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Abstract In this article we consider estimating a location parameter of a spherically
symmetric distribution under restrictions on the parameter. First we consider a gen-
eral theory for estimation on polyhedral cones which includes examples such as
ordered parameters and general linear inequality restrictions. Next, we extend the
theory to cones with piecewise smooth boundaries. Finally we consider shrinkage
toward a closed convex set K where one has vague prior information that θ is in K
but where θ is not restricted to be in K . In this latter case we give estimators which
improve on the usual unbiased estimator while in the restricted parameter case we
give estimators which improve on the projection onto the cone of the unbiased
estimator. The class of estimators is somewhat non-standard as the nature of the
constraint set may preclude weakly differentiable shrinkage functions. The tech-
nique of proof is novel in the sense that we first deduce the improvement results for
the normal location problem and then extend them to the general spherically sym-
metric case by combining arguments about uniform distributions on the spheres,
conditioning and completeness.
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1 Introduction

This paper has two principal goals. The first is to demonstrate in some generality
that when an unbiased estimator of risk exists in a p-variate normal problem with
mean vector θ and known covariance matrix σ 2I , then a related unbiased estimator
of risk exists in the case of a p+k dimensional vector (X, U) spherically symmetric
about (θ, 0), that is, the distribution of (X−θ, U) is orthogonally invariant. Hence
the model can be viewed as an extension of the canonical form of the general linear
model to a spherically symmetric error distribution. Here dim X = dim θ = p and
dim U = dim 0 = k. We use the notation (X, U) ∼ SSp+k(θ, 0) throughout; see
also Cellier and Fourdrinier (1995), Fourdrinier and Wells (1995) and Ouassou and
Strawderman (2002). The second goal is to apply this technique to the estimation
of mean vector θ when θ is restricted to a closed convex cone C. Our goal will be
to improve on the “usual” estimator, δ0(X, U) = PCX, the projection of X onto C.
This estimator is the restricted MLE in the normal case and a natural estimator in
general.

The problem of improved estimation of θ when it is restricted to a cone C is
technically challenging, even in the normal case, since the development of unbiased
estimators of risk must often deal with non-weakly differentiable functions. Stein’s
(1981) classical integration-by-parts technique assumes weak differentiability, and
hence a replacement or modification to Stein’s technique is often needed. The sit-
uation in the general spherically symmetric case is at least (and typically more)
challenging than in the normal case. Cellier and Fourdrinier (1995) give a ba-
sic result which extends Stein’s result to this case but they too require weak
differentiability.

We give, in Sect. 2, a general technical result which implies that if an unbiased
estimator of risk exists in the normal case (regardless of weak differentiability), then
a related unbiased estimator of risk also exists in the general spherically symmetric
case.

The bulk of the remainder of the paper is devoted to developing unbiased
estimators of risk in the normal case (or describing existing ones) and extending
the domination results to the general spherically symmetric case. The resulting
generalizations have a very strong robustness property. The improved estimators
dominate δ0(X, U) = PCX simultaneously and uniformly for all spherically sym-
metric distributions for which PCX has finite risk. We will also consider, in Sect. 6,
the problem of incorporating vague prior information by shrinking toward a closed
convex set.

As an elementary example of a restricted parameter space, suppose X follows
a Np(θ, I ) distribution with θ ∈ {θ | θi ≥ 0, i = 1, . . . , p} = R

p
+. Then the goal

would be to study estimates of θ based on the observed value of X. For instance,
in the case when p = 1, the maximum likelihood estimate X+ = max(X, 0) is
the most natural estimate of θ . It can be shown that X+ dominates X in terms of
quadratic loss. A simple calculation yields that the risk of X+ is

R(θ, X+) = θ2(1 − Φ(θ)) − θϕ(θ) + Φ(θ), (1)

where ϕ(·) and Φ(·) are the standard normal pdf and cdf, respectively. Note that
the risk in Eq. (1) is increasing in θ and has its minimum value of 1/2 at θ = 0
and maximum value 1 at θ = +∞. Although X+ does not have constant risk, it is
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still minimax since (see below) X is itself minimax and is improved upon by X+.
Clearly the estimate X+ is not a Bayes estimate and hence is not admissible since it
is not analytic. However, Katz (1961) showed that the estimate δ0

K(X) = X+λ(X),
where λ(X) = ϕ(X)/Φ(X), is an admissible minimax estimator of θ . This is just
the Bayes estimate of θ using the Lebesgue prior on [0, ∞) (see Berger, 1985,
p.135).

In the case θ ∈ R
p
+ for p ≥ 1, it can be shown that X = (X1, . . . , Xp)T is

minimax on R
p
+ using a limit of translated priors argument. Therefore, as X+ =

(X1+, . . . , Xp+) improves on X on R
p
+, it is also minimax (although its risk is

not at all constant). Indeed a simple argument shows that an improved estimator
can be obtained using the positive part of any estimator (a positive part estimate is
reasonable since shrinkage of X+ may pull the estimate to be negative). Formally,
under quadratic loss, the loss difference between any estimator δ and its positive
part δ+ is

‖δ − θ‖2 − ‖δ+ − θ‖2 =
p∑

i=1

δ2
i 1l[δi<0] − 2

p∑

i=1

θiδi1l[δi<0] ≥ 0.

Hence δ+ dominates δ. This gives a simple rationale why one should use the max-
imum likelihood estimator X+ rather than X.

Chang (1982) considered domination of a coordinate-wise estimator of the
form δ0(X) = (δ0

1(X), . . . , δ0
p(X))T with

δ0
i (X) = Xi + g(Xi) i = 1, . . . , p, (2)

where g is an arbitrary real-valued function. If g(x) = −x1l[x≤0], then we recover
the X+ estimate. If g(x) = λ(x), for p = 1, we get the admissible Katz estimate.
In particular, Chang showed that for p ≥ 3, the estimator δc(X) = (δc

1(X), . . . ,
δc
p(X))T defined coordinate-wise as

δc
k(Xi) =

{
Xi + g(Xi) − cXi

‖X‖2 if Xi ≥ 0 ∀ i = 1, . . . , p

Xi + g(Xi) otherwise
,

where c is a constant (independent of the data) such that 0 < c < 2(p − 2), domi-
nates the estimate δ0(X) under quadratic loss for g(x) = −x1l[x≤0]. Extensions to
the case of spherically symmetric distributions for g(x) = −x1l[x≤0] are presented
in Fourdrinier et al. (2003) and Ouassou and Strawderman (2002).

Sengupta and Sen (1991) give some extensions of Chang’s work in the normal
model. From the perspective of this paper the important advance of Sengupta and
Sen’s work is the extension of the domain of shrinkage to all orthants such that the
number of positive Xis is at least 3 and the concomitant adjustment of the shrink-
age factor on each such orthant. In Chang’s setting (X ∼ Np(θ, I ), θ ∈ R

p
+) the

Sengupta and Sen estimator takes the form

δSS(X) =
(

1 − ci

‖X+‖2

)
X+ if X ∈ Oi, i = 1, . . . , 2p,

where Oi, i = 1, . . . , 2p are the orthants, si the number of positive coordinates
in Oi and 0 < ci < 2(si − 2)+. Alternatively the bounds on ci may be expressed
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as 0 < ci < 2(
∑p

i=1 1l[Xi>0] − 2)+. Hence the bound on the shrinkage constant is
itself a complicated random variable (a shifted and truncated convolution of non-
iid Bernoulli’s). The reader is referred to Sengupta and Sen’s paper for details and
other developments which are beyond the scope of interest of the present paper.

In the above simple version of Sengupta and Sen’s setting, our results lead
immediately to improved estimators in the spherically symmetric case of the form
(1− (si−2)+U ′U

‖X+‖2 )X+. Section 3 is devoted to a discussion of Stein-type identities for
non-weakly differentiable functions in the setting of polyhedral cones. Improved
estimation when θ is restricted to a polyhedral cone is the subject of Sect. 4 while
Sect. 5 is devoted to several specific examples. As an application of the main result,
in Sect. 6 we consider the problem of estimating θ when θ ∈ C is considered as
“vague information” rather than as a restriction. Hence θ is unrestricted and the
MLE in the normal case is X. It is natural to consider estimators that shrink toward
C. Bock (1982) and Kuriki and Takemura (2000) consider such problems. We fol-
low the approach of Kuriki and Takemura in the normal case and extend their results
to the general spherically symmetric case. This approach leads also to improved
estimators when θ is restricted to a cone with piecewise smooth boundary. The rel-
ative ease with which the extension to the spherically symmetric case is obtained
is a striking illustration of the utility of the results of Sect. 2. Section 7 gives some
comments and indicates possible extension.

2 On Stein-type identities for spherically symmetric distributions

The well-known Stein’s (1981) identity

E(θ,0)[(X − θ)Tg(X)] = σ 2E(θ,0)[div g(X)] , (3)

where div g(x) = ∑p

i=1
∂gi (x)

∂xi
holds, if X ∼ Np(θ, σ 2I ) and g is a weakly differ-

entiable function from R
p into R

p such that the expectations exist (see Sect. 3 for
a precise definition). Cellier and Fourdrinier (1995) extend the identity (3) to the
spherically symmetric case in the presence of a residual vector. Specifically, let
(X, U) have a spherically symmetric distribution about (θ, 0) when the dimension
of X and the dimension of θ are both equal to p and the dimension of U and the
dimension of 0 are both equal to k. We use the notation (X, U) ∼ SSp+k(θ, 0)
throughout this paper. Cellier and Fourdrinier’s extension of Eq. (3) is

E(θ,0)

[‖U‖2(X − θ)Tg(X)
] = 1

k + 2
E(θ,0)

[‖U‖4div g(X)
]

for (X, U) ∼ SSp+k(θ, 0), again provided g is weakly differentiable and the expec-
tations exist.

However, it can happen that a Stein-type identity holds when g is not weakly
differentiable. For example the next section is devoted to such a result in the normal
case for functions of the form g(x)1lD(x). Here, even if g is weakly differentiable,
1lD(x), the indicator function of the restricted set of interest, may make the product
non-weakly differentiable.

The purpose of this section is to show that whenever a Stein-type identity holds
in the normal case, there is a corresponding result for the spherically symmetric
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case. An important feature of the result is that g needs not necessarily be weakly
differentiable. A practically important corollary of the result is that when Stein’s
unbiased estimator of risk exists in a particular problem with X ∼ Np(θ, σ 2I ),
there is a corresponding risk identity in the spherically symmetric case. It is also
important to note that the presence of the residual vector U is essential for the
result to hold. Here is the main result of this section.

Theorem 1 Suppose (X, U) ∼ SSp+k(θ, 0). Assume g and f are such that in the
special case where (X, U) ∼ Np+k((θ, 0), σ 2I ), we have

E(θ,0)

[
(X − θ)Tg(X)

] = σ 2E(θ,0) [f (X)]

(both expected values are assumed to exist) for all σ 2 > 0. Then

E(θ,0)

[‖U‖2(X − θ)Tg(X)
] = 1

k + 2
E(θ,0)

[‖U‖4f (X)
]

.

Proof Let X ∼ Np(θ, σ 2I ) and U ∼ Nk(0, σ 2I ) be independent random vari-
ables. Then ‖U‖2 ∼ σ 2χ2

k is also independent of X. Since E0
[‖U‖2

] = kσ 2 and
E0

[‖U‖4
] = k(k + 2)σ 4, we have

E(θ,0)

[‖U‖2(X − θ)Tg(X)
] = E0

[‖U‖2
]
Eθ

[
(X − θ)Tg(X)

]
(4)

= kσ 2Eθ

[
(X − θ)Tg(X)

]

= kσ 4Eθ [f (X)]

= 1

k + 2
E0

[‖U‖4
]
Eθ [f (X)]

= 1

k + 2
E(θ,0)

[‖U‖4f (X)
]

.

For each θ (considered fixed), ‖X−θ‖2+‖U‖2 is a complete sufficient statistic
for the Np+k

(
(θ, 0), σ 2I

)
distribution. Now we have

E(θ,0)[‖U‖2(X − θ)Tg(X)]

= E
[
E(θ,0)[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2 = R2]

]

and

1

k + 2
E(θ,0)[(‖U‖4)f (X)]

= 1

k + 2
E

[
Eθ,0[‖U‖4f (X) | ‖X − θ‖2 + ‖U‖2 = R2]

]
.

Hence it follows from Eq. (4) and from the completeness of ‖X − θ‖2 + ‖U‖2

that

E(θ,0)

[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2 = R2
]

= 1

k + 2
E(θ,0)

[‖U‖4f (X) | ‖X − θ‖2 + ‖U‖2 = R2
]
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almost everywhere. As shown in the Appendix, these two functions of R are
continuous, and therefore they are equal everywhere.

The conditional distribution of (X, U) given ‖X−θ‖2 +‖U‖2 = R2 is uniform
on a sphere centered at (θ, 0) and of radius R. Hence the above gives equality of
the expectations of the functions ‖U‖2(X − θ)Tg(X) and 1

k+2‖U‖4f (X) for such
uniform distributions.

Now note that if (X, U) ∼ SSp+k(θ, 0), the conditional distribution of (X, U)

given ‖X − θ‖2 + ‖U‖2 = R2 is uniform on the sphere centered at (θ, 0) and of
radius R. Hence it follows in the general case where (X, U) ∼ SSp+k(θ, 0) that

E(θ,0)

[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2 = R2
]

= 1

k + 2
E(θ,0)

[‖U‖4f (X) | ‖X − θ‖2 + ‖U‖2 = R2
]

Upon taking the expectation with respect to ‖X − θ‖2 + ‖U‖2 we have the
desired results. 	


It is interesting to note in this result that the computation for the general spher-
ically symmetric case hinges on the Gaussian result. One can usually deduce
integration-by-parts results, for both the Gaussian and spherical cases, via a direct
application of Stokes’s theorem. Here, since the integrand of interest may not be
weakly differentiable, we need the Gaussian result in order to deduce the spheri-
cal identity. The conditioning in the proof reduces the distributions of interest to
their canonical element as a uniform distribution on the sphere. Once the Gaussian
results are reduced to the uniform distribution on the sphere, the corresponding
expectations can be extended to the general spherically symmetric distribution via
“unconditioning” with respect to the radius of the sphere.

In our examples the function f in Theorem 1 is div g or div g1lC , the latter may
be useful if g1lC is not weakly differentiable.As a first example, consider the case of
the famous Stein’s (1981) identity which holds for weakly differentiable functions
g. One of the main uses of this identity is to deduce an unbiased estimator of risk
of the estimator δ(X) = X + σ 2g(X) of θ where (X, U) ∼ Np+k((θ, 0), σ 2I ),
g is weakly differentiable and loss is ‖δ − θ‖2. This unbiased estimator of risk is
deduced (using Stein’s identity) as follows

R(θ, δ) = Eθ

[‖δ(X) − θ‖2
]

= Eθ

[‖X + σ 2g(X) − θ‖2
]

= Eθ

[‖X − θ‖2 + σ 4‖g(X)‖2 + 2σ 2(X − θ)Tg(X)
]

= pσ 2 + σ 4Eθ [‖g(X)‖2 + 2 div g(X)] .

Therefore pσ 2 + σ 4[‖g(X)‖2 + 2 div g(X)] is an unbiased estimator of R(θ, δ).
Similarly, using Theorem 1, if (X, U) ∼ SSp+k(θ, 0) and δ(X) = X +

‖U‖2

k+2 g(X) then
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E(θ,0)

[∥∥∥∥X + ‖U‖2

k + 2
g(X) − θ

∥∥∥∥
2
]

= E(θ,0)

[
‖X − θ‖2 + ‖U‖4

(k + 2)2 ‖g(X)‖2 + 2
‖U‖2

k + 2
(X − θ)Tg(X)

]

= E(θ,0)

[
p

k
‖U‖2 + ‖U‖4

(k + 2)2 ‖g(X)‖2 + 2
‖U‖4

(k + 2)2 div g(X)

]

= E(θ,0)

[
p

k
‖U‖2 + ‖U‖4

(k + 2)2

(‖g(X)‖2 + 2 div g(X)
)]

.

Therefore, when (X, U) ∼ SSp+k(θ, 0), an unbiased estimator of risk is

p

k
‖U‖2 + ‖U‖4

(k + 2)2

(‖g(X)‖2 + 2 div g(X)
)
.

Hence in either case, if g is weakly differentiable and ‖g(x)‖2 +2 div g(x) < 0
for any x ∈ R

p, the estimator [respectively, X + σ 2g(X) or X + ‖U‖2

k+2 g(X)] dom-
inates X provided the expectations exist. This second domination result is very
strong since it implies that X + ‖U‖2

k+2 g(X) dominates X under squared error loss
simultaneously for all spherically symmetric distributions (for which the expecta-
tions exist). This is essentially the main result in Cellier and Fourdrinier (1995).

3 Integration-by-part and non-weakly differentiable functions

In this section we derive some new integration-by-parts formulae that are used in
the subsequent sections for certain risk calculations. An important point here is
that when the parameter space is restricted, one does not have as much freedom
in the choice of shrinkage functions and the classical techniques of Stein’s (1981)
may no longer be applicable. As noted in Sect. 2, the usual proof of domination by
a shrinkage estimator involves the development of an unbiased estimator of risk.
The main ingredient of this development is the application of integration-by-parts
to the cross product term (i.e., the term involving (X−θ)Tg(X)). A key hypothesis
in the integration-by-parts is the same as the key hypothesis in Stokes’s Theorem.
In other words, the integrand involved needs to be weakly differentiable.

Recall (see Ziemer 1989) that a locally integrable function g ≡ (g1, . . . , gp) :
R

p → R
p is weakly differentiable if there exist locally integrable functions denoted

by ∂gi (x)

∂xj
such that

∫
∂gi(x)

∂xj

φ(x)dx = −
∫

gi(x)
∂φ(x)

∂xj

dx

for all (i, j) and φ ∈ C∞(R), where C∞(R) is the set of infinitely differentiable
functions with compact support. For such a function g, Stein’s formula states that
when X ∼ Np(θ, σ 2I ),

Eθ [(X − θ)Tg(X)] = σ 2Eθ [div g(X)] , (5)
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provided these expectations exist. As highlighted by Stein’s (1981) and Johnstone
(1988), weak differentiability is fundamental to integration-by-part techniques
which lie at the heart of modern (quadratic) risk evaluations. Actually, Johnstone
(1988), referring to Morrey (1966), notices that this is equivalent to the statement
“g is (equivalent to) a function which is absolutely continuous on almost all line
segments parallel to the coordinate axes, and has partial derivatives (existing a.e.)
which are locally integrable.”

In the context of improved estimation for the general spherically symmet-
ric problem, Cellier and Fourdrinier (1995) link Stein’s integration-by-parts tech-
nique to Stokes’s Theorem which naturally involves weakly differentiable func-
tions. When the restrictions on the underlying parameter space preclude the use
of weakly differentiable shrinkage functions one has to resort to new techniques
of proof to analyze the estimators under consideration. One of the main contribu-
tions of the Sengupta and Sen (1991) paper is to provide such a technique in the
normal case. Our contribution is to formalize this technique and to extend it to the
spherically symmetric case.

Suppose that C is a positively homogeneous set, that is, for x ∈ C it follows
that ax ∈ C for all a > 0. We assume C is homogeneous throughout this section
unless otherwise stated. Our first result gives an extension of Stein’s (1981) classical
integration-by-parts results for a particular subclass of non-weakly differentiable
functions. Specifically, we consider a function of the form g(x) = xh(‖x‖2)1lC(x).
Note that such a function may fail to be weakly differentiable even for smooth h
due to the presence of the indicator function.

Note also that in order to assure the finiteness of the risk of X+g(X), it suffices
to assume that Eθ [h2(‖X‖2)‖X‖2] < ∞. The following lemma is stated under this
condition.

Lemma 1 Let X ∼ Np(θ, σ 2I ) and C be a positively homogeneous set. Then,
for any absolutely continuous function h from R+ to R such that limy→0,∞ h(y)

y(k+p)/2e−y/2 = 0 for all k ≥ 0 and such that Eθ [h2(‖X‖2)‖X‖2] < ∞, we have

Eθ [h(‖X‖2)XT(X − θ)1lC(X)] = σ 2Eθ [{2‖X‖2h′(‖X‖2) (6)

+p h(‖X‖2)}1lC(X)] .

Proof Note that for C = R
p, Lemma 1 is Stein’s identity (5) with g(x) = xh(‖x2‖).

This immediately implies that the expectations in Eq. (6) exist under the assump-

tion Eθ

[
h2(‖X‖2)‖X‖2

]
< ∞. Also note that if Eθ [|g(X)|] < ∞ for all θ ∈ R

p,

then

E0

[
g(X)eXTθ/σ 2

]
=

∞∑

k=0

E0

[
g(X)

(XTθ/σ 2)k

k !

]

(which can be shown through Dominated Convergence Theorem).
Now without loss of generality we assume σ 2 = 1. Let

Aθ = Eθ [h(‖X‖2)XT(X − θ)1lC(X)].
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Then, using a Taylor series expansion of the exponential function, Aθ can be
expressed as

Aθ = (2π)−p/2e−‖θ‖2/2
∫

RP

e−‖x‖2/2exTθh(‖x‖2)(‖x‖2 − xTθ)1lC(x)dx

= e−‖θ‖2/2E0[h(‖X‖2)1lC(X)

∞∑

k=0

(XTθ)k

k!
(‖X‖2 − XTθ)] .

Then, as noted above, we have

Aθ = e−‖θ‖2/2
{
E0[h(‖X‖2)1lC(X)‖X‖2] (7)

+
∞∑

k=1

1

k!
E0[h(‖X‖2)1lC(X)(XTθ)k(‖X‖2 − k)]

}

= e−‖θ‖2/2
{
E0[h(‖X‖2)1lC(X)‖X‖2]

+
∞∑

k=1

1

k!
E0[h(‖X‖2)1lC(X)(

XTθ

‖X‖ )k(‖X‖2+k − k‖X‖k)]
}

.

By the assumed homogeneity of C we have 1lC(X) = 1lC
(

X
‖X‖

)
. Since ‖X‖ is

independent of X
‖X‖ (when θ = 0) it follows that

Aθ = e−‖θ‖2/2
{
E0[1lC(X)]E0[h(‖X‖2)‖X‖2]

+
∞∑

k=1

1

k!
E0[1lC(X)(

XTθ

‖X‖ )k]E0[h(‖X‖2)(‖X‖2+k − k‖X‖k)]
}
.

Now when θ = 0 we have ‖X‖2 ∼ χ2
p and so, for d = 1

2p/2�(p/2)
, the last

expectation equals

d

∫ ∞

0
h(y)(y1+k/2 − kyk/2)yp/2−1e−y/2dy

= d

∫ ∞

0
h(y)y(k+p)/2e−y/2dy − d

∫ ∞

0
h(y)ky(k+p)/2−1e−y/2dy

= d

∫ ∞

0
2e−y/2[h′(y)y(k+p)/2 + k + p

2
y(k+p)/2−1h(y)]dy

−d

∫ ∞

0
h(y)ky(k+p)/2−1e−y/2dy

= d

∫ ∞

0
e−y/2[2yh′(y) + p h(y)]y(k+p)/2−1dy

= E0[(2‖X‖2h′(‖X‖2) + p h(‖X‖2))‖X‖k].
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Note that for k = 0, we have

E0
[
h(‖X‖2)‖X‖2

] = E0
[
2‖X‖2h′(‖X‖2) + p h(‖X‖2)

]
.

Hence

Aθ = e−‖θ‖2/2
∞∑

k=0

1

k!
E0

[
1lC(X)(

XTθ

‖X‖ )k
]

E0

[
(2‖X‖2h′(‖X‖2)

+p h(‖X‖2))‖X‖k
]

= e−‖θ‖2/2
∞∑

k=0

E0

[
(2‖X‖2h′(‖X‖2) + p h(‖X‖2))1lC(X)

(XTθ)k

k!

]

= Eθ

[
(2‖X‖2h′(‖X‖2) + p h(‖X‖2))1lC(X)

]
,

where the final identity follows from the Dominated Convergence Theorem as
noted at the beginning of the proof. 	


The next result extends Lemma 1 to functions of the form h(‖PX‖2)PX 1lD(X)
where P is an orthogonal linear projection of rank s and D is positively homo-
geneous in PX for each fixed P ⊥X, where P ⊥ = I − P is a projection of rank
p − s orthogonal to P . In our application in the next section, Lemma 2 will be
applied separately for the projection onto each face of a polyhedral cone. Each
such projection, restricted to the set, D, which projects onto a particular face, will
be equal to an orthogonal linear projection with rank s equal to the dimension of
the face and the domain D will satisfy the positive homogeneity condition.

Lemma 2 Let X ∼ Np(θ, σ 2I ), P be a linear orthogonal projection of rank s,
3 ≤ s ≤ p. Further let D be a set such that if X = PX + P ⊥X is in D, then
X′ = aPX + P ⊥X is in D for all a > 0. Then, for any absolutely continuous
function h on R+ such that limy→0,∞ h(y)y(j+s)/2e−y/2 = 0 for all j ≥ 0 and such
that Eθ [h2(‖PX‖2)‖PX‖2] < ∞,

Eθ

[
(X − θ)TPXh(‖PX‖2)1lD(X)

]

= σ 2Eθ

[{2‖PX‖2h′(‖PX‖2) + s h(‖PX‖2)}1lD(X)
]

.

Proof Note that (Y1, Y2) = (PX, P ⊥X) ∼ N((η1, η2), σ
2I ) where (P θ, P ⊥θ) =

(η1, η2). Also

A(θ) = Eθ [(X − θ)TPX h(‖PX‖2)1lD(X)]

= Eθ [(PX − Pθ)TPX h(‖PX‖2)1lD(X)]

= Eη1,η2 [(Y1 − η1)
TY1 h(‖Y1‖2)1lD′(Y1, Y2)] ,

where D′ = {(y1, y2) | (y1, y2) = (Px, P ⊥x) for x ∈ D}. Upon conditioning
on Y2,

A(θ) = Eη2

[
Eη1 [{(Y1 − η1)

TY1 h(‖Y1‖2)1lD′(Y1, Y2)} | Y2]
]
.
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Applying Lemma 1 to Y1 ∼ Ns(η1, σ
2I ) (which is independent of Y2 ∼

Np−s(η2, σ
2I )) it follows that A(θ) is equal to

A(θ) = σ 2Eη2

[
Eη1 [{(2‖Y1‖2 h′(‖Y1‖2) + s h(‖Y1‖2))1lD′(Y1, Y2)} | Y2]

]

= σ 2Eθ [{2‖PX‖2 h′(‖PX‖2) + s h(‖PX‖2)}1lD(X)],

which completes the proof. 	

An application of Theorem 1 immediately gives the following general result

for spherically symmetric distributions.

Corollary 1 Let (X, U) ∼ SSp+k(θ, 0), P a linear orthogonal projection (from
R

p) of rank s, 3 ≤ s ≤ p. Further let D ∈ R
p be as in Lemma 2. Then, for any

absolutely continuous function h on R+ such that limy→0,∞ h(y)y(j+s)/2e−y/2 = 0
for all j ≥ 0 and such that

E(θ,0)[h
2(‖PX‖2)‖PX‖2‖U‖4] < ∞,

we have

E(θ,0)[‖U‖2(X − θ)TPX h(‖PX‖2)1lD(X)]

= E(θ,0)

[‖U‖4

k + 2
{2‖PX‖2 h′(‖PX‖2) + sh(‖PX‖2)}1lD(X)

]
. (8)

Remark 1 Note that when P = I , then s = p and so Corollary 1 also gives an
extension of Lemma 1. Furthermore, if h(t) = r(t)

t
, then Eq. (8) becomes (since

(X − θ)TPX = (PX − θ)TPX)

E(θ,0)[‖U‖2(PX − θ)TPX
r
(‖PX‖2

)

‖PX‖2
1lD(X)]

= E(θ,0)

[‖U‖4

k + 2
{ (s − 2) r(‖PX‖2)

‖PX‖2
+ 2r ′(‖PX‖2)}1lD(X)

]
. (9)

This form of the identity will be extensively used in the next section. The function
r(‖PX‖2)

‖PX‖2 PX1lD(X) may fail to be weakly differentiable because of the presence of
the indicator function 1lD(X). For example, if p = 2, P = I and D = {(x1, x2) |
x1 ≥ 0, x2 ≥ 0, x1 ≤ x2}, then x1lD(x) is not weakly differentiable. A notable
exception to this non-weak differentiability is when p = 1, the case D = R+ and
the function is x1lR+(x).

4 Improved estimation when θ is restricted to a polyhedral cone

In this section we again study the model (X, U) ∼ SSp+k(θ, 0) where θ is restricted
to lie in a polyhedral cone, C. We take as the usual estimator of θ

δ0(X, U) = PCX, (10)
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where PCX is the projection of X onto the cone C. Our goal will be to find estimators
which improve on PCX with respect to the loss L(θ, δ) = ‖δ − θ‖2. Chang (1981,
1982) and Sengupta and Sen (1991) studied estimation of θ restricted to C when
X ∼ Np(θ, σ 2I ). In this case the estimator δ0(X) = PCX is the MLE. In the case
where θ ∈ C is “vague information” rather than a true restriction, the usual esti-
mator (the unrestricted MLE) is X, as in Bock (1982). We will discuss this point
further in Sect. 6. Our class of improved estimators will be basically Baranchik
(1970) type shrinkage estimators of the form

δ(X, U) =
(

1 − ‖U‖2

k + 2

(s(X) − 2)+r(‖δ0(X)‖2)

‖δ0(X)‖2

)
δ0(X) . (11)

Here s(X) = dim F o(X) where F o(X) is the relative interior of the face in which
δ0(X) lies, 0 ≤ r ≤ 2 and r is non-decreasing. (Actually we will allow, in Eq. (12),
r to be a different function on different faces.) Hence the shrinkage factor will
depend on the dimension of the face onto which X is projected. No shrinkage
occurs if the dimension of the face is less than or equal to 2.

We next describe the properties of polyhedral cones which we will use. See
Stoer and Witzgall (1970) and Robertson et al. (1988) for extended discussion of
polyhedral cones.A polyhedral cone is defined as the intersection of a finite number
of half spaces

C = {x | aT
i x ≤ 0, i = 1, . . . , m}.

The cone C is positively homogeneous, closed and convex and for each x ∈ R
p

there exists a unique point, PCx, in C such that ‖PCx − x‖ = infy∈C ‖y − x‖.
For simplicity, we assume throughout that C has a non-empty interior. In this

case C may be partitioned into {Ci , i = 0, . . . , n} where C0 = Co, the interior of
C, and Ci , i = 1, . . . , n, are the relative interiors of the proper faces of C. Further
for each set Ci , let Di = P −1

C Ci (the pre-image of Ci under the projection operator)
and si = dim Ci . Then {Di , i = 0, . . . , n} form a partition of R

P and D0 = C0.
For each x ∈ Di , PCx = Pix where Pi is the orthogonal linear projection

onto the linear space Li of dimension si spanned by Ci . Also for such x, P ⊥
i x, the

orthogonal linear projection onto L⊥
i is equal to PC∗x where C∗ is the polar cone

corresponding to C. Also if x ∈ Di then aPix +P ⊥
i x ∈ Di for all a > 0, so that Di

is positively homogeneous in Pix for each fixed P ⊥
i x (see Robertson et al., 1988,

Theorem 8.2.7).
The specific form of the estimator (11) that we will consider is the following:

δ(X, U) =
n∑

i=0

1lDi
(X)

(
1 − ‖U‖2(si − 2)+ri(‖PiX‖2)

(k + 2)‖PiX‖2

)
PiX . (12)

Note that since X ∈ Di implies PiX = PCX [and si = s(X)], the estimator in
Eq. (12) reduces to Eq. (11) provided ri = r for all i.

The main result of this section is the following theorem:

Theorem 2 Let (X, U) ∼ SSp+k(θ, 0) and let θ be restricted to a polyhedral
cone, C, with non-empty interior. Assume also that ri is absolutely continuous and
satisfies 0 ≤ ri ≤ 2 and r ′

i ≥ 0 for all i such that si > 2. Then δ(X, U) in Eq. (12)
dominates δ0(X).
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Proof Note that δ0(X) = ∑n
i=0 1lDi

(X)Pi(X). The difference in risk can therefore
be expressed as

(θ) = E(θ,0)

[‖δ(X, U) − θ‖2
] − E(θ,0)

[‖δ0(X) − θ‖2
]

= E(θ,0)

[
n∑

i=0

1lDi
(X)

{‖U‖4[(si − 2)+]2r2
i (‖PiX‖2)

(k + 2)2‖PiX‖2

−2
‖U‖2(si − 2)+ ri(‖PiX‖2)

(k + 2)‖PiX‖2
(PiX)T(PiX − θ)

}]
.

Using Corollary 1 in the form of Remark 1 (and noting that each Di satisfies
the condition of the corollary) we have that

(θ) = E(θ,0)

[
n∑

i=0

1lDi
(X)

{‖U‖4[(si − 2)+]2r2
i (‖PiX‖2)

(k + 2)2‖PiX‖2)

−2

[ ‖U‖4

(k + 2)2

(
[(si − 2)+]r2

i (‖PiX‖2)

‖PiX‖2
+ 2(si − 2)+r ′

i (‖PiX‖2)

)]}]

≤ 0 .

	


5 Examples of improved estimation under polyhedral cones restrictions

Example 1 Suppose C = R
p
+. Then we may describe δ0

C(X) = X+ = (X1+, . . . ,

Xp+)T. Also δ0
C(X) = ∑2p

i=1 1lDi
(X)PiX where Di is the ith orthant and Pi is

the projection onto the nearest face of C. If the orthant Di has positive entries in
position (i1, . . . , is), 1 ≤ i1 · · · ≤ is ≤ p and s ≥ 0, Pi is the linear projection
operator such that (PiX)j = Xj 1l[j ∈ (i1, . . . , is)] and is of rank pi = s. In this
case the estimator in Eq. (12), with ri = r, i = 1, . . . , 2p, equals

δC(X) =
(

1 − ‖U‖2 r(‖X+‖2)

(k + 2) ‖X+‖2
(q − 2)+

)
X+,

where q equals the number of positive components of X.
It is worth noting, as Sengupta and Sen (1991) point out in their case, that

shrinking only on C1 = C is strictly worse than our estimator. Each additional
set Ci with positive Lebesgue measure adds to the reduction in risk. In particular
the above estimator strictly dominates the estimator of Ouassou and Strawderman
(2002) for this case if p ≥ 4 since that estimator shrinks only when X ∈ C.

Example 2 (The Suborthant Model) Suppose C = R
s
+ ⊗ R

s−p = {θ | θi ≥ 0,
i = 1, . . . , s}, the suborthant model. The usual estimator is

δ0
C(X) =

(
X1+
X2

)
,

where dim X1 = s and dim X2 = p − s.
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Our competing estimator may be described succinctly as

δC(X) =
(

1 − (q + p − s − 2)+
‖U‖2r(‖X1+‖2 + ‖X2‖2)

(k + 2)(‖X1+‖2 + ‖X2‖2)

)
δ0
C(X),

where q equals the number of positive components of X1+.

Example 3 Occasionally a cone C can be transformed into an orthant or suborthant
model via an orthogonal transformation B. For example, the cone B1 = {θ | θ1 ≤
θ1+θ2

2 ≤ · · · ≤ θ1+···+θp

p
}, the increasing on average cone and B2 = {θ | θ1 ≤

θ1+θ2
2 ≤ · · · ≤ θ1+···+θp

p
and 0 ≤ θ1+···+θp

p
} can be transformed into R

p−1
+ ⊗ R

1 and

R
p
+, respectively, by the Helmert orthogonal transformation

B =





− 1√
2

1√
2

0 0 · · · 0

− 1√
6

− 1√
6

2√
6

0 · · · 0

− 1√
12

− 1√
12

− 1√
12

3√
13

· · · 0

− 1√
p(p−1)

− 1√
p(p−1)

− 1√
p(p−1)

− 1√
p(p−1)

· · · p−1√
p(p−1)

1√
p

1√
p

1√
p

1√
p

· · · 1√
p




.

Example 4 The cone C = {θ |θ1 ≤ θ2 ≤ θ3 ≤ · · · ≤ θp} cannot be transformed
into orthant via an orthogonal transformation if p ≥ 3 since for p ≥ 3 this cone
is strictly contained in B1 of Example 3. It can be transformed into R

+
p−1 ⊗ R1

via a non-orthogonal matrix. Spherical symmetry of the distribution of X will not
be preserved under such a transformation, however. Here, direct determination of
the Di and Pi of Eq. (12) is more complicated. See Robertson et al. (1988), and
references therein, for further discussion of this issue.

6 Improved estimation in the presence of vague information

In this section we again demonstrate the utility of Theorem 1 in a setting where
the shrinkage function may not be differentiable. We consider estimation of the
mean vector when there is “vague prior information” that the mean µ is in a closed
convex body K , with piecewise smooth boundary but where µ is not restricted to
lie in K . Note that in this section only the mean vector of X will be µ and not θ
(θ will be reserved for another use) and the inner product Y TZ will be denoted by
〈Y, Z〉.

Recently Kuriki andTakemura (KT) (2000) considered this problem forX ∼ Np

(µ, I) following the work of Bock on this same model but where K is a polytope.
They showed their estimator can be considered as natural extensions of Bock’s
estimators.

In this class of problems one has “vague knowledge” that µ is in or near the
specified convex set and consequently wishes to shrink toward the set but does not
wish to restrict the estimator to lie in the set. KT show, however, that the problem
of shrinkage toward a closed convex set, C, is essentially equivalent to the problem
of estimating µ when µ is restricted to the dual cone, C∗, of C. Note that since C∗ is
positively homogeneous the results of the previous section apply. We discuss this
further at the end of this section.
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We briefly review the results of Kuriki and Takemura and indicate an extension
to the case where X has a p-variate normal distribution with mean µ and covari-
ance σ 2I . We closely follow their notation in this section (which is why µ, not θ ,
is the mean). We then give an extension using Theorem 1 to the general spherically
symmetric case. We emphasize that the shrinkage functions involved may not be
weakly differentiable and that the use of Theorem 1 in such settings seems quite
useful. The reader is referred to KT for details of the development below. For rea-
sons of space, our development is greatly condensed. Our primary purpose is to
give an example of the utility of Theorem 1.

Let K be a closed convex set in R
p, and for each X ∈ R

p, X = XK +(X−XK)
when XK is the unique closest point in K to X. Let ∂K be the boundary of K . For
fixed s ∈ ∂K , the normal cone of K at s is N (K, s) = {y − s|yK = s} and is
such that X − XK ∈ N (K, XK). Partition the boundary of K as ∂K = D1(∂K) ∪
D2(∂K) ∪ · · · ∪ Dp(∂K) where Dm(∂K) = {s ∈ ∂K|dim N (K, s) = m}. Let
Em(∂K) = {X ∈ R

p\K|XK ∈ Dm(∂K)} and note that E1(∂K), . . . , Ep(∂K)
form a partition of R

p\K . We need the boundary set, ∂K , to be “piecewise smooth”,
that is, each Dm(∂K) is a p − m dimensional C2 manifold consisting of a finite
number of relatively open connected components. Further ∂K is called smooth if
it is piecewise smooth and each Dm(∂K) is empty for m ≥ 2.

KT introduce a C2 local coordinate system θ = (θ1, . . . , θp−m) for XK =
s = s(θ1, . . . , θp−m) ∈ Dm(∂K) in a neighborhood of s. The tangent space
Ts(θ) of Dm(∂K) at s(θ) is spanned by {ba(θ) = ∂s(θ)

∂θa , a = 1, . . . , p − m} and
the space T ⊥

s(θ) is spanned by an orthonormal basis {ηα(θ), α = 1, . . . , m}
where 〈ba(θ), ηα(θ)〉 = 0 and 〈ηα(θ), ηβ(θ)〉 = δαβ (Kronecker’s delta) ( 〈, 〉 is
the inner product). Any element of N (K, s) can be expressed as

∑
tαηα(θ) where

t = (t1, . . . , tm) and hence we have the decomposition X = s(θ) + n(θ, t)
where n(θ, t) = ∑

tαηα(θ).
KT show that the Jacobian of the local 1–1 transformation X ↔ (θ, t) is

expressed through (Lemma 2.1 of KT) dX = ±|Ip−m + H(θ, t)|ds dt where
H(θ, t) = ∑m

α=1 tαHα(θ),

ds =
√

|G(θ)| dθ1dθ2 · · · dθp−m.

(The volume element of Dm(∂K) and dx = dx1 · · · dxp, dt = dt1 · · · dtm.)
In the above G(θ) = (gαβ(θ))1≤α,β≤p−m with gαβ(θ) = 〈bα(θ), bβ(θ)〉 and

H(θ, t) = ∑m
α=1 tαHα(θ) where Hα(θ) = (hb

aα(θ))1≤a,b≤p−m and where hb
aα(θ) =∑p−m

c=1 hacα(θ)gcb(θ), habα(θ) = 〈− ∂2s(θ)

∂θa∂θb , ηα(θ)〉 and G−1(θ) = (gαβ(θ)).
Let � denote the length of the orthogonal projection given by � = ‖X −

XK‖ = ‖n(θ, t)‖ = √∑
(tα)2 and let u = �−1t ∈ Sm−1 (the unit sphere in

R
m). KT give two lemmas (2.2 and 2.3) which express the conditional distribution

of t = (t1, . . . , tm) given XK = s(θ) ∈ Dm(∂K) and the conditional density
of � given XK = s(θ) ∈ Dm(∂K) and u such that n(θ, u) ∈ N(K, s(θ)) when
X ∼ Np(µ, I). These lemmas extend in obvious ways when X ∼ Np(µ, σ 2I ).

The following lemma represents the key to our extension of KT results to the
general spherically symmetric case.

Lemma 3 Let X ∼ Np(µ, σ 2I ) and let ∂K be piecewise smooth. Assume for
each X ∈ Em(∂K), c(X) = c(θ, �u) is a continuous and piecewise differentiable
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function in � for fixed (θ, u) and satisfies the boundary condition

lim
�→0,+∞

c(θ, �u)

�
f (�|θ, u) = 0,

where f (�|θ, u) is the conditional distribution of � given (θ, u).
(a) Then

E

{
c(θ, �u)

[ 〈n(θ, �u), µ − s(θ)〉
�2

− 1

]∣∣∣∣ θ, u

}

= σ 2E

{
− 1

�

∂c(θ, �u)

∂�
− c(θ, �u)

�2
(d − 2)

∣∣∣∣ θ, u

}
,

whered = d(x) = d(θ, �u) = m+tr H(θ, t)(I+H(θ, t))−1 = m+� tr H(θ, u)(I+
�H(θ, u))−1.

(b) Therefore

E

{
c(X)

( 〈X − XK, µ − XK〉
‖X − XK‖2

− 1

)}

= σ 2E

{
− 1

‖X − XK‖
∂c(X)

∂‖X − XK‖ − c(X)

‖X − XK‖2
(d(X) − 2)

}
,

where we use the notation

∂c(X)

∂‖X − XK‖ = ∂c(θ, �u)

∂�

∣∣∣∣
θ=θ(X),�=�(X),u=u(X)

.

Proof The proof of (a) is essentially the same as that of Lemma 1 of KT adapted to
the case of X ∼ Np(µ, σ 2I ). The second part follows directly from (a) on taking
the expectation with respect to (θ, u). 	

Corollary 2 Suppose c(X) satisfies the conditions of Lemma 3. If the distribution
of (X, U) is SSp+k(µ, 0) and all expected values are finite

E

{
‖U‖2c(X)

( 〈X − XK, µ − XK〉
‖X − XK‖2

− 1

)}

= E

{‖U‖4

k + 2

(
− 1

‖X − XK‖
∂c(X)

∂‖X − XK‖ − c(X)

‖X − XK‖2
(d(X) − 2)

)}
.

Proof Through an elementary calculation, we have

E

{
c(X)

( 〈 X − XK, µ − XK〉
‖X − XK‖2

− 1

)}
= E

{〈
X − µ,

−c(X)

‖X − XK‖2
(X − XK)

〉}

= σ 2E

{
− 1

‖X − XK‖
∂c(X)

∂‖X − XK‖ − c(X)

‖X − XK‖2
(d(X) − 2)

}

according to Lemma 3 (b). Then the result follows from Theorem 1 with

f (X) = −c(X)

‖X − XK‖2
(X − XK).
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We now apply Corollary 2 to estimation of µ when we have “vague” prior
information that µ ∈ K and we wish to shrink toward K but not to restrict the
estimator (or parameter) to lie in K . We consider estimators similar to those in
KT adapted to the general spherically symmetric case. In particular, let δ(X, U) =
XK + (1 − φ(X)U ′U

k+2 )(X − XK) where φ(X) = c(X)

‖X−XK‖2 . Loss will be L(µ, δ) =
‖µ − δ‖2. We compare the risk of δ(X, U) and δ0(X) = X.

Theorem 3 Suppose (X, U) ∼ SSp+k(µ, 0) and that K is a closed convex set such
that its boundary ∂K be piecewise smooth. Suppose also that c(X) satisfies the
assumption of Lemma 3 and that all expectations are finite.

(a) The risk difference given by R = Eµ{L(θ, δ(X, U))} − E{L(θ, X) equals

Eµ

{(‖U‖2

k + 2

)2[
c2(X)

‖X − XK‖2
− 2

(
c(X)(d(X) − 2)

‖X − XK‖2

+ 1

‖X − XK‖
∂c(X)

∂‖X − XK‖
)]}

.

(b) Hence δ(X, U) dominates X provided the term in braces is everywhere non-
positive and strictly negative on a set of positive measure.

Proof R is the difference between

Eµ

{
‖XK +

(
1 − c(X)‖U‖2

(k + 2)‖X − XK‖2

)
(X − XK) − µ‖2

}

and

Eµ{‖XK + (X − XK) − µ‖2}.
Expanding the squared norm, R reduces to

Eµ

{(‖U‖2

k + 2

)2
c2(X)

‖X − XK‖2
−2

c(X)‖U‖2

(k + 2)‖X−XK‖2
〈X−XK, XK +(X−XK)−µ〉

}

and finally equals

Eµ

{(‖U‖2

k + 2

)2
c2(X)

‖X − XK‖2

− 2

k + 2
c(X)‖U‖2 − 2

k + 2

c(X)‖U‖2

‖X − XK‖2
〈X − XK, XK − µ〉

}
,

which gives the desired result by applying Corollary 2.
Part (b) follows directly from part (a). 	

Note that the theorem says, in effect, that if δ(X) = XK + (1 − σ 2φ(X))(X −

XK) dominates X in the case where X ∼ Np(µ, σ 2I ), then δ(X, U) = XK + (1−
U ′U
k+2 φ(X))(X − XK) dominates X in the general spherically symmetric case.
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KT give two examples of functions c(X) for which domination holds (recall
that m is the dimension of the normal cone at XK ). These are:

c(X) =





d(X) − 2 if m ≥ 2
d(X) − 2 + 1

|Ip−1+H(X)| if m = 1
0 if X ∈ K

and

c(X) =
{

max(d(X) − 2, 0) if m ≥ 1
0 if X ∈ K

.

They note that when K is polyhedral H(θ, t) = 0 and d(X) = m. They also
note, as is clear from Theorem 3 that a Baranchik-type estimator where c(X) is
replaced by c(X)r(‖X − XK‖2) for 0 < r(·) < 1 and r ′(·) > 0 will give a
dominating estimator as well.

KT also point out a connection between estimation in the presence of “vague”
prior information, and estimation in a restricted parameter space. In particular we
have the following analog to the discussion in their Section 3.3.

Let C be a closed convex cone and let C∗ be the dual cone which is assumed to
have a piecewise smooth boundary. Let (X, U) ∼ SSp+k(µ, 0) and suppose µ is
restricted to lie in C. We consider shrinkage estimators of the form

δ(X, U) =
(

1 − c(X)U ′U
‖XC‖2

)
XC = (1 − φ(X)U ′U)XC.

Since C∗ is the dual cone of C, X = XC + XC∗ , 〈XC, XC∗ 〉 = 0 and XC =
‖X − XC‖2. We compare δ(X, U) to δ0(X) = XC and have that the difference in
loss between the two estimators is given by

L = ‖δ(X, U) − µ‖2 − ‖XC − µ‖2

= ‖(1 − φ(X)U ′U)XC − µ‖2 − ‖XC − U‖2

= ‖XC∗ + (1 − φ(X)U ′U)XC − µ‖2 − ‖XC∗ + XC − µ‖2

= ‖XC∗ + (1 − φ(X)U ′U)XC − µ‖2 − ‖X − µ‖2.

Hence by taking K = C∗ in Theorem 3 we obtain estimators which dominate
XC when µ is restricted to C.

7 Extensions and comments

This article has two main goals. The first is to give a different proof of a result
of Cellier and Fourdrinier (1995) which provides unbiased estimates of risk for
quite general estimators of the location vector of a spherically symmetric distribu-
tion when a residual vector is present. The current result reproduces that result but
is also applicable in certain cases where the original result was inapplicable—in
particular when the estimator is not weakly differentiable but has a particular form.

The second is to apply the method to estimation of the location parameter when
the parameter space is restricted. In this setting, some of the useful alternative esti-
mators may not necessarily be weakly differentiable. This appears to be the case,
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for example, if the cone C has faces which do not coincide with any of the orthant
faces.

The application of our results in these cases gives improved estimators with a
very strong robustness property, namely they improve over the classical estimator
uniformly in θ simultaneously for all spherically symmetric distributions.

We note in passing that the techniques of this paper also work in the context
of elliptically symmetric distributions with a known correlation structure. In this
case it is possible to transform to spherical symmetry (with an unknown scale) and
a result analogous to Theorem 1 and consequently the other results of this paper
will also hold.

We also note the papers of Fourdrinier et al. (1998, 2003) in which we derive
results for general elliptical distributions in the unrestricted mean case. It is quite
plausible that techniques similar to those in this paper would work in that context
as well but we have not yet pursued them.

8 Appendix

Lemma 4 Let (X, U) ∼ SSp+k(θ, 0) and let α ∈ N. Assume ϕ(X) is such that for
any R ≥ 0, the conditional expectation

f (R) = E(θ,0)[‖U‖αϕ(X) | ‖X − θ‖2 + ‖U‖2 = R2]

exists. Then the function f is continuous on R+.

Proof Clearly it suffices to prove the result when θ = 0 and we assume without
loss of generality that the function ϕ is non-negative.As the conditional distribution
of (X, U) given ‖X‖2 + ‖U‖2 = R2 is the uniform distribution UR on the sphere
SR = {y ∈ R

p+k | ‖y‖ = R} in R
p+k centered at 0 and of radius R, we have

f (R) =
∫

SR

‖u‖αϕ(x)dUR(x, u).

Since for (x, u) ∈ SR , we have ‖u‖2 = R2 − ‖x‖2 and X has distribution concen-
trated on the ball BR = {x ∈ R

p | ‖x‖ ≤ R} in R
p with density proportional to

R2−(p+k)(R2 − ‖x‖2)k/2−1, we have that Rp+k−2f (R) is proportional to

g(R) =
∫

BR

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dx.

Now, through the area measure σr on the sphere Sr , we can write

g(R) =
∫ R

0

∫

Sr

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dσr(x)dr

=
∫ R

0
(R2 − r2)(k+α)/2−1H(r)dr

with

H(r) =
∫

Sr

ϕ(x)dσr(x).
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Since H and (k+α)/2−1 are non-negative, the family of integrable functionsr →
K(R, r) = (R2 − r2)(k+α)/2−1H(r)1l[0,R](r), indexed by R, is non-decreasing in
R and bounded above (for R < R0) by the integrable function K(R0, r). Then the
continuity of g(R), and hence of f (R), is guaranteed by the Dominated Conver-
gence Theorem. 	
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