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Abstract Simple point processes are often characterized by their associated
compensators or conditional intensities. Non-simple point processes are not
uniquely determined by their conditional intensity and compensator, so instead
one may identify with the point process its associated simple point process and
corresponding conditional intensity, on an expanded mark space. Some relations
between the conditional intensity on the expanded mark space and the ordinary con-
ditional intensity are investigated here, and some classes of separable non-simple
processes are presented. Transformations into simple point processes, involving
thinning and rescaling, are presented.

Keywords Point process · Simplicity · Counting process · Jump process ·
Conditional intensity · Random time change · Random thinning

1 Introduction

The existence and uniqueness of the compensator, for multivariate or marked point
processes with at most one point at any time, has long been known and is the basis
for using the compensator for modeling these processes (Jacod, 1975). However,
relatively little is known about processes which may have simultaneous points. For
such non-simple point processes, the non-uniqueness of the compensator is not
only an obstacle to modeling, but also in model evaluation: the horizontal rescal-
ing result of Meyer (1971), which is useful for assessing point process models,
requires this simplicity assumption, and the same is true for the extensions and
alternate proofs of Meyer’s theorem, including those involving vertical rescaling
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(see e.g. Merzbach and Nualart, 1986; Brown and Nair, 1988; Nair, 1990; Schoen-
berg, 1999).

The failure of the compensator uniquely to characterize non-simple point pro-
cesses applies even to the case of unmarked point processes on the line. For an
elementary example, given a simple temporal Poisson process of unit rate, con-
sider a non-simple point process constructed to have two points at each time at
which the Poisson process has a point. The resulting double-point process has a
compensator identical to that of a simple Poisson process of rate two.

The requirement of simplicity for the modeling and rescaling of point pro-
cesses is unfortunate and does not appear to be met for some applications to data.
For instance, point processes have been actively used in modeling the occurrences
of earthquakes, and recent seismological research on faulting suggests that earth-
quakes may begin with multiple ruptures at the same or infinitesimally different
times (Kagan, 1994); in such cases even if the underlying earthquake process is
simple, the recorded observations of such events may not be.

One way to characterize a non-simple point process is described in Chapt. 7.2
of Daley and Vere-Jones (1988). Their method involves identifying with the point
process its associated point process on a different space with an expanded mark
space. The resulting associated process is simple by construction, and hence may
be characterized uniquely by its conditional intensity on the expanded space.

The primary aim of the current paper is to explore some special cases of non-
simple point processes, and to investigate the relationships between their ordinary
conditional intensities and those of their associated point processes on the expanded
space. Introductory definitions and notation are given in Sect. 2, along with the
method for characterizing a general non-simple point process given by Daley and
Vere-Jones (1988, 2003). Section 3 describes separability criteria for non-simple
point processes, defined via conditions on the conditional intensities of the associ-
ated point processes on the expanded space, and relations between the conditional
intensity of the non-simple process and that of the associated process are derived.
Section 4 provides some results on randomly rescaling and thinning non-simple
point processes and thus transforming them into simple or separable point pro-
cesses.

2 Preliminaries

In this section we review some basic point process constructs; for further details on
point processes and conditional intensities see Papangelou (1972), Jacod (1975),
Brémaud (1981), and Daley and Vere-Jones (2003).

A temporal point process N is a σ -finite random measure on the real-line R
or a portion thereof, taking values in the non-negative integers or infinity. N(B)
represents the number of points in a subset B of R. For a temporal marked point
process (hereafter abbreviated t.m.p.p.), to each point there corresponds a random
variable from some measurable mark space X . We consider here the case of tem-
poral marked point processes where the mark space is countable; such a process
N may be viewed as a sequence {Ni; i = 1, 2, . . . } of temporal point processes,
where the sum

∑
i Ni(B) is σ -finite on R (see e.g. Bremaud, 1981). The results

in the subsequent sections can quite trivially be extended to processes where the
points lie in more general spaces, provided the definition of a conditional intensity
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exists (which requires an ordering on the domain as well as measurability of the
mark space). For simplicity, we restrict our attention here to the case of a t.m.p.p.
with countable mark space.

We consider the case where the temporal domain is the real half-line (0,∞). To
the random measure Ni there corresponds the right-continuous stochastic process

Ni(t) := Ni(0, t] (1)

for t > 0. To avoid ambiguity, we distinguish between Ni(t) as defined in Eq. (1)
and Ni({t}), the number of points at exactly time t and mark xi . The collec-
tion of processes {Ni(t)} is considered adapted to some filtered probability space
(�,Ft , P ). A conditional intensity λ(t) of a temporal point process N is a non-
negative, F-predictable process such that N(t) − ∫ t

0 λ(u) du is an F-martingale;
its integral A(t) = ∫ t

0 λ(u) du defines N ’s compensator, whose general existence
and uniqueness are established in Jacod (1975). In the marked setting, λ and A are
collections {λ(t, xi)} and {A(t, xi)} of conditional intensities and compensators,
respectively, so that eachNi(t)−Ai(t) is an F-martingale. We assume throughout
that the t.m.p.p. N admits a conditional intensity λ.

A t.m.p.p. is simple if with probability one, all its points are unique, i.e., no two
points occur at the same time and mark. We say a t.m.p.p. is completely simple (or,
in the terminology of Daley and Vere-Jones, 2003, has simple ground process), if
with probability 1, all its points occur at distinct times. For a completely simple
t.m.p.p. N , the conditional intensity λ completely characterizes the finite-dimen-
sional distributions of N (Daley and Vere-Jones, 2003). Hence in modeling N it
suffices to prescribe a model for λ.

The most elementary way to characterize uniquely a non-simple marked point
process is via a change in the mark space X , as follows; see also exercise 7.1.6 of
Daley and Vere-Jones (1988) or p. 195 of Daley and Vere-Jones (2003).

Let X ∪ denote the collection of all subsets of X , i.e., X ∪ = ∪∞
k=1 X k , with

X k = X × · · · × X , the collection of all possible combinations of k marks.
Let the function φi(x) denote the multiplicity of the mark xi in the vector x,

for xi ∈ X and x in X ∪, and let φ(x) = ∑
i φi(x). That is, if x = {xa1

1 , x
a2
2 , . . . },

then φi(x) = ai for each i, and φ(x) = ∑
i ai .

Define the functionψ(x) as the number of distinct marks in x. That is,ψ(x) :=∑
i I{φi(x)>0}, with I the indicator function.

Definition 2.1 Given a t.m.p.p.N on the mark space X , define the simple t.m.p.p.
N∪ on the expanded mark space X ∪ as the collection of temporal processes {N∪

x },
for x ∈ X ∪, each defined via

N∪
x ({t}) :=

∏

i

I{Ni({t})=φi(x)}, (2)

for each t . Thus N∪
x has a single point at time t iff. N has ai points at time t and

mark xi for each i, where x = {xa1
1 , x

a2
2 , . . . }.

It is easy to see that N∪ is a completely simple point process, for any t.m.p.p.
N . Indeed, it is immediate from Eq. (2) that N∪ is non-negative and integer-val-
ued. Since for any Borel B ⊂ (0,∞),

∑
x∈X ∪ N∪

x (B) ≤ ∑
i Ni(B) and N∪

x (B) ≤
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Ni(B) if φi(x) > 0,N∪ inherits its σ -finiteness fromN . ThereforeN∪ is a t.m.p.p.,
and its complete simplicity follows directly from the construction in Eq. (2). The
measurability and uniqueness of the mapping from N to N∪ is established on pp.
208–209 of Daley and Vere-Jones (1988). It thus follows that the conditional inten-
sity λ∪ of N∪ (assuming it exists) uniquely characterizes the finite-dimensional
distributions of N∪ and hence those of N as well.

Let λ∪(t, x) denote the conditional intensity of the simple process N∪ on the
expanded mark space associated with N , and define λ∪(t) := ∑

x∈X ∪ λ∪(t, x) as
the total ground rate of N∪. In subsequent sections we will make use of the ratio
p∪(t, x) := λ∪(t, x)/λ∪(t), which represents the conditional probability of marks
x at time t given the history of the process and the fact that at least one point occurs
at time t . Of use as well is the sum λ̄∪(t, xi) of the expanded conditional intensities
for a particular mark xi , i.e., λ̄∪(t, xi) := ∑

x:φi(x)>0 λ
∪(t, x).

Our first result relates the two conditional intensities, λ and λ∪.

Theorem 2.1 Suppose the t.m.p.p.N has conditional intensity λ and that its asso-
ciated process N∪ has conditional intensity λ∪. For each i, for almost all t ,

λ(t, xi) =
∑

x∈X ∪
φi(x)λ

∪(t, x). (3)

Proof Fix i. Observe from Eq. (2) that Ni(t) = ∑
x∈X ∪ φi(x)N

∪
x (t). So

Ni(t)−
t∫

0

∑

x∈X ∪
φi(x)λ

∪(u, x) du =
∑

x∈X ∪
φi(x)



N∪
x (t)−

t∫

0

λ∪(u, x) du



 ,

which is a linear combination of F-martingales and is therefore itself an
F-martingale. Hence the sum in Eq. (3) is an F-conditional intensity of Ni , and
thus coincides almost everywhere with λ(t, xi) by the uniqueness theorem for point
process compensators (Jacod, 1975). ��

As an alternative, one may consider describing a non-simple t.m.p.p.N in terms
of a sequence of point processes whose points are identical to those ofN but whose
multiplicities are the powers of those of N , as defined below.

Definition 2.2 For i, j = 1, 2, . . . , let N(j)

i (B) = ∑

x

∫

B

[φi(x)]j dN∪
x .

EachN(j) is an F-adapted t.m.p.p. provided the same is true ofN , and one may
consider whether the collection of their conditional intensities {λ(j)(t, xi); i, j,=
1, 2, . . . } uniquely determines the distribution of N . The answer in general is no,
since N may have simultaneous points at different marks, and {λ(j)(t, xi)} do not
uniquely determine the likelihood of such occurrences for each combination of
marks. However, a separability condition under which the conditional intensities
of N(j) do uniquely characterize N is given in Sect. 3.
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3 Separable conditional intensities

Theorem 2.1 relates the conditional intensity λ∪ of the associated simple process
N∪ to that of the non-simple point process N . Note that the relation between the
simple point processN∪ on the expanded mark space to the non-simple point pro-
cess N on the original mark space is analogous to the relation between a (possibly
infinite-dimensional) multivariate distribution to its marginal distributions, where
attention is restricted exclusively to non-negative integer-valued distributions.

Certain special cases of non-simple point processes are worthy of closer atten-
tion. One natural case to consider is the following.

Definition 3.1 N has separable expanded conditional intensityλ∪ if, for allx ∈ X ∪
and almost all t ∈ (0,∞),

λ∪(t, x) = (
λ∪(t)

)(1−ψ(x)) ∏

x ′={xai };a=φi(x)>0

λ∪(t, x ′)

= λ∪(t)
∏

x ′={xai };a=φi(x)>0

p∪(t, x ′). (4)

Note that relation 4 implies that for all x = {xa1
1 , x

a2
2 , . . . , x

ak
k }, for almost all t ,

λ∪(t, {xa1
1 , x

a2
2 , . . . , x

ak
k }) = λ∪(t, {xa1

1 , . . . , x
ak−1
k−1 }) p∪(t, {xakk }).

Heuristically, separability means that the likelihood of N simultaneously having
a1 overlapping points at mark x1, and a2 overlapping points at mark x2, etc., is pro-
portional to the product of the likelihoods of each of these phenomena occurring
individually. Note also that if λ∪ is separable then the finite-dimensional distribu-
tions of N are completely determined by the collection of processes {λ∪(t, {xa})}
alone.

Definition 3.2 λ∪ is completely separable if it is separable and also, for all x ∈ X
and integers a > 0, for almost all t , λ∪(t, {xa}) = (

λ∪(t)
)(1−a) (

λ∪(t, {x}))a =
λ∪(t)

(
p∪(t, {x}))a .

The complete separability of λ∪ implies that if x = {xa1
1 , . . . , x

ak
k } with

∑
ak =

a, then λ∪(t, x) = (
λ∪(t)

)(1−a) ∏k
i=1

(
λ∪(t, {xi})

)ai , a.e. With complete separabil-
ity, the addition into x of a new term xi (or equivalently the addition of one to
ai for some i) results in the multiplication of λ∪(t, x) by p∪(t, {xi}), a.e. If λ∪ is
completely separable, then λ∪ is governed (almost everywhere) by the collection
of processes {λ∪(t, {x})} alone.

Daley and Vere-Jones, (2003, p. 195) define point processes with independent
marks or with unpredictable marks. These concepts involve the mark distribution’s
independence with respect to either all other points or all previous points of the
process, respectively. The concept of complete separability is in a similar vein, in
that the complete separability of λ∪ expresses a sort of independence of the marks
from one another. For almost all t , the case where λ∪ is completely separable cor-
responds to the situation where, given that exactly m > 0 points occur at a certain
time t , these m marks are all independent and identically distributed.

We now relate the separability condition to the processes defined at the end of
Sect. 2.
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Theorem 3.1 SupposeN is a t.m.p.p. with separable expanded conditional inten-
sity λ∪, and suppose that a conditional intensity λ(j)(t, xi) as defined following
Definition 2.2 exists for any positive integers i and j . Then the collection of pro-
cesses {λ(j)(t, xi) ; i, j = 1, 2, . . . } uniquely determine the finite-dimensional
distributions of N .

Proof For each j = 1, 2, . . . , and any F-predictable process Y (t, x) on (0,∞)×
X ,

E
∑

i

∫

Y (t, xi)λ
(j)(t, xi) dt

= E
∑

i

∫

Y (t, xi) dN(j)

i (t)

= E
∑

i

∑

x

∫
(
φi(x)

)j
Y (t, xi) dN∪

x (t)

= E
∑

i

∑

x

∫
(
φi(x)

)j
Y (t, xi)λ

∪(t, x) dt.

So for i, j = 1, 2, . . . , for almost all t ,

λ(j)(t, xi) =
∑

x

(
φi(x)

)j
λ∪(t, x)

=
∑

x

(
φi(x)

)j (
λ∪(t)

)(1−ψ(x)) ∏

x ′={xak };a=φk(x)>0

λ∪(t, x ′)

= ci

∞∑

a=1

ajλ∪(t, {xai }),

where

ci = 1 +
∑

x:φi(x)=0

(
λ∪(t)

)(2−ψ(x)) ∏

x ′={xbk };b=φk(x)>0

λ∪(t, x ′) > 0.

Hence for any i and almost all t , the collection {λ(j)(t, xi); j = 1, 2, . . . , } uniquely
determines {λ∪(t, {xai }); a = 1, 2, . . . } (see e.g. chap. 6 of Berman and Fryer,
1972); thus for almost all t , {λ(j)(t, xi); i, j = 1, 2, . . . } uniquely determines
{λ∪(t, {xai }); i, a = 1, 2, . . . }. Since λ∪ is separable, this implies that {λj (t, xi)}
determines λ∪ a.e. and thus the finite-dimensional distributions of N as well. ��

Under the assumption that the expanded conditional intensity λ∪ is completely
separable, the ordinary conditional intensity λ can be written directly in terms of
the expanded conditional intensity, as in the following result.

Theorem 3.2 Suppose N is a t.m.p.p. with conditional intensity λ and completely
separable λ∪. Then for all i and almost all t ,

λ(t, xi) = 2 λ∪(t, {xi}) λ∪(t)
λ∪(t)− λ∪(t, {xi}) . (5)
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Proof The following proof makes repeated use of the note following Definition 3.2,
as well as the idea that for any i, the set X ∪ corresponds one-to-one with the col-
lection {x : φi(x) > 0;φ(x) > 1}, where the correspondence is simply the
augmentation by one of the multiplicity φi(x).

Fix i. We shall suppress t for brevity, as what follows is true for almost all t .
Consider the collection of all x such that the multiplicity φi(x) of the mark xi is

positive. Complete separability implies that the sum of λ∪
x over all such x is given

by

λ̄∪(xi) =
∑

x:φi(x)>0

λ∪(x)

= λ∪({xi})+
∑

x:φi(x)>0;φ(x)>1

λ∪(x)

= λ∪({xi})+
∑

x:φ(x)>0

p∪({xi})λ∪(x)

= λ∪({xi})+ p∪({xi})λ∪

= 2λ∪({xi}) (6)

One may now write λi in terms of λ∪, summing over all possible x ∈ X ∪, as
follows:

λ(xi) =
∞∑

j=1

∑

x:φi(x)=j
jλ∪(x)

=
∞∑

j=1

jλ∪({xji })+
∞∑

j=1

∑

x:j=φi(x)<φ(x)
jλ∪(x)

= λ∪
∞∑

j=1

j
(
p∪({xi})

)j +
∞∑

j=1

∑

x ′:φi(x ′)=0

j
(
p∪({xi})

)j
λ∪(x ′) (7)

=



∞∑

j=1

j
(
p∪({xi})

)j




[
λ∪ + (λ∪ − λ̄∪(xi))

]
(8)

= p∪({xi})
[1 − p∪({xi})]2

[
2λ∪ − 2λ∪({xi})

]
(9)

= 2λ∪({xi})λ∪

λ∪ − λ∪({xi}) ,

where the observation that
∑

x ′:φi(x ′)=0 λ
∪(x ′) = λ∪ − λ̄∪(xi) is used to go from

Eq. (7) to (8), and the relation λ̄∪(xi) = 2λ∪({xi}) of Eq. (6) is used to go from
Eq. (8) to (9), while the definition p∪({xi}) = λ∪({xi})/λ∪ and some elementary
cancellations are used for the last step. ��

We now consider the case where N may have multiple points simultaneously,
but where no two such points may occur at the same mark. We previously defined
such a process as simple, but to distinguish it from a completely simple process,
in what follows we will use the term singular instead.
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Definition 3.3 λ∪ is singular if for all x such that φi(x) > 1 for any i,
λ∪(t, x) = 0 a.e.

It is obvious that, assuming separability and given the same values of the
expanded conditional intensity λ∪(t, {xi}), the ordinary conditional intensity
λ(t, xi) will generally be smaller for a singular t.m.p.p. than in the non-singu-
lar case, since singularity prohibits the existence of multiple points at mark xi .
Interestingly, for a singular t.m.p.p. with separable expanded conditional intensity,
the form of the ordinary conditional intensity of points of mark xi is very similar
to that of processes with completely separable expanded conditional intensities,
except that the difference between the two terms in the denominator of Eq. (5) is
replaced by their sum. This is established in the next result.

Theorem 3.3 Suppose N is a singular t.m.p.p. with conditional intensity λ and
separable λ∪. Then for all i, for almost all t ,

λ(t, xi) = 2λ∪(t, {xi})λ∪(t)
λ∪(t)+ λ∪(t, {xi}) . (10)

Proof Again, we suppress t ; the following is true for almost all t .

λ(xi) = λ∪({xi})+
∑

x:φi(x)=1;φ(x)>1

λ∪(x)

= λ∪({xi})+ p∪({xi})
∑

x:φi(x)=0

λ∪(x)

= λ∪({xi})+ p∪({xi})
(
λ∪ − λ(xi)

)
.

So λ(xi)
(

1 + λ∪({xi })
λ∪

)
= λ∪({xi}) + λ∪p∪({xi}) = 2λ∪({xi}), which establishes

Eq. (10). ��
We now consider the antithesis of singularity, i.e. the case where N may have

multiple points at a given time, but such multiple points must all occur at the same
mark.

Theorem 3.4 SupposeN is a t.m.p.p. with conditional intensity λ and that λ∪(t, x)
= 0 a.e. for all x such that φ(x) > φi(x) for all i. Suppose also that for almost all
t , λ∪({xaii }) = (λ∪)1−ai (λ∪({xi})

)ai . Then for each i, for almost all t ,

λ(t, xi) = λ∪(t, {xi})
(
λ∪(t)

)2

(λ∪(t)− λ∪(t, {xi}))2
.

Proof Again we suppress t , and the following is true a.e. Under the stated condi-
tions, one need only consider elements of X ∪ of the form x = {xki }. Hence

λ(xi) = λ∪({xi})+ 2λ∪({x2
i })+ 3λ∪({x3

i })+ · · ·

= λ∪
∞∑

k=1

k
(
p∪({xi})

)k

= λ∪p∪({xi})
(1 − p∪({xi}))2

= λ∪({xi})(λ∪)2

(λ∪ − λ∪({xi}))2 . ��
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4 Transformations

One way to transform a non-simple point process into a simple one is via Defi-
nition 2.1, i.e., by expanding the mark space. Alternatively, one may randomly
transform the process to obtain a Poisson process or a process with completely
separable expanded conditional intensity, as in the following three results.

Theorem 4.1 SupposeN is a t.m.p.p. with expanded conditional intensity λ∪, such
that for each x ∈ X ∪,

∫ ∞
0 λ∪(u, x)du = ∞. Then the time transformation which

moves each point of N∪ from (t, x) to
(∫ t

0 λ
∪(u, x)du, x

)
results in a sequence

{Ñx; x ∈ X ∪} of independent Poisson processes of unit rate.

Proof Since N∪ is completely simple, the result follows from application of the
random time change theorem of Meyer (1971). ��

Our final two results involve randomly thinning a point process, where the
thinning depends on a uniformly distributed random variable that is independent
of the point process. Hence we suppose there exists a white noise process Ut on
(�,Ft , P )with {Ut ; t ≥ 0} independent ofN , and where theUt are i.i.d. uniformly
distributed on (0, 1).

Theorem 4.2 SupposeN has expanded conditional intensity λ∪ and that for each
i = 1, 2, . . . , for almost all t , λ̄∪(t, xi) > 0. Let b(t, x) be any strictly positive
predictable process on (0,∞)× X , independent of {Ut }, and such that for almost
all t ,

∑
x∈X c(t, x) < 1, where c(t, xi) := b(t, xi)/λ̄

∪(t, xi). Let c(t, x0) = 0, and
consider the transformationN → Ñ where Ñ has a single point at (t, xi) provided
N∪ has a point at (t, x) with φi(x) > 0 and

∑i−1
j=0 c(t, xj ) ≤ Ut <

∑i
j=0 c(t, xj ).

Then Ñ is a completely simple F-adapted marked point process with conditional
intensity λ̃(t, xi) = b(t, xi).

Proof It is clear that Ñ is an F-adapted point process, and Ñ is completely simple
by construction since for any t ,

∑i−1
j=0 c(t, xj ) ≤ Ut <

∑i
j=0 c(t, xj ) can be true

for at most one i. For any F-predictable process Y (t, x) on (0,∞)× X ,

E
∑

i

∫

Y (t, xi) dÑ = E
∑

i

∑

x:φi(x)>0

c(t, xi)

∫

Y (t, xi) dN∪
x

= E
∑

i

∑

x:φi(x)>0

c(t, xi)

∫

Y (t, xi)λ
∪(t, x) dt

= E
∑

i

∫

Y (t, xi)c(t, xi)
∑

x:φi(x)>0

λ∪(t, x) dt.

Therefore a version of the conditional intensity of Ñ is given by

λ̃(t, xi) = c(t, xi)
∑

x:φi(x)>0

λ∪(t, x)

= b(t, xi)

λ̄∪(t, xi)
λ̄∪(t, xi)

= b(t, xi). ��
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The previous two results involve rescaling or thinning N in order to form a
completely simple point process. We now turn our attention to the problem of
transforming N instead into a t.m.p.p. with completely separable expanded condi-
tional intensity.

Theorem 4.3 Suppose a t.m.p.p.N has expanded conditional intensity λ∪ and that
a strictly positive predictable process b(t, x) can be found that is independent of
{Ut } and so that for all x and almost all t ,

(
λ∪(t)

)1−φ(x) ∏

i

b(t, xi)
φi (x) ≤ λ∪(t, x).

Let Ñ be a thinned version of N so that Ñ∪ has a point at (t, x) whenever

N∪ has a point at (t, x), providedUt <
(
λ∪(t, x)

)−1 (
λ∪(t)

)1−φ(x) ∏
i b(t, xi)

φi (x).

Then Ñ is an F-adapted marked point process with completely separable expanded
conditional intensity λ̃∪ such that λ̃∪(t, {xi}) = b(t, xi).

Proof That Ñ is an F-adapted point process is clear as it inherits the necessary
properties directly from N , and Ñ∪ is completely simple since the same is true of
N∪. Since N∪ has conditional intensity λ∪, for any F-predictable process Y (t, x)
on (0,∞)× X ∪,

E
∑

x

∫

Y (t, x) dÑ∪ = E
∑

x

∫

Y (t, x)
(
λ∪(t, x)

)−1 (
λ∪(t)

)1−φ(x)

×
∏

i

b(t, xi)
φi (x) dN∪

= E
∑

x

∫

Y (t, x)
(
λ∪(t, x)

)−1 (
λ∪(t)

)1−φ(x)

×
∏

i

b(t, xi)
φi (x)λ∪(t, x) dt.

Hence
(
λ∪(t)

)1−φ(x) ∏

i

b(t, xi)
φi (x) is a conditional intensity for Ñ∪, which in view

of Definition 3.2 establishes the desired result. ��
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