s} > 0} = max{bk : xk ∈ L}, set

F̂ (t) =
∑
xk∈L

[
1{bk ≥ sk} 1{sk ≤ t}

#{i : bi ≥ sk}
]

(15)

with the convention that 0/0 = 0. The sum is over a finite lattice L �= ∅ in W . It
should be noted that there is no need to delete xk from the point pattern in the com-
putation of sk , as it will almost surely be no part of a realisation of Y . Clearly, F̂ (t)
is increasing; it is also unbiased. Unfortunately, though, Eq. (15) is not necessarily
a distribution function, and one may have to normalise by dividing by F̂ (T ).

In a range of papers (Baddeley et al. 2000; Chen 2003; Chen et al. 2001), uncor-
rected estimators of J -functions were considered. These may be seen as unbiased
for ‘window averaged J -functions’, and can be surprisingly powerful as test sta-
tistic. As is our J -function, for Poisson processes the windowed J -function is
identically equal to 1, but in general explicit evaluation seems to be more cumber-
some, no representation theorems have been found, and the behaviour under random
labelling is unknown. The theoretical windowed values are typically closer to 1
than the classic ones, which may be understood as ‘Poissonisation due to window
averaging’.

5.2 Densities and hazard rates

For exploratory purposes, densities and hazard rates often convey more information
than cumulative statistics (Baddeley and Gill, 1994; Stoyan and Stoyan, 1994). In-
deed, suppose a Papangelou conditional intensity exists so that the Nguyen–Zessin
formula (Eq. 4) holds. Then, provided GB(t)<1,

J ′
B(t) = [

hF (t) − hGB
(t)

]
JB(t)

where hI denotes the hazard rate of statistic I . Thus, the relative derivative statis-
tic J ′

B(t)/JB(t) is a signed measure of spatial association. The hazard rates exist,
whence JB(t) is differentiable, under the Nguyen–Zessin condition. Indeed, by the-
orems from Baddeley and Gill (1997) and Hansen et al. (1996), the empty space
function of a stationary point process X is absolutely continuous with density and
hazard rate given by

fF (t)= Ehd−1(∂(X ⊕ B(0, t)) ∩ Z)

�(Z)
; hF (t)= E

[
hd−1(∂(X ⊕ B(0, t)) ∩ Z)

]
E [�(Z \ (X ⊕ B(0, t)))]

(16)

for any non-empty compact regular set Z (i.e. cl(Zint)=Z). Here hd−1 is the d − 1
dimensional Hausdorff measure, and Y ⊕ B(0, t) = ∪(x,m)∈Y B(x, t) the Minkow-
ski sum of Y and a closed ball of radius t centered at the origin. Chiu and Stoyan
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(1998) observed that Eq. (15) is a discretisation of

F̃ (t) =
∫

W

[
1{x ∈ W � B(0, d(x, Y ))} 1{d(x, Y ) ≤ t}

�(W � B(0, d(x, Y )))

]
d�(x)

=
t∫

0

hd−1(W � B(0, s) ∩ ∂(Y ⊕ B(0, s)))

�(W � B(0, s))
ds

for all t for which it is defined. Here W �B(0, s) = (Wc ⊕ B(0, s))c = {w ∈
W : d(w, ∂W)≥ s}. Provided W is regular, the integrand is an unbiased estimator
of f (s) based on the minus sampling principle, an alternative interpretation of
Eq. (15).

In general, densities and hazard rates do not exist for GB . Indeed, the nearest
neighbour distance distribution function may be degenerate, for instance for ran-
domly translated grids. However, if the Nguyen–Zessin identity holds, a density
does exist.

Proposition 5.2 Let Y be a stationary marked point process with finite positive
intensity λ for which a regular version of the conditional intensity exists that satis-
fies the Nguyen–Zessin formula (Eq. 4), and B a Borel mark set with νM(B) > 0.
Then the nearest neighbour distance d(0, Y ) from a point at 0 with mark in B is
absolutely continuous with density

gB(t) = fF (t) E

[
λB(0; Y )

λ νM(B)

∣∣∣∣ d(0, Y ) = t

]
. (17)

Proof Suppose P {d(0, Y ) ∈ A} = 0 for any Borel subset A of the positive half line,
i.e. 1{d(0, Y ) ∈ A} = 0 P -almost surely. Consequently, λ νM(B) P !0

B {d(0, Y ) ∈
A} = E [λB(0; Y ) 1{d(0, Y ) ∈ A}] = 0 by Eq. (4). Therefore, the nearest neigh-
bour distance distribution with respect to mark set B is absolutely continuous with
respect to the distribution of d(0, Y ), so, by the Radon–Nikodym theorem

P !0
B {d(0, Y ) ∈ A} =

∫

A

fGF (a) dF(a)

for some measurable, integrable function fGF on the positive half line, and in
particular

GB(t) =
t∫

0

fGF (s) dF(s) =
t∫

0

fGF (s) fF (s) ds.

The Nguyen–Zessin formula further implies that

λνM(B) GB(t) = E [λB(0; Y ) 1{Y ∩ (B(0, t) × M) �= ∅}]
= EE [λB(0; Y ) 1{d(0, Y ) ≤ t}| d(0, Y )]

=
t∫

0

E [λB(0; Y )| d(0, Y ) = s] dF(s).
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Hence, λ νM(B) fGF (s) = E [λB(0; Y )| d(0, Y ) = s] for almost all s, and Eq. (17)
follows. �	

It is instructive to note that beyond the joint range of interaction

gB(t) = fF (t) λB(0; ∅)/(λ νM(B)) = fF (t) JB(t)

so that

(hF (t) − hGB(t))JB(t) =
[

fF (t)

1 − F(t)
− fF (t)JB(t)

1 − GB(t)

]
JB(t)

=
[

fF (t)

1 − F(t)
− fF (t)

1 − F(t)

]
JB(t)

vanishes as it should.
In the following proposition, we derive Hanisch-style kernel estimators

(Silverman, 1986) of fF (t) and λ νM(B) gB(t). Note that as the domain of defini-
tion is t ≥ 0, one might consider to use adaptations such as setting the value of the
density at 0 for negative t (as below) or reflection (Silverman, 1986, p. 30).

Proposition 5.3 Let Y be a stationary marked point process with finite positive
intensity λ for which a regular version of the conditional intensity exists that sat-
isfies the Nguyen–Zessin formula (Eq. 4), B be a Borel mark set with νM(B) > 0,
L �= ∅ a finite set of points in W , and t ∈ [0, T ] with T = max{s : #{i : bi ≥s}>0}.
Given a symmetric, measurable, non-negative kernel kh(·) on R with bandwidth h
that integrates to unity, i.e. kh(x) = k(x/h)/h,

f̂F (t) =
∑
xk∈L

kh(t − sk) 1{bk ≥ sk}
#{i : bi ≥ sk}

with the convention that 0/0=0 is an unbiased estimator of
∫ T

0 kh(t − s)fF (s)ds.
As before, sk = d(xk, Y ∩ (W × M)); and bk = d(xk, ∂W). Furthermore, for
t ∈ [0, T ) with T = sup{s : W�s �= ∅},

̂λνM(B)gB(t) =
∑

yk∈Y∩(W×B)

kh(t − sk) 1{bk > sk}
�(W�sk )

(18)

(again with 0/0 = 0) is an unbiased estimator of λ νM(B)
∫ T

0 kh(t − s) gB(s)ds.
Here, yk =(xk, mk) and sk =d(xk, (Y ∩ (W × M))\{(xk, mk)}).

Proof First, note that wheneverbk >sk , �(W�sk ) > 0, hence Eq. (18) is well-defined
for any t ≥0. Moreover,

1{d(xk, ∂W) > d(xk, (Y ∩ (W × M)) \ {(xk, mk)})}
= 1{d(xk, ∂W) > d(xk, Y \ {(xk, mk)})},
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and, when the indicator functions take the value 1, sk = d(xk, Y \ {(xk, mk)}).
Hence distances to the nearest other point in Y ∩ (W ×M) may be replaced by
distances to Y in the formulae below. A similar remark is true for f̂F (t). Now,

Ef̂F (t) =
∑
xk∈L

E

[
kh(t − d(xk, Y )) 1{d(xk, ∂W) ≥ d(xk, Y )}

#{i : d(xi, ∂W) ≥ d(xk, Y )}
]

=
∑
xk∈L

∞∫

0

[
kh(t − s) 1{d(xk, ∂W) ≥ s}

#{i : d(xi, ∂W) ≥ s}
]

fF (s) ds

=
T∫

0

kh(t − s) fF (s) ds.

Regarding the nearest neighbour distance distribution density gB(t),

E ̂λνM(B)gB(t) = λ

∫

W

∫

B

E
!(0,m)

[
kh(t − d(0, Y )) 1{x ∈ W�d(0,Y )}

�(W�d(0,Y ))

]
d�(x) dνM(m)

= λ νM(B)

∫

W

E
!0
B

[
kh(t − d(0, Y )) 1{x ∈ W�d(0,Y )}

�(W�d(0,Y ))

]
d�(x)

= λ νM(B)

T∫

0

kh(t − s) gB(s)ds

by stationarity, the Campbell–Mecke formula and Fubini’s theorem. �	
One is often interested in an estimator of gB(t) itself. As for the nearest neigh-

bour distance distribution function with respect to the mark set B, we divide Eq. (18)
by Eq. (14), cf. the discussion following Eq. (14).

Since M is a metric space, say equipped with the metric ρ(·, ·), we may con-
sider the family k̃h̃(m, n) := k̃(ρ(m, n)/h̃)/h̃ of kernels with bandwidth h̃ > 0
based on some fixed measurable function k̃ : R

+ → R
+ that integrates to unity,

and apply ideas from kernel estimation theory to both the mark set and the range,
as exemplified by the following proposition.

Proposition 5.4 Let Y be a stationary marked point process with finite positive
intensity λ and marks in the complete, separable metric space (M, ρ) for which a
regular version of the conditional intensity exists that satisfies the Nguyen–Zessin
formula (Eq. 4). Write yk = (xk, mk), sk = d(xk, (Y ∩ (W × M))\ {yk}) and
bk =d(xk, ∂W). Then, given symmetric, measurable, non-negative kernels kh with
bandwidth h on R and k̃h̃ with bandwidth h̃ on M×M that integrate to unity, for
m∈M and t ∈ [0, T ) with T =sup{s : �(W�s) > 0},

ĥm(t) =
∑

yk∈Y∩(W×M) k̃h̃(m, mk) kh(t − sk) 1{bk > sk}/�(W�sk )∑
yk∈Y∩(W×M) k̃h̃(m, mk) 1{bk > sk} 1{sk > t}/�(W�sk )
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with the convention that 0/0 = 0 in both numerator and denominator is a ratio-
unbiased estimator of

λ
∫
M

T∫
0

k̃h̃(m, n) kh(t − s) gn(s) dνM(n) ds

λ
∫
M

T∫
t

k̃h̃(m, n) gn(s) dνM(n) ds

,

where gn(s)=fF (s) E [λ((0, n); Y )| d(0, Y ) = s] /λ, cf. (Eq. 14).

Proof As in the proof of Proposition 5.3, we may replace sk by d(xk, Y \{yk}).
Since

E


 ∑

(x,n)∈Y∩(W×M)

k̃h̃(m, mk) kh(t − d(x, Y \ {(x, n)})) 1{x ∈ W�d(x,Y\{(x,n)})}
�(W�d(x,Y\{(x,n)}))




= λ

∫

W

∫

M

E
!(0,n)

[
k̃h̃(m, n) kh(t − d(0, Y )) 1{x ∈ W�d(0,Y )}

�(W�d(0,Y ))

]
d�(x) dνM(n)

= λ

∫

M

k̃h̃(m, n) E
!(0,n) [kh(t − d(0, Y )) 1{d(0, Y ) < T }] dνM(n),

by the Campbell–Mecke theorem for stationary processes and Fubini’s theorem.
Similarly, one may show that the expectation of the denominator is given by

λ

∫

M

k̃h̃(m, n) E
!(0,n) [1{t < d(0, Y ) < T }] dνM(n).

We proceed to show that for any pair of non-negative measurable functions h
on M , and k on R

+,

∫

M

h(n) E
!(0,n) [k(d(0, Y ))] dνM(n) =

∫

M

∞∫

0

h(n) k(s) gn(s) dνM(n) ds.

To do so, follow the route from indicator functions h via step functions by linearity,
to general h by approximation and the monotone convergence theorem. Indeed,
let h(n)=1B(n). If νM(B) = 0, the desired identity trivially holds. Otherwise, by
Proposition 5.2
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∫

B

E
!(0,n) [k(d(0, Y ))] dνM(n) = νM(B) E

!0
B [k(d(0, Y ))]

= νM(B)

∞∫

0

k(s) fF (s) E

[
λB(0; Y )

λ νM(B)

∣∣∣∣ d(0, Y ) = s

]
ds

= 1

λ

∞∫

0

k(s) fF (s) E [λB(0; Y )| d(0, Y ) = s] ds

=
∫

B

∞∫

0

k(s)
fF (s)

λ
E [λ((0, n); Y )| d(0, Y ) = s] dνM(n) ds.

To finish the proof, apply the claim with h(n)= k̃h̃(m, n) and k(d(0, Y ))=kh(t −
d(0, Y )) 1{T > d(0, Y )}. The proof of the second statement follows upon replace-
ment of the kernel kh(t − d(0, Y )) by the indicator function 1{d(0, Y ) > t}. �	

Note that ĥm(t) may be interpreted as the hazard rate of the nearest neighbour
distance distribution function with respect to a mark in the infinitesimal neighbour-
hood dνM(m) at range t . By letting m run through M , a wealth of information on
Y is obtained. We shall use the function in Sect. 6 below to investigate a random
labelling hypothesis.

6 Forestry example

Below, we illustrate the use of the marked J -function by means of a data set of pine
saplings in Finland (cf. Fig. 1) collected by Professor S. Kellomaki from Joensuu,
and kindly provided by Professor A. Penttinen. The observation window W is the

Fig. 1 Positions of 126 pine saplings (Kellomaki, Joensuu) within a 10 × 10 m2 window. The
marks record the height in meter and are represented by a disc
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Fig. 2 Histogram and Gaussian kernel estimator of the mark distribution for the pine saplings
data

square [−5, 5]×[−8, 2], but note that the data were originally recorded in a larger
circular plot with polar coordinates. After transformation to Euclidean coordinates,
to get rid of alignments at larger distances, some random rounding was done as a
result of which there are a few close pairs of neighbours. For each of the 126 pines,
the height and diameter at breast height were measured. The marks are strongly
positively correlated. Moreover, a number of trees are broken resulting in zero
diameter at breast height. For these reasons, we base our analysis on the height
marks only, i.e. take M = R

+.
We begin our analysis with first order characteristics. The intensity estimator

is λ̂ = 1.26, and the sample mean of the mark distribution µ̂ = 2.83. A histogram
and kernel estimator are plotted in Fig. 2. Note that the histogram counts in bin
B are unbiased estimators of λ νM(B) �(W), the kernel estimator is ratio-unbiased
due to the fact that the number of points is random.

The Hanisch estimators for the nearest neighbour distance distribution function
and empty space function introduced in Sect. 5 have been implemented in R using
the package spatstat developed by Baddeley and Turner (2005). The t values
at which we evaluated the estimators were separated by 0.025. For the lattice L,
a regular 100 by 100 grid girting the boundary was used. Within the scope of this
paper we restricted ourselves to exploratory data analysis. Of course a more formal
test could be designed quite easily (Besag and Diggle, 1977). Empirical evidence
(Baddeley et al., 2000; Chen, 2003; Thőnnes and Van Lieshout, 1999) suggests
that the power of tests based on a J -function is comparable to that of the more
powerful of the alternatives based on F or nearest neighbour distances.

Figure 3 shows the graph of the estimated J -function of the point process of
locations. Note that it is less than 1 over the considered range, which suggests a
clustering of trees. The impression is confirmed by a Monte Carlo test at the 1%
level. Indeed, the J -function of the (unmarked) saplings data lies below the lower
envelope computed over 99 independent simulations of a binomial point process
with the same intensity up to t ≈ 0.55. Note that since there are many small saplings
in the field, one would not expect to see a hard core effect that is typically observed
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Fig. 3 Empirical Ĵ (t)-function (dotted line) for the pine saplings locations and envelopes of 99
simulations of a binomial process with 126 points (solid lines)
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Fig. 4 Empirical mark pair correlation function ĝ13(t)-function (dotted line) for the pine saplings
data and envelopes of 99 independent random re-labellings (solid lines)

in older, more established forests, a feature reinforced by the rounding involved in
transforming the data from polar to Euclidean coordinates.

To investigate the mark dependence structure, we begin by partitioning the
mark space in three parts: heights less than 2, heights in [2, 4], and heights larger
than 4. Write λ1, λ2, and λ3 for the respective intensities. The estimated mark pair
correlation function ĝ13 = ρ

(2)
13 /(λ1λ3) with respect to the smallest and largest

height sets (cf. Stoyan and Stoyan, 1994, p. 266) is plotted in Fig. 4. Note that at
this point we have to assume isotropy. As its values are larger than 1, it indicates
positive correlation at smaller range. To assess statistical significance, we condition
on the locations, and re-sample the labels without replacement. At the 1% level,
i.e. for 99 independent samples, it can be seen from the upper and lower envelopes
in Fig. 4 that the correlation is not significant. A similar message is given by the
cross J13- and J31-functions, as illustrated in Fig. 5.
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Fig. 5 Estimated cross J -function (dotted line) for the pine saplings data and envelopes of 99
independent random re-labellings (solid lines): Ĵ13(t) (left) and Ĵ31(t) (right)
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Fig. 6 Empirical difference of hazard rates ĥm(t) − ĥG(t) (dotted line) for the pine saplings
data and envelopes of 99 independent random re-labellings (solid lines) for m = 1.5 (left) and
m = 4.5 (right)

To conclude this section, consider the hazard rate statistic of Proposition 5.4.
Figure 6 presents graphs of ĥm(t) based on a box kernel for the mark with h̃ = 0.5,
and a Gaussian kernel with h = 0.075 for the nearest neighbour distances. In order
to allow comparison with the random labelling null hypothesis, a plug-in Hanisch
style estimator of the hazard rate of the underlying location process X was sub-
tracted (cf. Proposition 3.1). Upper and lower envelopes based on 99 independent
re-samplings of the marks without replacement are given as well. It can be seen that
the deviation from the null hypothesis is significant both for large and small marks
at intermediate range (from around t = 0.3). In the case m = 4.5, hm(t) is too large
(many distances around 0.3), while for m = 1.5 there is a shortage of intermediate
nearest neighbour distances due to a peak at larger inter-point distances.
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7 Discussion and conclusion

In this paper, we introduced a summary statistic for stationary marked point pat-
terns based on comparing the distance to the nearest (other) point of the pattern
seen from an arbitrarily chosen origin to that from a typical marked point. This
J -statistic captures both the type and strength of interaction, and reduces to a simple
form under random labelling. We derived representations in terms of both Papang-
elou conditional intensity and correlation functions, thus relating the J -function to
fundamental concepts in marked point process theory.

Further variations on the theme are possible. For example, the balls B(0, t)
used in the definition of JA(t) may be replaced by any bounded Borel set. This
would be particularly useful in a directional analysis of a non-isotropic marked
point process. In another vein, only distances to points with a certain type of mark
may be considered. More precisely, if FB(t) = P {Y ∩ (B(0, t)×B) �= ∅} is the
empty space function of Y ∩ (B×M) and GAB(t)=P !0

A {Y ∩ (B(0, t)×B) �=∅} the
cross nearest neighbour distance distribution function from points with mark in A
to those with mark in B, an A-to-B cross J -function for marked point processes
is given by

JAB(t) = 1 − GAB(t)

1 − FB(t)

for Borel subsets A and B of the mark space M with νM(A) > 0, and all t ≥ 0 for
which FB(t) < 1. The function JAB(t) measures the influence of the presence of
a point with mark in the set A on the presence of points with a mark in B within
distance t compared to the same event seen from an arbitrary origin. Values JAB >1
can be interpreted as indicating inhibition of points with mark in B by those with
mark in A. Similarly, values less than 1 mean that the presence of a point with a
mark in the set A decreases the probability of finding points with a mark value in
B nearby.

The definition of JAB is not symmetric in the mark sets, which is sometimes
an advantage as pointed out by Van Lieshout and Baddeley (1999) and illustrated
in practice by Foxall and Baddeley (2002). Note that if νM(B) = 0, the expected
number of points with mark in B is zero. If A1, . . . , An form a partition of M , we
may assign label i to a point if its mark falls in Ai and write Xi for the locations of
points with label i. In this sense, an analysis based on the cross J -function amounts
to an analysis of the multivariate point pattern Y =(X1, . . . , Xn) as in Van Lieshout
and Baddeley (1999) or the thesis by Chen (2003). In general, though, A and B
need not be disjoint. Indeed, for B = M , GAM ≡GA, and we regain the J -function
with respect to the mark set A.

From a statistical perspective, we discussed Hanisch style kernel estimators of
densities and hazard rates of JA that suppress the variance explosion at larger range
encountered by plug-in estimators of JA itself. Finally, the new statistic was used
to explore the spatial structure of a forestry data set.
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