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Abstract We consider the approximation of the convolution product of not
necessarily identical probability distributions qj I + pjF , (j = 1, . . . , n), where,
for all j , pj = 1 − qj ∈ [0, 1], I is the Dirac measure at point zero, and F is a
probability distribution on the real line. As an approximation, we use a compound
binomial distribution, which is defined in a one-parametric way: the number of
trials remains the same but the pj are replaced with their mean or, more generally,
with an arbitrary success probability p. We also consider approximations by finite
signed measures derived from an expansion based on Krawtchouk polynomials.
Bounds for the approximation error in different metrics are presented. If F is a
symmetric distribution about zero or a suitably shifted distribution, the bounds
have a better order than in the case of a general F . Asymptotic sharp bounds are
given in the case, when F is symmetric and concentrated on two points.
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1 Introduction

1.1 The aim of the paper

Binomial approximations are usually applied to the sums of independent or depen-
dent indicators (see Ehm 1991; Barbour et al. 1992, Sect. 9.2; Soon 1996; Roos
2000; Čekanavičius and Vaitkus 2001; Choi and Xia 2002). The present paper is
devoted to a more general situation of a generalized Poisson binomial distribution,
which is defined as the convolution product of not necessarily identical probability
distributions qj I + pjF , (j ∈ {1, . . . , n}, n ∈ N = {1, 2, . . . }) on the set of
real numbers R. Here, for all j , pj = 1 − qj ∈ [0, 1], Iu is the Dirac measure at
point u ∈ R, I = I0, and F is assumed to be a probability distribution on R. As
approximations, we choose a compound binomial distribution, which is defined
in a one-parametric way: the number n of trials remains the same but the pj are
replaced with their mean or, more generally, with an arbitrary success probabil-
ity p. We also consider the approximation with a suitable finite signed measure,
which can be derived from a related expansion based on Krawtchouk polynomials.
Bounds for the distance in several metrics are given. It turns out that, if F is a sym-
metric distribution about zero or a suitably shifted distribution, i.e. the convolution
of a distribution G on R with an adequate Dirac measure Iu at point u ∈ R, the
accuracy of approximation will be increased. In the compound Poisson approxi-
mation, similar investigations were made by Le Cam (1965) and Arak and Zaı̆tsev
(1988). In the case of a symmetric distribution F concentrated on two points, we
present bounds containing asymptotic sharp constants.

Remarkably, the main body of research in compound approximations is re-
stricted to compound Poisson laws or finite signed measures derived from related
expansions. It seems that compound binomial approximation hardly attracted any
attention. It is evident that, in contrast to approximations by (compound) Poisson
laws, the ones by (compound) binomial distributions are exact when pj = p for
all j . As can be seen below, the bounds for the distances given in this paper reflect
this fact. It should be noted that the one-parametric binomial approximation is not
the only one in this context. In Barbour et al. (1992, Sect. 9.2), it was proposed
to use the two-parametric binomial approximation, matching two moments of the
approximated law. The two-parametric approach can also be extended to the com-
pound case and is discussed in a separate paper (see Čekanavičius and Roos 2004).

In this paper, a combination of different techniques is used. The main arguments
are the Krawtchouk expansion from Roos (2000) and several norm estimates. It
should be mentioned that the proofs of some of these norm estimates are rather
complicated and require the deep Arak-Zaı̆tsev method (cf. Čekanavičius 1995;
Arak and Zaı̆tsev 1988).

The structure of the paper is the following. In the next subsection, we pro-
ceed with some notation. In Sect. 2, we discuss important known facts. Section 3
is devoted to the main results, the proofs of which are given in Sect. 4. In the
Appendix, we collect some important facts on the Krawtchouk expansion.

1.2 Some notation

For our purposes, it is more convenient to formulate all results in terms of distribu-
tions or signed measures rather than in terms of random variables. Let F (resp. S,
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M) denote the set of all probability distributions (resp. symmetric probability dis-
tributions about zero, resp. finite signed measures) on R. All products and powers
of finite signed measures in M are defined in the convolution sense; for W ∈ M,
set W 0 = I . The exponential of W is defined by the finite signed measure

exp{W } =
∞∑

m=0

Wm

m!
.

Let W = W+ − W− denote the Hahn-Jordan decomposition of W . The total var-
iation norm ‖W‖, the Kolmogorov norm |W |, and the Lévy concentration norm
|W |h of W ∈ M are defined by

‖W‖ = W+(R) + W−(R),

|W | = sup
x∈R

|W((−∞, x])|,
|W |h = sup

x∈R

|W([x, x + h])|, (h ∈ [0, ∞)),

respectively. Note that the total variation distance ‖F − G‖ between F, G ∈ F is
equal to 2 supA |F(A)−G(A)|, where the supremum is over all Borel measurable
sets A ⊆ R. It should be mentioned that | · |0 is only a seminorm on M, i.e. it
may happen that, for non-zero W ∈ M, |W |0 = 0. But if we restrict ourselves to
finite signed measures concentrated on the set of all integers Z, then | · |0 is indeed
a norm, the so-called local norm, that coincides with the �∞-norm of the counting
density of the signed measure under consideration. We denote by C positive abso-
lute constants, which may differ from line to line. Similarly, by C(·) we denote
constants depending on the indicated argument only. By a condition of the type
f (x) ≤ C < 1 for a real-valued function f (x) of some values x, we mean that a
positive absolute constant C < 1 exists such that, for all x, f (x) ≤ C. In other
words, f (x) is bounded away from 1 uniformly in x. For x ∈ R, let �x� be the
largest integer not exceeding x. We always let 00 = 1,

n ∈ N, pj ∈ [0, 1], qj = 1 − pj , (j ∈ {1, . . . , n}),
p = (p1, . . . , pn), pmax = max

1≤j≤n
pj , pmin = min

1≤j≤n
pj , δ = pmax − pmin,

p = 1

n

n∑

j=1

pj , q = 1 − p, λ = np, p ∈ [0, 1], q = 1 − p,

γk(p) =
n∑

j=1

(p − pj )
k, γk = γk(p), (k ∈ N),

η(p) = 2γ2(p) + (γ1(p))2, θ(p) = η(p)

2npq
, θ = θ(p) = γ2

np q
,

GPB(n, p, F ) =
n∏

j=1

(qj I + pjF ), Bi(n, p, F ) = (qI + pF)n, (F ∈ F).

Note that γk(p), η(p), and θ(p) not only depend on p but also on p. For brevity,
this dependence will not be explicitly indicated. The binomial distribution with
parameters n and p is defined by Bi(n, p) = Bi(n, p, I1).
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Using the above notation, the goal of the present paper can be summarized
as follows: Give bounds for the accuracy of approximation of the generalized
Poisson binomial distribution GPB(n, p, F ), (F ∈ F) by the compound bino-
mial law Bi(n, p, F ) and by related finite signed measures, which are defined in
Subsect. 2.2 below.

2 Known facts

2.1 Ehm’s result

In what follows, we discuss some known results in the one-parametric bino-
mial approximation to the Poisson binomial distribution GPB(n, p, I1). By us-
ing Stein’s method, Ehm (1991) proved that the total variation distance d1 =
‖GPB(n, p, I1) − Bi(n, p)‖ between GPB(n, p, I1) and the binomial distribu-
tion Bi(n, p) can be estimated in the following way:

1

62
min{θ, γ2} ≤ d1 ≤ 2 min{θ, γ2}. (1)

From (1), we see that d1 and min{θ, γ2} have the same order. In estimating d1, the
quantities θ and γ2 play a different role. First note that, as has been shown in (Roos
2000, Remark on p. 259), we have

θ ≤ δ min
{

1,
δ

4p q

}
. (2)

In particular, we have θ ≤ 1. Since θ ≤ δ ≤ ∑n
j=1 |p − pj | ≤ 2np q (cf. Roos

2000, p. 263), we obtain

θ2

2
≤ min{γ2, θ} ≤ θ,

which implies that the distance d1 is small if and only if θ is small, or, since θ =
1−(np q)−1∑n

j=1 pjqj , if and only if the quotient of the variances of the involved
distributions is approximately equal to one (see also Ehm 1991, Corollary 2).There-
fore, looking at (1), the upper bound θ is much more important than the γ2. To say
it using the terminology by Barbour et al. (1992, p. 5), the factor θ/γ2 = (np q)−1

is a magic factor.

2.2 Approximations using the Krawtchouk expansion

In Roos (2000), the same binomial approximation problem as in Subsect. 2.1 was
investigated. In fact, by using generating functions, an expansion based on Krawt-
chouk polynomials was constructed. In what follows, we collect some basic facts
about this expansion needed later on. Further informations can be found in the
Appendix below. In Theorem 1 of the above mentioned paper, it was shown that,
for arbitrary p ∈ [0, 1] and F = I1, the identity

GPB(n, p, F ) =
n∑

j=0

aj (p) (F − I )j
(
qI + pF

)n−j
(3)
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holds, where the Krawtchouk coefficients aj (p) are given by

a0(p) = 1, a1(p) = −γ1(p), a2(p) = 1

2
((γ1(p))2 − γ2(p)),

a3(p) = −1

6
(γ1(p))3 + 1

2
γ1(p)γ2(p) − 1

3
γ3(p),

and, for j ∈ {1, . . . , n},

aj (p) = −1

j

j−1∑

k=0

ak(p) γj−k(p). (4)

Note that the coefficients aj (p) not only depend on p but also on p. Alternatively,
by (4), aj (p) can be considered as a function of (γ1(p), . . . , γj (p)). It is evident
that (3) also holds for a general distribution F ∈ F . Taking into account (3), as an
approximation of GPB(n, p, F ), it is useful to choose the finite signed measure

Bi(n, p, F ; s) =
s∑

j=0

aj (p) (F − I )j
(
qI + pF

)n−j
, (F ∈ F) (5)

with s ∈ {0, . . . , n} being fixed. Note that Bi(n, p, I1; 0) = Bi(n, p) and that,
for s = 1 and p = p, we have Bi(n, p, I1; 1) = Bi(n, p). It should be mentioned
that, in the remaining cases, Bi(n, p, F ; s) also depends on p. In Theorem 2 of
Roos (2000), it was shown that

‖GPB(n, p, I1) − Bi(n, p, I1; s)‖ ≤ C1(s) min{θ(p), η(p)}(s+1)/2, (6)

|GPB(n, p, I1) − Bi(n, p, I1; s)|0 ≤ C2(s)
(θ(p))(s+1)/2

√
npq

, (7)

where, for (7), we have to assume that θ(p) ≤ C < 1. For p = p and s = 1, (6) has
the same order as Ehm’s upper bound [see (1)]. Note that the constants C1(s) and
C2(s) can be given explicitly (see also Roos 2001a, Corollary 1). In Roos (2000,
Theorem 3), it was proved that, if γ2 > 0, then, for W = GPB(n, p, I1)−Bi(n, p),

∣∣∣‖W‖ − θ

√
2

πe

∣∣∣ ≤ C θ v, (8)
∣∣∣|W |0 − θ

2
√

2π np q

∣∣∣ ≤ C
θ√
np q

v, (9)

with

v = min
{

1,
|γ3|

γ2
√

np q
+ 1

np q
+ θ
}
,

where, for (9), we have to assume that θ < C < 1. For example, from (8), it
follows that ‖W‖ ∼ √

2/(πe) θ as θ → 0 and np q → ∞.
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2.3 The Le Cam-Michel trick and its generalizations

As explained above, the purpose of the present paper is the investigation of the
changes in the accuracy of approximation, when, in GPB(n, p, I1) and Bi(n, p,
I1; s) from Subsect. 2.2, I1 is replaced with a more general distribution F ∈ F .
Thus we deal with compound distributions, which, however, retain structures sim-
ilar to the ones presented in above. In fact, by the properties of the total variation
norm,

sup
F∈F

‖GPB(n, p, F )−Bi(n, p, F ; s)‖=‖GPB(n, p, I1)−Bi(n, p, I1; s)‖. (10)

Consequently, the supremum is achieved when F = I1. In the compound Poisson
approximation, a similar property has been observed by Le Cam (1965, p. 187)
and later rediscovered by Michel (1987, p. 167). For the Kolmogorov norm and
the concentration seminorm with h = 0, similar assertions hold. Moreover, gen-
eralizations with respect to arbitrary finite signed measures are possible. Indeed,
if W ∈ M is concentrated on Z+ = {0, 1, 2, . . . } and if F1, F2, F3 ∈ F , where
F2 and F3 are assumed to be concentrated on [0, ∞) and on (0, ∞), respectively,
then, as is easily shown,

∥∥∥
∞∑

m=0

W({m})Fm
1

∥∥∥ ≤ ‖W‖, (11)

∣∣∣
∞∑

m=0

W({m})Fm
2

∣∣∣ ≤ |W | sup
x∈R

∞∑

m=0

(Fm
2 − Fm+1

2 )((−∞, x]) ≤ |W |, (12)

∣∣∣
∞∑

m=0

W({m})Fm
3

∣∣∣
0

≤ |W |0 sup
x∈R

∞∑

m=0

Fm
3 ({x}) ≤ |W |0. (13)

If, in (11)–(13), we set W = GPB(n, p, I1) − Bi(n, p, I1; s), we arrive at (10)
and the respective equalities for the Kolmogorov and local norms. In view of these
inequalities, one can expect some improvement in approximation accuracy only
under additional assumptions on F . Below, we will show that such improvements
are possible, when F is either suitably shifted or symmetric. Note that, with a few
exceptions only, we do not require the finiteness of moments of F .

2.4 Compound Poisson approximations by Le Cam, Arak and Zaı̆tsev

In this paper, we consider shifted and symmetric distributions F ∈ F . By a shifted
distribution F ∈ F , we mean F = IuG, where G ∈ F and u ∈ R. Then min-
imizing the distance with respect to u, one can expect some improvement of the
accuracy of approximation. Shifted distributions play an important role in com-
pound Poisson approximations, see, for example, Le Cam (1965) or Čekanavičius
(2002). Indeed, Le Cam (1965) proved that

sup
G∈F

inf
u∈R

∣∣∣(IuG)n − exp{n(IuG − I )}
∣∣∣ ≤ C

n1/3
. (14)
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Note that, as is easily shown, supG∈F |Gn − exp{n(G − I )}| is bounded away
from zero, which stresses the advantage of shifted distributions in this context.
Similar estimates hold for the symmetric distributions. More precisely, if in (14),
we replace IuG with an arbitrary symmetric distribution in S then the accuracy of
compound Poisson approximation will be Cn−1/2. If we replace IuG by a sym-
metric distribution with non-negative characteristic function then the accuracy of
compound Poisson approximation will be Cn−1. In general, both results are of the
right order, see Arak and Zaı̆tsev (1988, chap. 5).

It is noteworthy that, in a similar context, Barbour and Choi (2004) used Stein’s
method for the approximation of the sum of independent integer valued random
variables by a translated Poisson distribution.

3 Main results

In what follows, let Bi(n, p, F ; s), (F ∈ F) be defined as in (5). Further, if not
stated otherwise, we assume that

p ∈ [0, 0.3]. (15)

Theorem 3.1 Let s ∈ {0, . . . , n} and h ∈ [0, ∞). Let us assume that

4θ(p)

3(1 − 2p)2
≤ C < 1. (16)

Then the following inequalities hold. For G ∈ F ,

inf
u∈R

|GPB(n, p, IuG) − Bi(n, p, IuG; s)| ≤ C(s)
(η(p))(s+1)/2

(np)(s+1)/2+(s+1)/(2s+4)
. (17)

For F ∈ S,

|GPB(n, p, F ) − Bi(n, p, F ; s)| ≤ C(s)
(η(p))(s+1)/2

(np)s+1
, (18)

|GPB(n, p, F ) − Bi(n, p, F ; s)|h ≤ C(s)
(η(p))(s+1)/2

(np)s+1
Q

1/(2s+3)

h (19)

× (| ln Qh| + 1)6(s+1)(s+2)/(2s+3),

where we write Qh := Qh, np, F := | exp{32−1np(F − I )}|h.

Remark 1 (i) All approximations (17)–(19) are exact if pj = p for all j . In fact,
in this case, the upper bounds vanish, since η(p) = γ2 = 0. In particular,
here, the conditions (15) and (16) are superfluous (see also Remark 1(ii)).

(ii) From (2), it follows that (16) is satisfied, when p = p ≤ 0.3 and δ ≤ 0.3,
since, in this case, we have

4θ

3(1 − 2p)2
≤ 0.4

(1 − 2p)2
min
{

1,
0.3

4p q

}
≤ 0.9.

In particular, if pmax ≤ 0.3 and p = p, then (16) is valid. In Theorem 3.1,
the condition p ∈ [0, 0.3] seems to be superfluous. It may suffice to assume
that θ(p) ≤ C for a suitable constant C. But we could not prove it.
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(iii) The bounds (17)–(19) have a better order than (θ(p))(s+1)/2, which, in turn,
appears as the interesting part in the bounds from (6) and (10). Generally,
for the total variation distance, there seems to be no hope for upper bounds
similar to (17) and (18). Good upper bounds for the concentration norm in
the context of shifted distributions remain as an open question.

(iv) In contrast to (19), the estimates (17) and (18) are uniform in G ∈ F and
F ∈ S, respectively. However, due to the method of proof, we cannot say
much about the constants C(s). It should be mentioned, that, in order to obtain
the explicit conditions (15) and (16), in the proofs we often deal with explicit
constants. But, since our goal was to obtain a weak condition, the leading
constants in the estimates turned out to be quite large.

(v) It is easily shown that (18) follows from (19). However, (19) leads to estimates
of a better order than (18), if we use a Le Cam-type bound for the concen-
tration function of compound Poisson distributions; for example, see Roos
(2005, Proposition 3), where it was shown that, for t ∈ (0, ∞), h ∈ [0, ∞),
and an arbitrary distribution F ∈ F ,

| exp{t (F − I )}|h ≤ 1√
2e t max{F((−∞, −h)), F ((h, ∞))} . (20)

If, in Theorem 3.1, we set p = p and s = 1, we obtain the results with respect
to the compound binomial approximation.

Corollary 3.1 Let h ∈ [0, ∞). Let us assume that

p ∈ [0, 0.3] and
4θ

3(1 − 2p)2
≤ C < 1. (21)

Then the following inequalities hold. For G ∈ F ,

inf
u∈R

|GPB(n, p, IuG) − Bi(n, p, IuG)| ≤ C
γ2

λ4/3
.

For F ∈ S,

|GPB(n, p, F ) − Bi(n, p, F )| ≤ C
γ2

λ2
,

|GPB(n, p, F ) − Bi(n, p, F )|h ≤ C
γ2

λ2
Q

1/5
h (| ln Qh| + 1)36/5,

where Qh is defined as in Theorem 3.1.

For symmetric distributions concentrated on Z \ {0}, alternative estimates can
be shown. In particular, in this case, it is possible to derive a bound for the total
variation norm, which is comparable with (18) for the weaker Kolmogorov norm.

Theorem 3.2 Let the assumptions of Theorem 3.1 be valid. If F ∈ S is concen-
trated on the set Z \ {0}, then

‖GPB(n, p, F ) − Bi( n, p, F ; s)‖ ≤ C(s)
√

σ
(η(p))(s+1)/2

(np)s+1
, (22)

|GPB(n, p, F ) − Bi(n, p, F ; s)|h ≤ C(s) �h + 1� (η(p))(s+1)/2

(np)s+3/2
, (23)

where, for (22), we assume that F has finite variance σ 2.
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Remark 2 (i) The total variation bound (22) is slightly worse than (18); indeed,
the variance σ 2 of F ∈ S concentrated on Z\ {0} cannot be smaller than one.

(ii) Under the assumptions of Theorem 3.2, an upper bound for the Kolmogorov
norm can be shown by using Tsaregradskii’s (1958) inequality. Unexpectedly,
the resulting bound is of worse order than (22) and is therefore omitted. To
be more precise, here σ appears instead of

√
σ from (22).

(iii) Inequality (23) exhibits a better order than the bound, which can be derived
from (19) and (20).

If, in Theorem 3.2, we set p = p and s = 1, we obtain the results regarding
the compound binomial approximation.

Corollary 3.2 Let the assumptions of Corollary 3.1 be valid. If F ∈ S is concen-
trated on the set Z \ {0}, then

‖GPB(n, p, F ) − Bi(n, p, F )‖ ≤ C
√

σ
γ2

λ2
, (24)

|GPB(n, p, F ) − Bi(n, p, F )|h ≤ C �h + 1� γ2

λ5/2
,

where, for (24), we assume that F has finite variance σ 2.

In the previous results, the method of proof does not allow us to get reasonable
estimates of absolute constants. However, in the special case, when F is a symmet-
ric distribution concentrated on two points we are able to obtain asymptotic sharp
constants.

Theorem 3.3 Let α ∈ (0, ∞) and F = 2−1(Iα + I−α). Let

c
(1)
2 = 0.35007 . . . , c

(2)
2 = 0.06882 . . . , c

(3)
2 = 0.14960 . . .

be defined as in Lemma 4.7 below. If the conditions in (21) are satisfied, then
∣∣∣‖GPB(n, p, F ) − Bi(n, p, F )‖ − c

(1)
2

γ2

λ2

∣∣∣ ≤ C
γ2

λ5/2
, (25)

∣∣∣|GPB(n, p, F ) − Bi(n, p, F )| − c
(2)
2

γ2

λ2

∣∣∣ ≤ C
γ2

λ5/2
, (26)

∣∣∣|GPB(n, p, F ) − Bi(n, p, F )|0 − c
(3)
2

γ2

λ5/2

∣∣∣ ≤ C
γ2

λ3
. (27)

Remark 3 (i) In view of (22), one may ask why, in (25), the variance σ 2 = α2 of
F does not occur. The answer is simply that, similar to (10), we may assume
that α = 1.

(ii) From (25), it follows that, under the assumptions of Theorem 3.3,

‖GPB(n, p, F ) − Bi(n, p, F )‖ ∼ c
(1)
2

γ2

λ2
, (28)

as λ → ∞. Here, as usual, ∼ means that the quotient of both sides tends to
one. In particular, (28) is valid if we assume that p ≤ 0.3, θ → 0, and λ → ∞.
Similar relations hold for the Kolmogorov and local norms.
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4 Proofs

4.1 Norm estimates

For several proofs below, we need the following well-known relations

‖V W‖ ≤ ‖V ‖ ‖W‖, |V W | ≤ |V | ‖W‖, |V W |h ≤ |V |h ‖W‖, (29)

|W | ≤ ‖W‖, |W |h ≤ ‖W‖,
where V, W ∈ M, h ∈ [0, ∞). Note that, if W(R) = 0, then max{|W |, |W |h} ≤
2−1‖W‖. As usual, for m ∈ Z+ and complex valued x ∈ C, let

(
x

m

) = ∏m
k=1[(x −

k + 1)/k].

Lemma 4.1 If F ∈ F , t ∈ (0, ∞), j ∈ N, n ∈ Z+, p ∈ (0, 1), then

‖(F − I )2 exp{t (F − I )}‖ ≤ 3

te
, (30)

‖(F − I )j exp{t (F − I )}‖ ≤
√

j !

t j/2
, (31)

‖(F − I )j (qI + pF)n‖ ≤
(

n + j

j

)−1/2

(pq)−j/2 (32)

≤ √
e j 1/4

( n

n + j

)n/2( j

(n + j)pq

)j/2
. (33)

For a proof of (30) and (31), see Roos (2001b, Lemma 3) and Roos (2003,
Lemma 4), respectively. For (32) and (33), see Roos (2000, Lemma 4).

Lemma 4.2 Let n ∈ N, p ∈ [0, 1], r ∈ (−∞, 1), t = rnp, and

g(p) =
∞∑

k=2

(2p)k−2

k!
(k − 1) = e2p(e−2p − 1 + 2p)

(2p)2
.

If p g(p) < (1 − r)/2, then

sup
F∈F

‖(I + p(F − I ))n exp{−t (F − I )}‖ ≤
(

1 − 2p g(p)

1 − r

)−1
.

Proof Let F ∈ F and y = np − t = (1 − r)np > 0. Then

T := ‖(I + p(F − I ))n exp{−t (F − I )}‖
= ‖[(I + p(F − I )) exp{−p(F − I )}]n exp{y(F − I )}‖
= ‖[I + p2(F − I )2R

]n
exp{y(F − I )}‖,

with

R =
∞∑

k=2

(−p)k−2(1 − k)

k!
(F − I )k−2, ‖R‖ ≤ g(p).
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Therefore, by using (31),

T ≤
n∑

j=0

(
n

j

)
p2j‖R‖j

∥∥∥(F − I )j exp
{y

2
(F − I )

}∥∥∥
2

≤
n∑

j=0

n!

(n − j)! yj
(2p2 g(p))j ≤

(
1 − 2p g(p)

1 − r

)−1
.

The lemma is proved. ��
Lemma 4.3 Let G ∈ F , t ∈ (0, ∞), and j ∈ N. Then

inf
u∈R

|(IuG − I )j exp{t (IuG − I )}| ≤ C(j)

tj/2+j/(2j+2)
. (34)

The estimate (34) was proved in Čekanavičius (1995, Theorem 3.1).
For the results with respect to symmetric distributions, we need the following

result.

Lemma 4.4 Let F ∈ S, t ∈ (0, ∞), j ∈ N, and h ∈ [0, ∞). Then

|(F − I )j exp{t (F − I )}| ≤ C(j)

tj
, (35)

|(F −I )j exp{t (F −I )}|h ≤ C(j)

tj
Q̃

1/(2j+1)

h (| ln Q̃h|+1)6j (j+1)/(2j+1),

(36)

where Q̃h := Q̃h,t,F := | exp{4−1t (F − I )}|h.

Proof For h > 0, inequality (36) follows from the more general Theorem 1.1 in
Čekanavičius (1995). Note that, in this theorem, there is a misprint in the power
of the last factor (compare the statement of the theorem in the paper with its
Eq. (4.25)). For h = 0, (36) is valid as well, since, for W ∈ M and h ∈ [0, ∞),
|W |h ≤ lim infr↓h |W |r and h �→ Q̃h is continuous from the right; see Hengartner
and Theodorescu (1973, Theorem 1.1.4). The estimate (35) follows from (36). ��

In what follows, we need the Fourier transform Ŵ (x) = ∫
R

eixy dW(y), (x ∈
R) of a finite signed measure W ∈ M. Here, i denotes the complex unit. It is easy
to check that, for V, W ∈ M and a, x ∈ R,

̂exp{W }(x) = exp{Ŵ (x)}, V̂ W(x) = V̂ (x)Ŵ (x), Îa(x) = eixa, Î (x) = 1.

Lemma 4.5 Let W ∈ M be concentrated on Z satisfying
∑

k∈Z
|k||W({k})| < ∞.

Then, for all a ∈ R and b ∈ (0, ∞),

‖W‖2 ≤ 1 + bπ

2π

π∫

−π

(
|Ŵ (x)|2 + 1

b2

∣∣∣
d

dx

(
e−ixaŴ (x)

)∣∣∣
2)

dx. (37)

Further,

|W |0 ≤ 1

2π

π∫

−π

|Ŵ (x)| dx. (38)
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Proof The proof of (37) can be found, for example, in Presman (1985, Lemma on
p. 419). As was pointed out by Presman, this inequality would be equivalent to a
corresponding lemma by Esseen in the lattice case (cf. Ibragimov and Linnik 1971,
p. 29). Inequality (38) is an immediate consequence of the well-known inversion
formula W({k}) = (2π)−1

∫ π

−π
Ŵ (x)e−ikx dx, (k ∈ Z). ��

Lemma 4.6 Let j ∈ Z+ and t ∈ (0, ∞). If F ∈ S is concentrated on the set
Z \ {0}, then

‖(F − I )j exp{t (F − I )}‖ ≤ 3.6 j 1/4
√

1 + σ
( j

te

)j

, (j �= 0), (39)

|(F − I )j exp{t (F − I )}|0 ≤ 2
(j + 1/2

te

)j+1/2
, (40)

where, for (39), we assume that F has finite variance σ 2. If F = 2−1(Iα + I−α)
for some α ∈ (0, ∞), then

‖(F − I )j exp{t (F − I )}‖ ≤ j !

t j
. (41)

Proof The proof of (41) is easily done by using (31) and the fact that, under the
present assumptions,

F − I = −1

2
(I−α − I )(Iα − I ). (42)

We now prove (40) by using (38). Let F ∈ S be concentrated on Z \ {0} and
W = (F − I )j exp{t (F − I )}. Then, for x ∈ R,

F̂ (x) = 2
∞∑

k=1

F({k}) cos(kx), 1 − F̂ (x) = 4
∞∑

k=1

F({k}) sin2
(kx

2

)
≥ 0,

Ŵ (x) = (F̂ (x) − 1)j exp{t (F̂ (x) − 1)}.

It is easy to check that, for each G ∈ F concentrated on Z, we have

1

2π

π∫

−π

|Ĝ(x)|2 dx =
∞∑

k=−∞

(
G({k}))2 ≤ |G|0.

Therefore, for arbitrary A > 0, applying (20), we obtain

π∫

−π

exp{A(F̂ (x) − 1)} dx ≤ 2π

∣∣∣ exp
{A

2
(F − I )

}∣∣∣
0

≤ 2π

√
2

Ae
. (43)
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Hence, using (38),

|W |0 ≤ 1

2π

π∫

−π

(1 − F̂ (x))j exp{t (F̂ (x) − 1)} dx

= 1

2π

π∫

−π

(1−F̂ (x))j exp
{ tj

j + 1/2
(F̂ (x) − 1)

}
exp
{ t

2j + 1
(F̂ (x) − 1)

}
dx

≤ 1

2π
sup
x≥0

(
xj exp

{
− tjx

j + 1/2

}) π∫

−π

exp
{ t

2j + 1
(F̂ (x) − 1)

}
dx

≤ 2
(j + 1/2

te

)j+1/2
.

Inequality (40) is shown. We now prove (39) by using (37) with a = 0. The
parameter b will be chosen later. By the same arguments as above, we derive

π∫

−π

|Ŵ (x)|2 dx ≤ 4π
(2j + 1/2

2te

)2j+1/2
. (44)

Note that

∣∣∣
d

dx
F̂ (x)

∣∣∣ = 4
∣∣∣

∞∑

k=1

kF ({k}) sin
(kx

2

)
cos
(kx

2

)∣∣∣

≤ 4
( ∞∑

k=1

k2F({k})
∞∑

j=1

F({j}) sin2
(jx

2

))1/2
≤

√
2σ(1 − F̂ (x))1/2.

Hence, letting B = 1 − 0.18j−1, we obtain

∣∣∣
d

dx
Ŵ(x)

∣∣∣
2

≤
∣∣∣

d

dx
F̂ (x)

∣∣∣
2
(1 − F̂ (x))2j−2|j − t (1 − F̂ (x))|2 exp{2t (F̂ (x) − 1)}

≤ 2j tσ 2
(j
t

)2j

sup
y≥0

(
y2j−1(1−y)2 exp{−2jBy}) exp{2t (1−B)(F̂ (x)−1)}.

By elementary calculus, we see that the sup-term is bounded by 0.692/(je2j ). With
the help of (43), we therefore get

π∫

−π

∣∣∣
d

dx
Ŵ(x)

∣∣∣
2

dx ≤ 173

125
σ 2t
( j

te

)2j
π∫

−π

exp
{ 9 t

25 j
(F̂ (x) − 1)

}
dx

≤ 261

40
πσ 2t

( j

te

)2j+1/2
. (45)
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If t ≤ 0.108, then, since σ ≥ 1,

‖W‖2 ≤ 4j ≤ 22j−1(1 + σ)
(0.108

t

)2j

≤ (3.6)2
√

j(1 + σ)
( j

te

)2j

.

If t ≥ 0.108, then letting

b = σ
√

t

π
√

0.108

and taking into account (44) and (45), we obtain

‖W‖2 ≤ 1 + bπ

2π

[
4π
(j + 1/4

te

)2j+1/2
+ 261

40

πσ 2 t

b2

( j

te

)2j+1/2]

≤ (3.6)2
√

j (1 + σ)
( j

te

)2j

,

where we used the simple inequality (1 + 1/(4j))2j+1/2 ≤ (5/4)5/2, (j ∈ N). The
proof of (39) is completed. ��

Remark 4 By using Tsaregradskii’s (1958) inequality, it would be possible to derive
an estimate for |(F − I )j exp{t (F − I )}|, (j ∈ N) under the same assumptions
as for (39). However, the resulting bound would have been of worse order than the
one in (39); see also Remark 2(ii).

4.2 Asymptotically sharp norm estimates

In what follows, let Hj(z) be the Hermite polynomial of degree j ∈ Z+, satisfying,
for z ∈ R,

Hj(z) = j !
�j/2�∑

m=0

(−1)m(2z)j−2m

(j − 2m)! m!
,

hj (z) := 1√
2π

dj

dzj
e−z2/2 = (−1)j e−z2/2

2(j+1)/2
√

π
Hj

( z√
2

)
. (46)

Lemma 4.7 Let j ∈ Z+, t, α ∈ (0, ∞), and F = 2−1(Iα + I−α). Then

∣∣∣‖(F − I )j exp{t (F − I )}‖ − 2c
(1)
j

t j

∣∣∣ ≤ C(j)

tj+1/2
, (j �= 0), (47)

∣∣∣|(F − I )j exp{t (F − I )}| − 2c
(2)
j

t j

∣∣∣ ≤ C(j)

tj+1/2
, (j �= 0), (48)

∣∣∣|(F − I )j exp{t (F − I )}|0 − 2c
(3)
j

t j+1/2

∣∣∣ ≤ C(j)

tj+1
, (49)
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where

c
(1)
j = 1

2j+1

∫

R

|h2j (x)| dx,

c
(2)
j = 1

2j+1
sup
x∈R

|h2j−1(x)|, (50)

c
(3)
j = 1

2j+1
sup
x∈R

|h2j (x)|.

In particular, we have

c
(1)
2 = 1

2

√
3

π
exp
{
−3 − √

6

2

}(√
3 −

√
6 + e−√

6

√
3 +

√
6
)
, (51)

c
(2)
2 = 1

8

√
3

π
exp
{
−3 − √

6

2

}√
3 −

√
6, (52)

c
(3)
2 = 3

8
√

2π
. (53)

The constants given in (51)–(53) are important for Theorem 3.3. For the proof of
Lemma 4.7, we need the following result, which is a slight but trivial improvement
of Proposition 3 in Roos (1999).

Lemma 4.8 Let j ∈ Z+, S be a set, and b : (0, ∞) × R × S −→ R be a bounded
function. Then, for t ∈ (0, ∞),

sup
x∈S

sup
z∈R

[
(1 + z2)

∣∣∣t (j+1)/2
j po(�t + z
√

t+b(t, z, x)�, t)−(−1)jhj (z)

∣∣∣
]
≤ C(j)√

t
,

where 
0po(·, t) = po(·, t) denotes the counting density of the Poisson distribu-
tion with mean t and, for m ∈ Z and j ∈ N,


j po(m, t) = 
j−1po(m − 1, t) − 
j−1po(m, t).

Proof of Lemma 4.7 We may assume that t ≥ 1. In view of (42) and the simple
relation

(F − I )j exp{t (F − I )} =
∞∑

m=0


j po(m, t) Fm, (F ∈ F)

(cf. Roos 1999, Lemma 1), we see that, letting t0 = t/2,

(F − I )j exp{t (F − I )}
= 1

(−2)j
(I−α − I )j exp

{ t

2
(I−α − I )

}
(Iα − I )j exp

{ t

2
(Iα − I )

}

= 1

(−2)j

∞∑

m1=0

∞∑

m2=0


j po(m1, t0) 
j po(m2, t0)I(m2−m1)α

= 1

(−2)j

∑

k∈Z

∞∑

m=0


j po(m, t0) 
j po(k + m, t0)Ikα.
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This gives

T (1) := ‖(F − I )j exp{t (F − I )}‖

= 1

2j

∑

k∈Z

∣∣∣
∞∑

m=0


j po(m, t0) 
j po(k + m, t0)

∣∣∣.

By using simple transformations, we obtain

T (1) =
√

t0

2j

∫

R

∣∣∣
∫

R


j po(�t0 + y1
√

t0�, t0)

j po(�t0 + z

√
t0 + b0�, t0) dy1

∣∣∣dy2,

where b0 = �y2�−y2 ∈ (−1, 0] and z = y1 +y2/
√

t0. From Lemma 4.8, it follows
that


j po(�t0 + y1
√

t0�, t0) = (−1)jhj (y1)

t
(j+1)/2
0

+ b1

(1 + y2
1 )t

(j+2)/2
0

,


j po(�t0 + z
√

t0 + b0�, t0) = (−1)jhj (z)

t
(j+1)/2
0

+ b2

(1 + z2)t
(j+2)/2
0

,

where b1 and b2 are functions of (j, t0, y1) and (j, t0, z, b0), resp., with
max{|b1|, |b2|} ≤ C(j). Combining this with the above, we arrive at

T (1) =
√

t0

2j
(R0 + R1),

where

R0 =
∫

R

∣∣∣
∫

R

hj (y1) hj (z)

t
j+1
0

dy1

∣∣∣dy2 =
∫

R

∣∣∣
∫

R

hj (y1) hj (y1 + y2)

t
j+1/2
0

dy1

∣∣∣dy2

and R1 is a quantity satisfying

|R1| ≤
∫

R

∫

R

|b2| |hj (y1)|
(1 + z2)t

j+3/2
0

dy1dy2 +
∫

R

∫

R

|b1| |hj (z)|
(1 + y2

1 )t
j+3/2
0

dy1dy2

+
∫

R

∫

R

|b1 b2|
(1 + y2

1 )(1 + z2)t
j+2
0

dy1dy2

= R2 + R3 + R4,

say. It is easily shown that

R2 ≤ C(j)

t
j+1
0

, R3 ≤ C(j)

t
j+1
0

, R4 ≤ C(j)

t
j+3/2
0

,

giving |R1| ≤ C(j)t
−(j+1)

0 , since t0 = t/2 ≥ 1/2. This implies that

∣∣∣T (1) − 2c
(1)
j

t j

∣∣∣ ≤ C(j)
√

t0 |R1| ≤ C(j)

tj+1/2
,
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where

c
(1)
j = 1

2

∫

R

∣∣∣
∫

R

hj (y1) hj (y1 + y2) dy1

∣∣∣dy2.

Similarly,

T (2) := |(F − I )j exp{t (F − I )}|

= 1

2j
sup
k∈Z

∣∣∣
∞∑

m=0


j po(m, t0) 
j−1po(k + m, t0)

∣∣∣

=
√

t0

2j
sup
y2∈R

∣∣∣
∫

R


j po(�t0 + y1
√

t0�, t0)

j−1po(�t0 + z

√
t0 + b0�, t0) dy1

∣∣∣,

T (3) := |(F − I )j exp{t (F − I )}|0
= 1

2j
sup
k∈Z

∣∣∣
∞∑

m=0


j po(m, t0) 
j po(k + m, t0)

∣∣∣

=
√

t0

2j
sup
y2∈R

∣∣∣
∫

R


j po(�t0 + y1
√

t0�, t0)

j po(�t0 + z

√
t0 + b0�, t0) dy1

∣∣∣,

and

∣∣∣T (2) − 2c
(2)
j

t j

∣∣∣ ≤ C(j)

tj+1/2
,

∣∣∣T (3) − 2c
(3)
j

t j+1/2

∣∣∣ ≤ C(j)

tj+1
,

where

c
(2)
j = 1

2
sup
y2∈R

∣∣∣
∫

R

hj (y1) hj−1(y1 + y2) dy1

∣∣∣,

c
(3)
j = 1√

2
sup
y2∈R

∣∣∣
∫

R

hj (y1) hj (y1 + y2) dy1

∣∣∣.

By partial integration, (46), and some simple substitutions, we see that, for y2 ∈ R,
k, � ∈ Z+ with k ≥ �, and m = k + �,

∫

R

hk(y1) h�(y1 + y2) dy1 = (−1)�
∫

R

hm(y1) h0(y1 + y2) dy1

= (−1)k e−y2
2 /4

2m/2+1π

∫

R

e−x2
Hm

( x√
2

− y2

23/2

)
dx.

Using the well-known summation theorem for the Hermite polynomials

Hm(x1 + x2) = 1

2m/2

m∑

r=0

(
m

r

)
Hm−r (x1

√
2) Hr(x2

√
2), (x1, x2 ∈ R),
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the orthogonality relation

∫

R

e−x2
Hr1(x) Hr2(x) dx =

{√
π 2r1 r1!, if r1 = r2,

0, if r1 �= r2,
(r1, r2 ∈ Z+)

(see Szegö 1975, formulas (5.5.1) and (5.5.11), p. 105–106), and (46), we obtain

∫

R

hk(y1) h�(y1 + y2) dy1 = (−1)k e−y2
2 /4

2m+1
√

π
Hm

(
−y2

2

)
= (−1)�

2(m+1)/2
hm

(
− y2√

2

)
.

From the above, the equalities in (50) follow. The identities (51)–(53) are shown
by using straight forward calculus. This completes the proof of the lemma. ��
Lemma 4.9 Let j ∈ Z+, n ∈ N, 0 < p ≤ C < 1/2, α ∈ (0, ∞), F =
2−1(Iα + I−α), and c

(1)
j , c

(2)
j , and c

(3)
j be defined as in Lemma 4.7. Then

∣∣∣‖(F − I )j (I + p(F − I ))n‖ − 2c
(1)
j

(np)j

∣∣∣ ≤ C(j)

(np)j+1/2
, (j �= 0), (54)

∣∣∣|(F − I )j (I + p(F − I ))n| − 2c
(2)
j

(np)j

∣∣∣ ≤ C(j)

(np)j+1/2
, (j �= 0), (55)

∣∣∣|(F − I )j (I + p(F − I ))n|0 − 2c
(3)
j

(np)j+1/2

∣∣∣ ≤ C(j)

(np)j+1
. (56)

Proof We may assume that np ≥ 1. We have

‖(F − I )j (I + p(F − I ))n‖ = ‖(F − I )j exp{np(F − I )}‖ + R
(1)
1 ,

where

|R(1)
1 | ≤ ‖(F − I )j [(I + p(F − I ))n − exp{np(F − I )}]‖

= ‖([(I + p(F − I )) exp{−p(F − I )}]n − I )(F − I )j exp{np(F − I )}‖
= ‖([I + R2]n − I )(F − I )j exp{np(F − I )}‖

and

R2 = (I + p(F − I )) exp{−p(F − I )} − I

= −p2(F − I )2
∞∑

k=2

(−p(F − I ))k−2

k!
(k − 1).

Therefore, letting g(p) be defined as in Lemma 4.2,

|R(1)
1 | ≤

n∑

r=1

(
n

r

)
(p2g(p))r‖(F − I )j+2r exp{np(F − I )}‖.
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The latter norm term can be estimated by using (41). In fact, for r ∈ N,

‖(F − I )j+2r exp{np(F − I )}‖ ≤ ‖(F − I )j+2 exp{βnp(F − I )}‖ ‖F − I‖r−1

× ‖(F − I )r−1 exp{(1 − β)np(F − I )}‖
≤ (j + 2)! 2r−1 (r − 1)!

(βnp)j+2((1 − β)np)r−1
,

where β ∈ (0, 1) is arbitrary. This gives

|R(1)
1 | ≤ (j + 2)! p g(p)

βj+2(np)j+1

∞∑

r=1

(2p g(p)

1 − β

)r−1
.

Since g(1/2) = 1 and p ≤ C < 1/2, we can choose a suitable β ∈ (0, 1) such
that

2p g(p)

1 − β
≤ C < 1.

Hence |R(1)
1 | ≤ C(j)p(np)−(j+1). By (47), we obtain

∣∣∣‖(F − I )j (I + p(F − I ))n‖ − 2c
(1)
j

(np)j

∣∣∣ ≤ |R(1)
1 | + C(j)

(np)j+1/2
≤ C(j)

(np)j+1/2
.

Hence, (54) follows. Similarly, by using (40),

|(F − I )j (I + p(F − I ))n| = |(F − I )j exp{np(F − I )}| + R
(2)
1 ,

|(F − I )j (I + p(F − I ))n|0 = |(F − I )j exp{np(F − I )}|0 + R
(3)
1 ,

where |R(2)
1 | ≤ C(j)p(np)−(j+1) and |R(3)

1 | ≤ C(j)p(np)−(j+3/2). By (48) and
(49), we obtain (55) and (56). The lemma is shown. ��

4.3 Proofs of the theorems

Proof of Theorems 3.1 and 3.2 We first prove (17). Let G ∈ F , x = n/8, and
y = 3/4. By using (3), (29), and (11), we obtain

T0 := inf
u∈R

∣∣∣GPB(n, p, IuG) − Bi(n, p, IuG; s)

∣∣∣

= inf
u∈R

∣∣∣
n∑

j=s+1

aj (p) (IuG − I )j
(
qI + pIuG

)n−j
∣∣∣

= inf
u∈R

∣∣∣ (IuG − I )s+1 exp{xp(IuG − I )}
∗ (I + p(IuG − I ))n−�yn� exp{−xp(IuG − I )}

∗
n∑

j=s+1

aj (p)(IuG − I )j−s−1(I + p(IuG − I ))(�yn�+1)−(j+1)
∣∣∣

≤ T1 T2

n∑

j=s+1

|aj (p)|
(1 − 2p)j+1

‖(I1 − I )j−s−1(I + p(I1 − I ))�yn�+1‖,
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where ∗ denotes convolution,

T1 := inf
u∈R

∣∣∣(IuG − I )s+1 exp{xp(IuG − I )}
∣∣∣ ≤ C(s)

(np)(s+1)/2+(s+1)/(2s+4)

by Lemma 4.3, and

T2 := ‖(I + p(I1 − I ))n−�yn� exp{−xp(I1 − I )}‖ ≤ 1

1 − 1.2 g(0.3)
≤ 10.4

by Lemma 4.2 and the assumption p ≤ 0.3. In Roos (2000, Lemma 1) it was shown
that, for j ∈ {1, . . . , n},

|aj (p)| ≤
(η(p)

2j

)j/2 n(n−j)/2

(n − j)(n−j)/2
≤
(η(p) e

2j

)j/2
.

Therefore,

T0 ≤ C(s)(η(p))(s+1)/2

(np)(s+1)/2+(s+1)/(2s+4)

×


1+
n∑

j=s+2

( η(p) e

2(1−2p)2

)(j−s−1)/2 1

j j/2
‖(I1−I )j−s−1(I+p(I1−I ))�yn�+1‖



 ,

where, in view of (33), we see that the term in brackets is bounded by

C

∞∑

j=0

( η(p)

2(1 − 2p)2(�yn� + 1)pq

)j/2
≤ C.

Inequality (17) is shown. The proofs of (18), (19), (22), and (23) are quite similar
to the above one. The main difference is that we have to replace T1 with

T
(1)

1 = |(F − I )s+1 exp{xp(F − I )}| ≤ C(s)

(np)s+1
, (57)

T
(2)

1 = |(F − I )s+1 exp{xp(F − I )}|h ≤ C(s)

(np)s+1
Q

1/(2s+3)

h (| ln Qh| + 1)κ , (58)

T
(3)

1 = ‖(F − I )s+1 exp{xp(F − I )}‖ ≤ C(s)
√

σ

(np)s+1
, (59)

T
(4)

1 = |(F − I )s+1 exp{xp(F − I )}|h ≤ C(s) �h + 1�
(np)s+3/2

, (60)

respectively, where κ = 6(s + 1)(s + 2)/(2s + 3). Note that it is assumed that, for
(57) and (58), we have F ∈ S, and that, for (59) and (60), F ∈ S is concentrated
on Z \ {0}. Further, Lemmas 4.4 and 4.6 are used. The theorem is proved. ��
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Proof of Theorem 3.3 We may assume that α = 1 and that, in view of (6) and (7),
λ ≥ 1 and n ≥ 3. Then, by (3),

‖GPB(n, p, F ) − (qI + pF
)n‖ = γ2

2
‖(F − I )2(I + p(F − I ))n‖ + R(1),

where, by using Lemma 4.6 and Theorem 3.2,

|R(1)| ≤ γ2

2
‖(F − I )2[(I + p(F − I ))n−2 − (I + p(F − I ))n]‖

+ |γ3|
3

‖(F −I )3(I +p(F −I ))n−3‖+‖GPB(n, p, F )−Bi(n, p, F ; 3)‖

≤ C
(pγ2

λ3
+ |γ3|

λ3
+ γ 2

2

λ4

)

≤ C
γ2

λ3
.

The proof of (25) is easily completed by the help of Lemma 4.9. Inequalities (26)
and (27) are similarly shown. ��
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Appendix 1: The Krawtchouk expansion

We now give a review of some facts from Roos (2000). In Takeuchi and Takemura
(1987a), the reader can find further information concerning the Krawt-chouk expan-
sion of the distribution of the sum of possibly dependent Bernoulli random vari-
ables. Multivariate generalizations were derived in Takeuchi and Takemura (1987b)
and Roos (2001a). Let Sn be the sum of n ∈ N independent Bernoulli random vari-
ables X1, . . . , Xn with success probabilities p1, . . . , pn, that is, the distribution of
Sn is given by L(Sn) = GPB(n, p, I1). Then (3) with F = I1 is equivalent to

P(Sn = m) =
n∑

j=0

aj (p) 
j bi(m, n − j, p), (61)

where m ∈ Z+, p ∈ [0, 1] is arbitrary,

bi(m, k, p) = 
0bi(m, k, p) =





(
k

m

)
pm qk−m, for m, k ∈ Z+, m ≤ k,

0, otherwise,
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and


j bi(m, k, p) = 
j−1bi(m − 1, k, p) − 
j−1bi(m, k, p) for j ∈ N.

In fact, (61) and (3) can be derived from each other by means of the simple equality

k+j∑

m=0


j bi(m, k, p) zm = (1 + p(z − 1))k (z − 1)j

for j, k ∈ Z+, z ∈ C. The right–hand side of (61), resp. of (3), is called the
Krawtchouk expansion of L(Sn) with parameter p, and a0(p), . . . , an(p) are called
the corresponding Krawtchouk coefficients. With our assumptions, relation (3.5)
of Takeuchi and Takemura (1987a) is similar to (61). For n, m ∈ Z+ and j ∈
{0, . . . , n}, we have

dj

dpj
bi(m, n, p) = n[j ] 
j bi(m, n − j, p),

where n[j ] = n!/(n − j)!, and hence, in view of (61), we see that

P(Sn = m) =
n∑

j=0

aj (p)

n[j ]

dj

dpj
bi(m, n, p), (m ∈ Z+).

As was mentioned in Subsect. 2.2, we have a0(p) = 1. In what follows, we give
some alternative formulae for a1(p), . . . , an(p). For this, we need the Krawtchouk
polynomials Kr(j ; x, n, p) ∈ R[x] being orthogonal with respect to the binomial
distribution. They are defined by (see Szegö 1975, formula (2.82.2), p. 36)

Kr(j ; x, n, p) =
j∑

k=0

(
n − x

j − k

)(
x

k

)
(−p)j−k qk, (n, j ∈ Z+, x ∈ C).

(62)

Then, for j ∈ {1, . . . , n},

aj (p) =
∑

1≤k(1)<···<k(j)≤n

j∏

r=1

(pk(r) − p), (63)

aj (p) =
n∑

m=0

P(Sn = m) Kr(j ; m, n, p), (64)

aj (p) =
j∑

k=0

(
n − k

j − k

)
1

k!
(−p)j−k µ(k), (65)

aj (p) = 1

2π αj

2π∫

0

e−ijx

n∏

k=1

(
1 + (pk − p)αeix

)
dx, (66)
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where α ∈ (0, ∞) is arbitrary and, for k ∈ {0, . . . , n},

µ(k) =
n∑

m=k

m[k] P(Sn = m)

denotes the kth factorial moment of Sn. The equalities (4) and (63)–(66) can be
derived with the help of the generating functions

n∑

j=0

aj (p) zj =
n∏

k=1

(1 + (pk − p)z), (z ∈ C)

and
n∑

j=0

Kr(j ; m, n, p) zj = (1 + qz)m (1 − pz)n−m, (67)

for n, m ∈ Z+, n ≥ m, and z ∈ C. For (67), see Szegö (1975, formula (2.82.4),
p. 36) . In view of (64), we see that the Krawtchouk coefficients can be defined
by using the Krawtchouk polynomials. But the same is true for the differences

j bi(m, k, p). Indeed, for m, k, j, r ∈ Z+ and p ∈ [0, 1], we have

(
k + j

j

)
(pq)j 
j bi(m, k, p) = Kr(j ; m, k + j, p) bi(m, k + j, p). (68)

Using (4), (62), and (68), the counting densities of the signed measures Bi(n,p,I1;s)
[see (5)] can be derived. It turns out that, for m ∈ Z+, we have

Bi(n, p, I1; 1)({m}) = bi(m, n, p)

(
1 − γ1(p) (m − np)

npq

)

and, if n ∈ {2, 3, . . . },
Bi(n, p, I1; 2)({m})

= bi(m, n, p)

(
1 − γ1(p) (m − np)

npq

+ (γ1(p))2 − γ2(p)

2 n(n − 1) (pq)2

[
m2 − (1 + 2(n − 1)p)m + n(n − 1)p2

])
.

It is worth mentioning that, as one can expect, the first s moments of L(Sn) and
Bi(n, p, I1; s) coincide. This follows from the fact that, for s ∈ {0, . . . , n}, k ∈
{0, . . . , s}, and µ(k) as above,

n∑

m=k

m[k] Bi(n, p, I1; s)({m}) = µ(k).

Finally, note that the connection between Bi(n, p, F ; s), for F ∈ F , and Bi(n, p,
I1; s) is given by

Bi(n, p, F ; s) =
n∑

m=0

Bi(n, p, I1; s)({m})Fm.
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V. Čekanavičius
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