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Abstract This paper focuses on the question of specification of measurement error
distribution and the distribution of true predictors in generalized linear models
when the predictors are subject to measurement errors. The standard measurement
error model typically assumes that the measurement error distribution and the dis-
tribution of covariates unobservable in the main study are normal. To make the
model flexible enough we, instead, assume that the measurement error distribution
is multivariate t and the distribution of true covariates is a finite mixture of nor-
mal densities. Likelihood–based method is developed to estimate the regression
parameters. However, direct maximization of the marginal likelihood is numeri-
cally difficult. Thus as an alternative to it we apply the EM algorithm. This makes
the computation of likelihood estimates feasible. The performance of the proposed
model is investigated by simulation study.
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1 Introduction

The conventional approach to regression modeling is to assume that the covariates
are measured without error. The measurement error problems arise if instead of
observing the covariate without error, at least one is measured as an error-prone
surrogate. Such problems are primarily concerned with inference on regression
parameters for an outcome y on covariates x where measurements on x are avail-
able only through the recording of an imperfect surrogate z. It is well known that
regressing y on z and thus ignoring errors can be seriously misleading and sev-
eral methods have been proposed for countering this (Stefanski 1985; Stefanski
and Carroll 1985; Rosner et al. 1989). A good review of such methods can be
found in Fuller (1980) for linear models and in Carroll et al. (1995) for nonlinear
models.

The measurement error model based on structural specifications entail the for-
mulation of three sub-models: an outcome model relating y to x, a measurement
error model relating z to x and a probability model for the unknown covariates x.
For specification of a model the functional forms of the distributions involved in the
sub-models have to be chosen.We consider generalized linear model with canonical
link as the outcome model. Choice of measurement error model typically uses both
a priori knowledge of the measuring instrument as well as the external information
from other similar studies. Thus the functional form is often well motivated and
the default choices involve normal and lognormal error models corresponding to
additive and multiplicative error situations. To make the measurement error model
more flexible we consider a scale mixture of normal densities. This is possibly to
guard against measurement error model with heavier tails and more specifically
from potential outliers. In regression models, choice of t-errors with known and
unknown degrees of freedom have been considered by Lange et al. (1989), Lange
and Sinsheimer (1993), Liu and Rubin (1994, 1995) among others. In fact, they
pointed out that normal theory based inference is significantly inefficient when
kurtosis parameter is of moderately high value.

In structural set up, modeling the distribution of true predictor x deserves spe-
cial attention. The reason is that there is but little information about it besides some
observations on a gold standard in a small validation group or some repeated mea-
sures on the surrogate. We would naturally like to have a model for the distribution
of x that would make the inference on regression parameters not very sensitive
to a particular choice of the distribution of x. This has led to different lines of
development. Carroll et al. (1993) proposed a pseudo-likelihood based method
using validation data. Roeder et al. (1996) used a nonparametric model for the
distribution of x estimated via NPML algorithms. Muller and Roeder (1997) have
developed Dirichlet process priors for the joint model of x and z. Use of mixture
of normal densities to enhance robustness against model misspecification of x is
in recent lines of developments. Mixture with a fixed number of components have
been used by Carroll et al. (1999a), Carroll et al. (1999b) in the context of lin-
ear measurement error model and also in the nonparametric context of regression
splines with measurement error. In the Bayesian framework for logistic regression,
Richardson et al. (2000) considered the modeling of the distribution of x by mixture
of normal distributions with variable number of components. Mixture models thus
provide an alternative natural framework in which to consider a flexible modeling
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of the distribution of true predictors x. Here we consider mixture of normal dis-
tributions with a fixed number of components to increase robustness to model
misspecification for the distribution of x.

In this paper the focus is on flexible modeling of both the measurement error
distribution and the distribution of true predictors x in the generalized linear regres-
sion set up. For modeling the measurement error distribution, we use scale mixture
of normal distribution and finite mixture of normal distributions is used for the
latter.

The models and likelihood are introduced in Sect. 2. Section 3 discusses the
implementation of the EM algorithm. A simulation study is undertaken in Sect. 4
and finally in Sect. 5 conclusions are drawn.

2 Models and likelihood

In present formulation y denote the response variable, x is the true predictor unob-
servable in the main study and z is the associated imperfect surrogate through
which only measurements on x are available. There may be other covariates that
are measured without error. To avoid notational complicacy they are not included
in the present discussion. However, their inclusion does not complicate the analy-
sis in any major way. In fact, the analysis is carried out conditional on the values
of the known covariates. Further we assume here a non-differential measurement
error model, i.e., z has no information regarding y other than that contained in x.
Technically, it means that the conditional probability distribution of y given x, z
and that of y given x are the same, i.e., f (y |x, z ) = f (y |x ).

2.1 Outcome model

Specifically, a generalized linear model with canonical link function as an out-
come model is considered i.e., the response yi conditioned on the value of the true
covariate xi has the probability distribution

f (yi
∣
∣xi;β) = exp{yi(xTi β)− b(xTi β)+ c(yi) , i = 1(1)n, (1)

for some known functions b(·) and c(·). β (p × 1) denote the vector of regres-
sion parameters, which are to be estimated, and yis are independent. No dispersion
parameter has been included in the above model though its presence does not
complicate the developments.

2.2 Measurement error model

The measurement error model is considered as

zi = xi +�(vi)εi . (2)

Here εi ∼ Np (0, �); where �(p × p) is an unknown variance matrix; vi is a
positive valued random variable independent of εi and xi and �(·) is a positive
valued function. Model (2) implies that conditionally on vi and xi ,

zi ∼ Np
(

xi, {�(vi)}2�
)

, i = 1, 2, . . . , n, (3)
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and are independent. With the strength of Eqs. (2) and (3), it is evident that in terms
of the latent variable vi the measurement error distribution can be written as

f (zi |xi;�) =
∞∫

0

f (zi |vi, xi;�)f (vi)dvi .

In particular if νi is a chi-square variable with ν degrees of freedom (d.f.) and
�(νi) = (νi/ν)

−1/2, then the measurement process represented by the conditional
distribution of zi given xi is multivariate t given by the density function

f (zi |xi;�) = |�|− 1
2
√
(ν + p)/2

(πν)
p

2
√
ν/2

{

1 + ν−1(zi − xi)
T �−1(zi − xi)

}− ν+p
2 .

(4)

This t model described by Eq. (4) accommodates the usual multivariate normal
distribution as υ → ∞ and the distributions with tails heavier than multivariate
normal in case υ is finite.

In measurement error analysis in order to avoid the identifiability problem
it is necessary to assume that either � is known or an estimate of it is made
available from external validation data (independent of the primary data) where
both x and z are observed. In the present study, we assume the latter. Suppose
A = ∑N

i=1 (z̃i − x̃i)(z̃i − x̃i)
T be the sum of squares and sum of products matrix

based on external validation data (z̃i, x̃i), i = 1, 2, . . . , N . Following Sutradhar
and Ali (1989) it can be shown that ‘A’ follows a generalized Wishart distribution
given by the pdf

f (A;�) = C(N, p)|�|− N
2 |A| N−p−1

2
{

ν + Tr�−1A
}− (ν+Np)

2 , (5)

where, C(N, p) = ν
ν
2
√
(ν+Np)/2

(π)p(p−1)/4
√
ν/2

∏p

i=1

√
(N−i+1)/2

and N denotes the number of observations in the validation data set. For this dis-
tribution it can also be shown that for υ > 2, E(A) = Nν�(ν − 2)−1. Hence an
unbiased estimator of � is given by A(ν − 2)(Nν)−1.

2.3 Model for the true predictor

Broadly, there are two approaches to measurement error analysis depending on
how xis are treated. Functional model attempts to estimate the unknown xi’s along
with other parameters treating these as unknown constants but the structural model
specifies a probability distribution for x as a means to reduce the number of nui-
sance parameters. In the present discussion we restrict to structural models. The
distribution of xi is taken to be a g-component finite mixture with ‘g’ known a
priori. The density of xi can thus be written in the form,

f (xi;ψ) =
g

∑

j=1

πjfj (xi; θj ), (6)
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where, fj (xi; θj ) are densities and πj ’s are non-negative quantities that sum to

one and ψ = (

π1 , π2, . . . , πg−1, θ1, . . . , θg
)T

. Here θj s are known a priori to
be distinct. The quantities πj ’s are called mixing proportions and are treated as
unknown constants. Specifically, fj (xi; θj ) is considered to be a p-variate normal
with unknown mean vector µj and dispersion matrix �j(p × p).

An obvious way of generating a random vector xi from the density Eq. (6) is as
follows. Let ui be a g-dimensional component label vector, where the j-th element
of ui say uij is 1 or 0, depending on whether xi is generated from fj (xi; θj ) or not
(j = 1, 2, . . . , g). Thus the distribution of ui is multinomial with cell probabilities
π1, π2, . . . , πg . The probability function of ui is given by

f (ui;π) = π
ui1
1 π

ui2
2 · · ·πuigg . (7)

Here ui ∼ multg (1, π ), where π = (

π1, π2, . . . , πg
)T

. Clearly the conditional
density of xi given uij = 1 is fj (xi; θj ) and the unconditional density (i.e. the
marginal density of xi) is given by Eq. (6) which in terms of latent variable uij can
be written as

f (xi;ψ) =
g

∑

j=1

πjf
(

xi
∣
∣uij = 1; θj

)

. (8)

2.4 Likelihood function

The log likelihood function of the unknown parameters ξ = (β, �, ψ) arising in
the models as presented in the earlier subsections can be written as

L(ξ |y, z, A) =
n

∑

i=1

log







g
∑

j=1

πj

∞∫

−∞
f (yi |xi;β)





∞∫

0

f (zi |xi, vi;�)f (vi)dvi




×f (xi
∣
∣uij = 1; θj )dxi






+ log f (A;�).

It is evident that the direct maximization of L(ξ |y, z, A) is quite difficult numer-
ically, due to the sum of terms inside the logarithm and also multidimensional
integral inside the summation sign. The EM algorithm (Dempster et al. 1977)
offers an alternative simpler framework for computation of maximum likelihood
estimates by treating the unobserved xi’s, uij ’s and vi’s as missing data.

3 Implementation of the EM algorithm

It is to mention here that the complete data is denoted by dc = (y, x, z, u, v,A)
while the observed data by dO = (y, z, A). The complete data log-likelihood is
given by
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Lc(ξ) =
n

∑

i=1

log f (yi |xi;β)

+
{

n
∑

i=1

log f (zi |xi, vi;�)

+
n

∑

i=1

log f (vi; ν)+ log f (A;�)
}

+
n

∑

i=1

g
∑

j=1

uij
{

logπj + log fj (xi; θj )
}

= Lc(β)+ Lc(�)+ Lc(ψ). (9)

The EM algorithm then proceeds iteratively in two steps. The basic algorithm is
summarized below.

1. Start with initial guesses for the parameters ξ say ξ (0).
2. E step involves evaluation of the expectations of complete data log likelihood

given the observed data and the parameters as obtained from the previous iter-
ation. At the (t + 1)-th step, compute

Q(ξ ; ξ (t)) = E[Lc(ξ)
∣
∣dO; ξ (t) ] = E

[

Lc(β)
∣
∣dO; ξ (t) ]

+E[

Lc(�)
∣
∣dO; ξ (t) ] + E

[

Lc(ψ)
∣
∣dO; ξ (t) ]

= Q1(β; ξ (t))+Q2(�; ξ (t))+Q3(ψ; ξ (t)). (10)
3. M step involves the maximization of the above conditional expectation Q(ξ ;
ξ (t)) with respect to ξ over the parameter space to obtain the updated estimate
ξ (t+1).

4. Iterate steps 2 and 3 until convergence.

It is to be noted that the augmentation of the observed data by the missing data to
find the maximum likelihood estimate has two advantages. First, on knowing xi’s,
yi’s are independent and on knowing vi’s and xi’s, zi’s are independent. Secondly
at the M step of the EM algorithm β enters only in the first term. Hence, to find β
that maximizesQ(ξ ; ξ (t)) it is enough to considerQ1(β; ξ (t)). This maximization
is similar to that of a standard generalized linear model. Also, it is feasible to find
� and ψ that maximizes Q2(�; ξ (t)) and Q3(ψ; ξ (t)), respectively.

Let us first consider Q3(ψ; ξ (t)). i.e.

Q3 (ψ; ξ (t)) =
n

∑

i=1

g
∑

j=1

E
{

uij
(

logπj + log fj (xi; θj )
) ∣

∣ dO; ξ (t) }

=
n

∑

i=1

g
∑

j=1

{

logπj + E
(

log fj (xi; θj ) | dO ; ξ (t))}τj
(

yi, zi; ξ (t)
)

=
n

∑

i=1

g
∑

j=1

{

logπj − 1

2
log

∣
∣�j

∣
∣

−1

2
Tr

{(

B
(t)
ij + (a

(t)
ij − µj)(a

(t)
ij − µj)

T
)

�−1
j

}}

τj
(

yi, zi; ξ (t)
)
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where,

τj
(

yi, zi; ξ (t)
) = E

(

uij
∣
∣ dO; ξ (t) ) ; a

(t)
ij = E

(

xi
∣
∣dO, uij = 1; ξ (t) )

(11)
B
(t)
ij = E

(

(xi − a
(t)
ij )(xi − a

(t)
ij )

T
∣
∣dO, uij = 1; ξ (t)

)

Details of Eqs. (11) in are provided in the Appendix. Now Q3(ψ; ξ (t)) is maxi-
mized with respect to the respective parameters to obtain the updated estimates of
the parameters as below,

π
(t+1)
j =

n
∑

i=1

τj (yi, zi; ξ (t))

n
, (12)

µ
(t+1)
j =

n
∑

i=1

τj (yi, zi; ξ (t))a(t)ij
n

∑

i=1

τj (yi, zi; ξ (t))
, (13)

�
(t+1)
j =

n
∑

i=1

τj (yi, zi; ξ (t))
{

B
(t)
ij + (a

(t)
ij − µ

(t+1)
j )(a

(t)
ij − µ

(t+1)
j )T

}

n
∑

i=1

τj (yi, zi; ξ (t))
. (14)

Next let us consider Q2(�; ξ (t)), i.e.,

Q2(�; ξ (t)) =
n

∑

i=1

E
(

log f (zi
∣
∣ xi, vi;�)

∣
∣dO; ξ (t) )

+
n

∑

i=1

E
(

log f (vi)
∣
∣dO; ξ (t) ) + E

(

log f (A;�) ∣
∣ dO; ξ (t) ). (15)

In the present case of known υ it is sufficient to focus only on the first and last
terms since the other term does not involve unknown parameter. Again the last term
will be simply logarithm of f (A;�). The first term may be written as (ignoring the
constant term)

−n
2

log |�|+p
2

n
∑

i=1

E
(

log(viν
−1)

∣
∣dO; ξ (t) )− 1

2

n
∑

i=1

E
(

viν
−1δ(zi; xi, �)

∣
∣dO; ξ (t) )

where, δ(zi; xi, �) = (zi − xi)
T�−1(zi − xi) denotes the Mahalanobis squared

distance between zi and xi . Ignoring terms independent of � and using the result
that the conditional distribution of viν−1 | zi ; ξ (t) is gamma with parameters

m1 = ν + p

2
, m2 = ν + δ(zi; xi, �(t))

2



160 S. Roy, T. Banerjee

the expression of Q2(�; ξ (t)) in (Eq. 15) becomes,

n+N

2
log

∣
∣�−1

∣
∣ − ν + p

2

n
∑

i=1

E
{

δ(zi; xi, �)(ν + δ(zi; xi, �(t))−1)
∣
∣dO; ξ (t) }

−ν +Np

2
log

(

ν + Tr
(

�−1A
))

Now maximizingQ2(�; ξ (t))with respect to� and realizing the fact that ∂
∂θ
E (g(x,

θ)) = E
(
∂
∂θ
g(x, θ)

)

, the above yields

N + n

2
(2� − diag�)

−ν + p

2

n
∑

i=1

E
{

(zi − xi)(zi − xi)
T
(

ν + δ(zi; xi, �(t))
)−1 ∣

∣dO; ξ (t)
}

−ν +Np

2

(2A− diagA)
(

ν + Tr(�−1A)
) = 0. (16)

The expectation in Eq. (16) above is obtained using numerical quadrature and then
the equation is solved iteratively to give the updated estimate of �(t+1,s+1) where
s is the index of iteration used to obtain �which is nested within the EM iteration
indexed by t.

Lastly, let us consider Q1(β; ξ (t)) which involves the parameter of interest β.
Now for simplicity ignoring the constant term, Q1(β; ξ (t)) becomes

Q1(β; ξ (t)) =
n

∑

i=1

yiE
(

xT
i

∣
∣dO; ξ (t) )β −

n
∑

i=1

E
(

b(xT
i β)

∣
∣dO; ξ (t) ) .

An application of Newton–Raphson method may be used iteratively to solve for β
which maximises Q1(β; ξ (t)). For a given estimate β(s) an updated estimate is the
solution to

n
∑

i=1

yiE
(

xT
i

∣
∣dO; ξ (t) ) −

n
∑

i=1

E
[

b′(xT
i β

(s))xi
∣
∣dO; ξ (t) ]

+ (β − β(s))

n
∑

i=1

E
[

b′′(xT
i β

(s))xix
T
i

∣
∣ dO; ξ (t) ] = 0.

At this stage we approximate E
[

b′(xT
i β

(s))xi
∣
∣ dO; ξ (t) ] by b′(aT (t)i β(s))a

(t)
i and

E
[

b′′(xT
i β

(s))xix
T
i

∣
∣ dO; ξ (t) ] by b′′(aT(t)

i β(s))a
(t)
i a

T(t)
i . The approximations are jus-

tified provided b′(·) and b′′(·) are approximately linear over the support of the
posterior distribution of x. This is, indeed the case for logistic regression with
binary response. If θ(s,t)i is the estimate of the canonical parameter after t cycles
so that θ(s,t)i = a

(t)T
i β(s,t) then the weight function is m(s,t)i = b′′(θ(s,t)i ) and the

working dependent variable is
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ỹ
(s,t)
i = yi − b′(θ(s,t)i )

b′′(θ(s,t)i )
+ θ

(s,t)
i .

The updated estimate of β at the (s + 1)th iteration will then be obtained by using
reweighted least squares iteratively. i.e.,

β(s+1,t+1) =
[

n
∑

i=1

m
(s,t)
i

{

B
(t)
i + a

(t)
i a

(t)T
i

}
] 1 [ n

∑

i=1

m
(s,t)
i ỹ

(s,t)
i a

(t)T
i

]

. (17)

where s is the index of the weighted least squares iteration which is nested within
the EM iteration indexed by t, and

a
(t)
i =

g
∑

j=1

a
(t)
ij π

(t)
j , B

(t)
i =

g
∑

j=1

B
(t)
ij π

(t)
j +

g
∑

j=1

π
(t)
j (a

(t)
ij − a

(t)
i )(a

(t)
ij − a

(t)
i )

T. (18)

At each iteration in the EM algorithm a
(t)
ij and B(t)ij are computed. The updated ver-

sion of the parameter estimatesβ(t+1), �(t+1), µ
(t+1)
j , �

(t+1)
j , π

(t+1)
j (j = 1, 2, . . . , g)

are then obtained.

4 Simulation study

4.1 The regression estimator under different estimating conditions

In the first part of the simulation study we compare the performance of the estima-
tor of the regression parameter β when the distribution of true predictors is mixture
of normal and the error distribution is t with ν d.f. under five different situations
as mentioned below.

1. E1 : Naı̈ve case. i.e. ignoring measurement error. In this case it is assumed
that zi’s are the values of the true predictors. The maximum likelihood estimate
of β is then obtained by applying iterative re-weighted least squares McCullagh
and Nelder (1989). In (s+ 1)-th cycle of the iteration, the updated estimate of β is
given by

β(s+1) =
{

n
∑

i=1

m
(s)
i (ziz

T
i )

}−1

×
{

n
∑

i=1

m
(s)
i ỹ

(s)
i zi

}

. (19)

If θ(s)i is the estimate of the canonical parameter after s cycles, so that θ(s)i = zTi β
(s),

then the weight function is m(s)i = b′′(θ(s)i ) and the working dependent variable is

ỹ
(s)
i =

(

yi − b′(θ(s)i )
)

b′′(θ(s)i )
+ θ

(s)
i ,

where b′(·) and b′′(·) are the first and second order derivatives of b(·), respectively.
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2. E2 : The maximum likelihood estimator obtained by the EM algorithm,
assuming both the error distribution and the distribution of true predictors are nor-
mal, i.e. z

∣
∣x̃Np(x,�) and x̃Np(µ,�). Following Schafer (1987), Q2(�; ξ (t)) is

obtained as

Q2(�; ξ (t)) = −1

2

n
∑

i=1

Tr
[{

B
(t)
i + (zi − a

(t)
i )(zi − a

(t)
i )

T + An−1
}

�−1
]

+n+N

2
log

∣
∣�−1

∣
∣ (20)

where a(t)i and B(t)i are as given in Eq 18. The M-step then yields

�(t+1) = 1

n+N

[
n

∑

i=1

{

B
(t)
i + (zi − a

(t)
i )(zi − a

(t)
i )

T
}

+ A

]

. (21)

Now ignoring the constant term Q3(ψ; ξ (t)) is given by

Q3(ψ ; ξ (t)) = −1

2

n
∑

i=1

Tr
[{

B
(t)
i + (a

(t)
i − µ)(a

(t)
i − µ)T

}

�−1
]

−n
2

log |�|. (22)

Finally,Q3(ψ; ξ (t)) is maximized with respect to the parameters to give the updated
estimates as

µ(t) = µ(t+1) = 1

n

n
∑

i=1

a
(t)
i .

(23)

�(t+1) = 1

n

n
∑

i=1

{

B
(t)
i + (a

(t)
i − µ(t))(a

(t)
i − µ(t))T

}

.

The estimator of the regression parameter will be as given by Eq. (17).
3. E3 The maximum likelihood estimator obtained by the EM algorithm, assum-

ing that the error distribution is normal and the distribution of true predictors is
mixture of normal. In this case the estimator of � will be given by Eq. (21). The
rest of the parameters will be obtained as in Sect. 3

4. E4 The maximum likelihood estimator obtained by the EM algorithm, assum-
ing that the error distribution is t with ν d.f. and the distribution of true predictors
is normal. Here the estimators of µ and � will be given by Eq. (23). The rest of
the parameters will be obtained as in Sect. 3.

5. E5 The maximum likelihood estimator obtained by the EM algorithm, assum-
ing that the distribution of true predictors is mixture of normal and the error distri-
bution is t with ν d.f. This is the proposed estimator as described in Sect. 3.

The details of the simulation study are described below:
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Step 1: Generate x1, x2, . . . , xn from a mixture of two independent univariate nor-
mal having parameter θ = (µ1, µ2, σ

2
1 , σ

2
2 , π). θ is taken as (0.45, 1.90,

0.03, 0.03, 0.60). This choice is motivated by Munich data (Carroll et al.
1995).

Step 2: Given x1, x2, . . . , xn generate y1, y2, . . . , yn from Bernoulli distribution
with the probability of success given by

Prob{yi = 1| xi} = exp(βxi)

1 + exp(βxi)
, β = 1.6.

The choice of β is taken from Munich data.
Step 3: Given x1, x2, . . . , xn generate z1, z2, . . . , zn from univariate t distribution

with υ d.f. and origin at xi and scale parameter �. Here υ=4 and � =0.4.
Step 4: External validation data (z̃i , x̃i), i = 1, 2, . . . , N are generated as in Steps

1 and 3. Then the values of A and N (=10) are incorporated into the likeli-
hood.

Step 5: Given the data yi, zi (i = 1, 2, . . . , n) and ‘A’ the five different likelihoods
are fitted.

Step 6: Repeat Steps 1 to 5 a large number of times, say R times. Suppose the
estimate of β at the l-th simulation be β̂(l). Compute,

bias(β̂(l)) = 1

R

R
∑

l=1

(β̂(l) − β) and mse(β̂(l)) = 1

R

R
∑

l=1

(β̂(l) − β)2.

Efficiencies (reciprocal of m.s.e. expressed in percentage of the reciprocal of mse
of the Naı̈ve estimator) of each of the cases relative to the naı̈ve case are also
obtained. Efficiency of the naı̈ve estimator is taken to be 100. The results of the
simulation study are summarized in Table 1.

Here R=100, the simulation is repeated for samples of size n=100, n=300.
Table 1 shows the individual effects of misspecification of the measurement error
distribution and the true predictor distribution as well as the joint effect. In this
set-up the estimator E5 is found to be better than the others. Comparison of its
efficiency with E2,E3 and E4 clearly shows that the joint misspecification of mea-
surement error distribution and the distribution of the true predictor is nearly double
the individual effect. The individual effects are substantial also.

Table 1 x ∼mixnormal (µ1, µ2, σ
2
1 , σ

2
2 , π)µ1 =0.45, µ2 =1.90, σ 2

1 =σ 2
2 =0.03, π=0.6

n E1 E2 E3 E4 E5

100
m.s.e 1.99657×10−1 1.72956×10−1 1.10811×10−1 1.00912×10−1 7.94615×10−2

Bias −2.60078 × 10−1 2.25516×10−1 2.01772×10−1 2.01513×10−1 1.71456×10−1

Eff 100% 115% 180% 198% 251%
300

m.s.e 1.48309×10−1 1.01221×10−1 4.67646×10−2 4.91256×10−2 3.20161×10−2

Bias −3.37272 × 10−1 1.56156×10−1 1.69125×10−1 1.31251×10−1 1.25123×10−1

Eff 100% 146% 317% 302% 463%
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4.2 Robustness study of the distribution of true predictor

The sensitivity of the performances of the estimators to the violation of the assump-
tion of the distribution of true predictors is investigated further in the simulation
study. We thus obtain the bias(β̂) and mse(β̂) for the above five cases (as described
in Subsect. 4.1) when the distribution of x is:

(a) Normal with mean=1.03 and variance=0.524. The values 1.03 and 0.524 are
actually the mean and variance of the mixture normal distribution.

(b) Rectangular (−0.22, 2.28) with mean=1.03 and variance=0.524.
(c) χ2 with 1 d.f. with origin shifted and scale changed suitably to have mean 1.03

and variance 0.524.

Efficiencies of each of the cases relative to the naı̈ve case as well as bias(β̂) and
mse(β̂) are summarized in Tables 2–4. The results reveal that the proposed estima-
tor E5 performs uniformly better than others in all the situations considered except
when the distribution of x is normal. In this particular case, it is expected that E4
would perform better. However, the performance of E5 is well even in this case. In
particular, from Table 3 it is evident that when the distribution of the true predictor
x is rectangular E5 performs far better than others.

During the simulation study it is also observed that for small sample sizes (less
than 100) the Naı̈ve estimator E1 is less variable but more biased than the others.
But with the sample sizes becoming larger the bias increasingly dominates the
variance. Hence large samples are candidates for using corrected estimators like
E2,E3,E4 and E5. However, such results are not reported here.

Table 2 x ∼ normal
(

µ, σ 2
) ;µ=1.03, σ 2 =0.524

n E1 E2 E3 E4 E5

100
m.s.e 2.14981×10−1 1.92965×10−1 1.776702×10−1 1.023719×10−1 1.00912×10−1

Bias −3.70885 × 10−1 −2.55512 × 10−1 −3.49591 × 10−1 −2.00061 × 10−1 2.01513×10−1

Eff 100% 111% 121% 210% 213%
300

m.s.e 1.62577×10−1 1.15126 × 10−1 9.22727 × 10−2 6.30143 × 10−2 6.91256 × 10−2

Bias −3.37272 × 10−1 −1.61615 × 10−1 1.69125 × 10−1 −1.29163 × 10−1 1.31215 × 10−1

Eff 100% 141% 176% 258% 235%

Table 3 x ∼ Rec(−0.22, 2.28)

n E1 E2 E3 E4 E5

100
m.s.e 1.99657×10−1 1.31526×10−1 9.82877×10−2 9.01212×10−2 6.68442×10−2

Bias −2.60078 × 10−1 −2.15126 × 10−1 −1.48472 × 10−1 −1.56125 × 10−1 −1.01262 × 10−1

Eff 100% 152% 203% 221% 298%
300

m.s.e 1.48309×10−1 7.30586 × 10−2 5.56336×10−2 5.72189×10−2 3.72819×10−2

Bias −3.37272 × 10−1 −1.99129 × 10−1 −1.72618 × 10−1 −1.16125 × 10−1 −1.00049 × 10−1

Eff 100% 203% 267% 259% 398%
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Table 4 x ∼ χ2(1)

n E1 E2 E3 E4 E5

100
m.s.e 3.81519×10−1 3.14742×10−1 2.01296×10−1 2.107840×10−1 1.55089×10−1

Bias −5.54706 × 10−1 −3.80449 × 10−1 −3.90126 × 10−1 −2.96001 × 10−1 −2.46001 × 10−1

Eff 100% 121% 189% 181% 246%
300

m.s.e 3.58892×10−1 1.49538×10−1 1.00121×10−1 9.99821×10−2 9.10893×10−2

Bias −5.82269 × 10−1 −3.26423 × 10−1 −3.04126 × 10−1 −2.15126 × 10−1 −1.99261 × 10−1

Eff 100% 240% 358% 359% 394%

In the simulation study for the estimators obtained using EM algorithm the iter-
ation was repeated 30 times and if the estimators failed to converge by 30 cycles
the sample was rejected. This led to a rejection of 10% of the samples on an aver-
age. Here we have followed Schafer (1987); however, more iteration cycles are
expected to reduce the rejection number.

4.3 Robustness of the choice υ = 4

Through further simulation we investigate how robust is the choice υ=4. In a set
up similar to Sect. 4.1 we generate the true covariate values (x) as in Step 1 and the
response (y) as in Step 2. The values of the surrogate (z) given the true predictor
(x) are generated from normal distribution with mean x and variance� = 0.4. The
bias, mse and efficiencies as described in Step 6 of Sect. 4.1 are obtained for all the
five cases. The results are summarized in Table 5 which show that the performance
of E3 is better as expected. It is found that with υ = 4 and sample size n=100(300)
the efficiencies of E3 and E5 are 259% (330%) and 220% (288%), respectively.
A further study was made considering υ=6. It is to be noted that here only E4
and E5 will change. The details of that table are not given. It is observed that for
n=100(300) the efficiencies of E3 and E5 are 259% (330%) and 256% (297%),
respectively. Thus the study shows that the estimator E5 assuming υ=4 although
gives a much better performance than the naı̈ve estimator E1 but is around 40% less
efficient than E3. However for υ=6, the efficiencies are more or less similar. It is to
be noted further from Table 1 that in the opposite case when the true measurement

Table 5 x ∼ mixnormal
(

µ1, µ2, σ
2
1 , σ

2
2 , π

)

µ1 = 0.45, µ2 = 1.90, σ 2
1 = σ 2

2 = 0.03, π =
0.6; z |x̃N(x,�=0.4)

n E1 E2 E3 E4 E5

100
m.s.e 1.66256×10−1 7.38915×10−2 6.41915×10−2 8.52594×10−2 7.55709×10−2

Bias −1.00162 × 10−1 8.11562×10−2 7.10264×10−2 9.26182×10−2 8.55162×10−2

Eff 100% 225% 259% 196% 220%
300

m.s.e 9.22568×10−2 3.08551×10−2 2.79566×10−2 3.87636×10−2 3.20336×10−2

Bias −2.12362 × 10−1 6.30136×10−2 5.11263×10−2 7.11362×10−2 6.33163×10−2

Eff 100% 290% 330% 238% 288%
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error is t with 4 d.f. the efficiency of E3 is 70% (146%) less than that of E5 for
n=100(300). So the loss in efficiency is more in this case.

4.4 Estimation of υ from external validation data

Next we investigate the estimation of υ from an external validation data in order
to choose an appropriate t measurement error model. Following Liu and Rubin
(1995) we apply ECME algorithm to find the likelihood estimate of υ. Samples
of sizes N = 20, 40, 60, 80 are chosen. First, xi (i = 1, 2, . . . , N) are generated
as in Step 1 of Subsect. 4.1. Given xi, z′i s (i = 1, 2, . . . , N) are generated from
normal distribution with mean xi and variance �=0.4. Defining ti = zi − xi and
assuming t measurement error, we apply ECME algorithm to estimate υ and �.
Let νr denote the maximum likelihood estimate of ν obtained in the r-th simulation
(r =1,2,. . . ,R). With R = 1,000 and N = 20, 40, 60, 80 we find that 679, 834, 908,
947 values of υr respectively exceed 6. The results show along with the results
of the simulation study as reported in Subsect. 4.3 that even with moderate size
validation data if one finds an estimate of ν and then apply the proposed method-
ology then one can expect to get results comparable to that obtained when the true
measurement error is normal.

5 Concluding remarks

In this paper flexible parametric models have been used to model the distribution
of true covariates as well as the distribution of measurement error. The advantages
of using flexible parametric models are that they are easy to use, efficient and add
a measure of robustness. Mixture of normal is particularly a convenient choice for
a flexible parametric family. Almost all the distributions can be well approximated
by mixture of normal distributions with large number of components. However,
in practice there is not enough information available for the estimation of a large
number of parameters. So here a mixture distribution with two components has
been considered. The simulation study clearly shows that the proposed estimator
performs uniformly well in all situation and is also robust to the violation of model
assumption. The proposed model for measurement error although does not include
distributions with tails shorter than the normal, in applications, however, departure
from normality in this direction seems to be less frequent and with less serious
consequences (Lange et al. 1989).

In Subsect. 4.4 a limited simulation study is made on modeling measurement
error using unknown d.f. In standard regression problem with t error, Liu and Rubin
(1994, 1995) have shown how the MLE of υ can be found much more efficiently
by using the ECME algorithm. However, in this case, when x ′s are unknown the
problem is much more formidable. Thus in this paper ν has been estimated from
external validation data using ECME algorithm. The estimated value of υ is then
treated as a tuning parameter and is used in measurement error analysis to estimate
the parameter of interest β. The results are found to be extremely encouraging.
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Appendix

Detailed expressions of Eq. (11) of Sect. 3 are given below.

τj (yi, zi; ξ (t))
= E(uij |dO ; ξ (t)) = Prob{uij = 1 |yi, zi; ξ (t)}

=
π
(t)
j

∫ {∫

f (yi |xi ;β(t))f (zi |xi , νi;�(t))fj (xi; θ(t)j )dxi
}

f (vi)dvi
g∑

j=1
π
(t)
j

∫ {∫

f (yi |xi ;β(t))f (zi |xi, νi ;�(t))fj (xi; θ(t)j )dxi
}

f (vi)dvi

.

(24)

In general the multidimensional integral within the curly bracket in Eq. (24) above
is not easy to evaluate. However, in binary regression model with probit link the
above integral can be explicitly expressed in terms of�(·), the cdf of standard nor-
mal variable. For logit link the integral can be evaluated up to any desirable degree
of accuracy by using a fast algorithm due to Crouch and Spiegelman (1990). If
the integral within the curly bracket be denoted by Ij (yi, zi, vi; ξ (t)), then Eq. (24)
boils down to

π
(t)
j

(∫

Ij (yi, zi, vi; ξ (t))f (vi)dvi
)

g∑

j=1
π
(t)
j

(∫

Ij (yi, zi, vi; ξ (t))f (vi)dvi
)
. (25)

The integral within the parentheses in Eq. (25) is a one-dimensional integral, which
can be approximated by a five point Gauss Hermite quadrature (Abramowitz and
Stegun 1972) to yield hj (yi, zi; ξ (t)). Thus

τj (yi, zi; ξ (t)) = π
(t)
j hj (yi, zi; ξ (t))

g∑

j=1
π
(t)
j hj (yi, zi; ξ (t))

. (26)

Next,

a
(t)
ij = E

(

xi
∣
∣dO, uij = 1; ξ (t) ) =

∫

xif (xi
∣
∣yi, zi, uij = 1; ξ (t))dxi

=
∫







∫

xi

f (yi

∣
∣
∣xi;β(t))f (zi

∣
∣
∣xi, vi;�(t))fj (xi; θ(t)j )f (vi)πj

f (yi, zi, vi, uij = 1; ξ (t)) dxi







×f (yi, zi, vi, uij = 1; ξ (t))
f (yi, zi, uij = 1; ξ (t)) dvi

=
∫ {∫

xif (xi
∣
∣yi, zi, vi, uij = 1; ξ (t))dxi

}

f (vi
∣
∣zi; ξ (t))dvi. (27)

The multidimensional integral within the curly bracket in Eq. (27) is the mean of
the conditional distribution of xi

∣
∣yi, zi, vi, uij = 1 . Following Schafer (1987) it
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can be replaced by the corresponding mean of a normal distribution which approx-
imates f (xi

∣
∣yi, zi, vi, uij =1). It is then easy to approximate the mean by the

mode of the distribution of xi
∣
∣yi, zi, vi, uij =1 . Using the fact that the conditional

distribution of vi
∣
∣zi; ξ (t) is gamma the problem then boils down to evaluation

of one-dimensional integral which can be approximated by using Gauss–Hermite
quadrature. Lastly,

B
(t)
ij = E

(

(xi − a
(t)
ij )(xi − a

(t)
ij )

T
∣
∣dO, uij = 1; ξ (t)

)

= E
[(

xi − E(xi
∣
∣yi, zi, vi, uij = 1; ξ (t) ))

× (

xi − E(xi
∣
∣yi, zi, vi, uij = 1; ξ (t)))T ∣

∣yi, zi, uij = 1; ξ (t)
]

+
(

a
(t)
ij − E(xi

∣
∣yi, zi, vi, uij = 1; ξ (t))

)

×
(

a
(t)
ij − E(xi

∣
∣yi, zi, vi, uij = 1; ξ (t))

)T

. (28)

Making some algebraic manipulations the first term in Eq. (28) above can be
reduced to a one dimensional integral where the integrand will be the product of
the observed Fisher information matrix (Schafer 1987) of the conditional distri-
bution of xi

∣
∣yi, zi, vi, uij =1 and the pdf of the gamma distribution as described

while evaluating a(t)ij .

References

Abramowitz, M., Stegun, I. (eds) (1972). Handbook of mathematical functions. NewYork: Dover.
Carroll, R.J., Gail, M.H., Lubin, J.H. (1993). Case-control studies with errors in covariates.

Journal of the American Statistical Association, 88, 185–199.
Carroll, R.J., Ruppert, D., Stefanski, L. A. (1995). Measurement error in non linear models. New

York: Chapman & Hall.
Carroll, R.J., Maca, J.D., Ruppert, D. (1999a). Non parametric regression in the presence of

measurement error. Biometrika, 86 (3), 541–554.
Carroll, R.J., Roeder, K., Wassermann, L. (1999b). Flexible parametric measurement error mod-

els. Biometrics, 55, 44–54.
Crouch, E.A.C., Spiegelman, D. (1990). The evaluation of integrals of the form

∞∫

−∞
f (t) exp(−t2)dt : application to logistic-normal models. Journal of the American Sta-

tistical Association, 85, 464–467.
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood for incomplete data via

EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
Fuller, W.A. (1980). Measurement error models. New York: John Wiley.
Lange, K.L., Little, R.J.A., Taylor, J.M.G. (1989). Robust statistical modeling using the t distri-

bution. Journal of the American Statistical Association, 84, 881–896.
Lange, K.L., Sinsheimer, J.S. (1993). Normal independent distributions and their applications in

robust regression. Journal Computational Graphical Statistics, 2, 175–198.
Liu, C.H., Rubin, D.B. (1994). The ECME algorithm: a simple extension of EM and ECM with

fast monotone convergence. Biometrika, 81, 633–648.
Liu, C.H., Rubin, D.B. (1995). ML estimation of the t distribution using EM and its extensions,

ECM and ECME. Statistica Sinica, 5, 19–40.
McCullagh, P., Nelder, J.A. (1989). Generalized linear models. London: Chapman and Hall.
Muller, P., Roeder, K. (1997). A Bayesian semi parametric model for case-control studies with

errors in variables. Biometrika, 84(3), 523–537.



Flexible generalized linear measurement error model 169

Roeder, K., Carroll, R.J., Lindsay, B.G. (1996). A semi parametric mixture approach to case
control studies with errors in covariables. Journal of the American Statistical Association, 91,
722–732.

Rosner, B., Willet, W.C., Spiegelman, D. (1989). Correction of logistic regression relative risk
estimates and confidence intervals for systematic within–person measurement error. Statistics
in Medicine, 8, 1075–1093.

Richardson, S., Leblond, L., Jaussent, I., Green, P.J. (2000). Mixture models in measurement
error problems, with references to epidemiological studies, in Press.

Schafer, D.W. (1987). Covariate measurement error in generalized linear models. Biometrika,
74, 385–391.

Stefanski, L.A. (1985). The effects of measurement error on parameter estimation. Biometrika,
72, 385–389.

Stefanski, L.A., Carroll, R.J. (1985). Covariate measurement error in logistic regression. Annals
of Statistics, 13, 1335–1351.

Sutradhar, B.C., Ali, M.M. (1989). A generalization of the Wishart distribution for the elliptical
model and its moments for the multivariate t model. Journal of Multivariate Analysis, 29,
155–162.


