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Abstract In the usual Gaussian White-Noise model, we consider the problem of
estimating the unknown square-integrable drift function of the standard Brownian
motion using the partial sums of its Fourier series expansion generated by an ortho-
normal basis. Using the squared L2 distance loss, this problem is known to be the
same as estimating the mean of an infinite dimensional random vector with l2 loss,
where the coordinates are independently normally distributed with the unknown
Fourier coefficients as the means and the same variance. In this modified version
of the problem, we show that Akaike Information Criterion for model selection,
followed by least squares estimation, attains the minimax rate of convergence.

Keywords Nonparametric regression · Minimax · AIC · Oracle · Brownian
motion · White-noise

1 Introduction

The Akaike Information Criterion (AIC), the now well-known penalized likeli-
hood model selection criterion, was introduced and studied byAkaike (1973,1978).
Different asymptotic optimality properties of AIC have been proved in the litera-
ture by several authors in the last three decades. In the first line of work, Shibata
(1981, 1983) proved the optimality of AIC as a model selection rule in the infinite
dimensional problem of nonparametric regression, where the goal is to find out
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the optimum number of terms to retain, for the purpose of prediction, in the Fou-
rier series expansion of the unknown function generated by a given orthonormal
sequence. Shibata (1983) has shown that AIC does as well as an oracle introduced
by him in this problem. In a second line of work, Li (1987) and Shao (1997) proved
the asymptotic optimality of AIC as a model selection rule in the context of selec-
tion of variables from a given set of variables in a Linear model setup. But the
optimal rate of convergence of AIC has not been studied in the literature. The nov-
elty of our paper is to show that model selection by AIC followed by least squares
estimation achieves the minimax rate of convergence in one form of nonparametric
function estimation problem.

We study AIC in the following problem of inference about an unknown signal
or drift f ∈ L2[0, 1] of a Brownian motion and prove it attains the optimal rate of
convergence in two different senses. Given n, one observes {Z(t)} given by

dZ(t) = f (t)dt + dB(t)√
n

, 0 ≤ t ≤ 1, (1)

where B(t) is the standard Brownian motion. This is essentially the problem
(Eq. 31) of Ibragimov and Has’minskii (1981, p. 345). In problem (Eq. 1), we
consider a complete orthonormal basis {φi, i = 1, 2, . . . } of L2[0, 1]. Then one
can write

f (t) =
∞∑

i=1

θiφi(t), (2)

with equality in the sense of L2 convergence, where θi’s are the Fourier coefficients
given by

θi =
1∫

0

φi(t)f (t) dt, and
∞∑

i=1

θ2
i < ∞. (3)

Then we need to study the somewhat simpler problem as follows:

yi = θi + εi√
n
, εi

i.i.d.∼ N(0, 1), (4)

where yi =
1∫

0
φi(t) dZ(t) for i = 1, 2, . . . .

Let θ̂ = {θ̂i} be an estimate of θ and let f̂ (t) =
∞∑
i=1

θ̂iφi(t) the corresponding

estimate of f . Then by Parseval’s theorem,

‖f − f̂ ‖2 =
∞∑

i=1

(θi − θ̂i )
2, (5)

where ‖.‖ is the usual L2 norm. So estimating f in model (Eq. 1) is the same as esti-
mating θ in model Eq. (4) in terms of the above losses. We use the setup of Eq. (4)
in this paper and use the squared error l2 loss. We show that model selection by AIC
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followed by least squares estimates attains the minimax rate of convergence for
convergence in probability over the usual Sobolev balls Eq(B) (defined in Sect. 2),
for any B > 0. This result is based on a strong property of AIC with lower trunca-
tion. Under lower truncation it is shown that AIC is asymptotically equivalent to
an oracle uniformly in Eq(B), where the oracle provides a lower bound to the loss
in a certain class of decision rules. We also show that model selection by AIC with
upper truncation followed by least squares estimation, attains the minimax rate of
convergence, i.e, n−2q/2q+1, over the Sobolev balls mentioned before.

It is worthwhile to mention here that the definition of AIC [see Eq. (7)] does not
require the knowledge of the order of smoothness q or the constant B appearing
in the definition Eq(B) (in Sect. 2) of the class of functions being considered. Yet
model selection by AIC followed by least squares estimation yields the minimax
rate over Eq(B); showing that AIC is adaptive.

It is not hard to show that the Bayes Information Criterion (BIC) cannot have
this kind of optimality. A counter-example is presented in Sect. 4.

Problem (1) has been shown in Brown and Low (1996) to be an equivalent
version in a decision theoretic sense, upto the minimax rate of convergence, of the
following nonparametric regression problem

Yi = f

(
i

n + 1

)
+ εi, εi

i.i.d∼ N(0, 1), i = 1, 2, . . . , n. (6)

Using Eq. (1) through Eq. (6), Zhao (2000) has pointed out that nonparametric
regression can in principle be studied through the yi’s. Her main result is to intro-
duce a hierarchical prior on the parameter space and show that the corresponding
Bayes estimator achieves the minimax rate of convergence. The relation between
Eqs. (1) and (6) suggests that ourAIC for Eq. (1) can be lifted in principle to provide
an asymptotically minimax method of estimation for nonparametric regression.
This is discussed in the last section.

Section 4 also includes a discussion on how to use the theoretical results derived
for continuous path data, when one observes the process {Z(t)} only at a finite num-
ber of equally spaced points.

2 Preliminaries, notations and theorems

Suppose, as in Eq. (4), one has random variable yi’s which are independent
N(θi, 1/n), i = 1, 2, 3, . . . , where

∑∞
i=1 θ2

i < ∞. Using yi’s one has to come
up with estimates θ̂i and the loss is L =∑∞

i=1(θ̂i − θi)
2. We consider a restricted

parameter space in our study, as in Zhao (2000), which is a Sobolev-type subspace
of l2 given by Eq = {θ = {θi} :

∑∞
i=1 i2qθ2

i < ∞}, q > 1/2. We then study
the asymptotic rate of convergence of model selection by AIC followed by least
squares estimation in the Sobolev ball

Eq(B) =
{

θ :
∞∑

i=1

i2qθ2
i ≤ B

}
.
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With respect to the usual trigonometric basis, for q an integer, Eq corresponds
to all periodic L2[0, 1] functions with absolutely continuous (q − 1)th derivatives
and q-th derivatives with bounded L2 norm.

The AIC is not well defined in this case since we have an infinite sequence of
observations. However, if we take θ̂i = 0 for all i > n, the contribution to error for
θ in Eq(B) is

∑

i>n

θ2
i =
∑

i>n

i2qθ2
i

i2q
≤ B(n + 1)−2q = o

(
n

− 2q

2q+1

)
as n → ∞,

since θ ∈ Eq(B). So at least for the problem of finding decision rules that
attain the minimax rate, we can ignore observations beyond the nth. With this
modification one can define AIC as follows. Let

mAIC = argmin
1≤m≤n

S(m) where S(m) =
n∑

m+1

y2
i + 2m

n
. (7)

The estimate of θi is yi for i ≤ mAIC and zero thereafter. The loss is
∑mAIC

1

(yi − θi)
2 +∑n

mAIC+1
θ2
i +∑∞

n+1 θ2
i .

One may interpret this as first choosing a model Mm for which θi = 0 for i > m
and then estimating θi by least squares, i.e., by yi for i ≤ m.

We will now introduce some notations before we state our theorems. Define
Ln(m) by

Ln(m) =
m∑

1

(yi − θi)
2 +

∞∑

m+1

θ2
i , 1 ≤ m ≤ n, (8)

the loss in choosing model Mm and then using least squares estimates. Let

rm(θ) = m

n
+

∞∑

m+1

θ2
i , (9)

the risk of the estimate described above.
We next define two oracles based on Ln(m) and rm(θ) as follows.
Define m1 as

m1 = argmin
1≤m≤n

Ln(m). (10)

Note that Ln(m1) is a lower bound to the loss of any decision rule that first
picks a model Mm and then estimates θi by zero if i > m and by yi for i ≤ m.

Define the second oracle m0 as

m0 = argmin
1≤m≤n

rm(θ). (11)

Intuitively one expects m1 and m0 to be close but m0 is easier to deal with. Note
that both m0 and m1 depend on θ .
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Let AICu be the model selection procedure which is AIC with upper truncation.
It chooses the model Mmu where

mu = argmin
1≤m≤[n

1
2q+1 ]

S(m). (12)

where [n1/2q+1] denotes the largest integer less than or equal to n1/2q+1.
Notation. Henceforth “an ∼ bn asymptotically”, will mean that there exist

positive constants 0 < k1 < k2 such that for all sufficiently large n, k1bn ≤ an ≤
k2bn.

Consider now any sequence {mn} of integers such that mn → ∞ as n → ∞
as slowly as we wish but mn ≤ m∗ where m∗ ∼ n1/2q+1 asymptotically, and is
defined in the proof of Theorem 2.1.

Now define ml
0 and ml

1 as

ml
0 = argmin

mn≤m≤n

rm(θ), ml
1 = argmin

mn≤m≤n

Ln(m) (13)

and define ml as

ml = argmin
mn≤m≤n

S(m). (14)

So ml is the model chosen by AICl , the model selection procedure which is
AIC with lower truncation as described in Eq. (14).

We now state the main results proved in this paper. (Note that we are suppressing
the dependence of θ̂ on n for notational convenience.)

Theorem 2.1 For the case m ≥ mn, we have, (a)

Ln(m
l)(1 + op(1)) ≤ Ln(m

l
0)(1 + op(1)), (15)

where the op(1) terms on both sides of Eq. (15) tend to 0 in probability as n → ∞
uniformly in θ ∈ Eq(B), and

Ln(m
l) = Ln(m

l
1)(1 + op(1)), (16)

where the equality Eq. (16) holds on a set whose probability tends to 1 as n → ∞
uniformly in θ ∈ Eq(B) and the op(1) term on the r.h.s. of Eq. (16) tends to 0 in
probability as n → ∞ uniformly in θ ∈ Eq(B).

Also, for this case,

(b) n
2q

2q+1 Ln(m
l) = Op(1) uniformly in θ ∈ Eq(B).

Theorem 2.2 Uniformly in θ ∈ Eq(B), we have

n
2q

2q+1 Ln(m
AIC) = Op(1).
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Theorem 2.3 Let θ̂ be the estimate of θ after a model is chosen by AICu, i.e.,
θ̂i = 0 for i > mu and θ̂i = yi for i ≤ mu. Then θ̂ achieves the minimax rate of
convergence, i.e., for any B < ∞,

lim sup
n→∞ θ∈Eq(B)

n
2q

2q+1 E(||θ̂ − θ ||2) < ∞.

Remark The lower truncation in Theorem 2.1 cannot be removed. This is easy to
see by considering what happens for θn = (1/

√
n, 0, 0, . . . ).

Proofs are given in the next section.

3 Proofs

Proof of Theorem 2.1. In the following, ei = yi − θi, i = 1, 2, . . . and B = 1
without any loss of generality. The proof has been divided into three steps for the
purpose of clarity.

Step 1. In this step we will look at a simple minimax rule as follows. Consider
rule rm for a fixed m: For m ≤ n, estimate θi by yi for 1 ≤ i ≤ m and for i > m,
estimate θi by 0.

Risk of rm at θ is rm(θ) as defined in Eq. (3). Note that we can write

rm(θ) = m

n
+

∞∑

m+1

1

i2q
i2qθ2

i .

Then,

sup
θ∈Eq(1)

rm(θ) = m

n
+ sup

θ∈Eq(1)

( ∞∑

m+1

1

i2q
i2qθ2

i

)
= m

n
+ 1

(m + 1)2q
.

Now choose m∗ as

m∗ = argmin
1≤m≤n

{
m

n
+ 1

(m + 1)2q

}
. (17)

It is easy to show that m∗ ∼ n1/2q+1 asymptotically, whence the maximum risk of
the rule rm∗ is

sup
θ∈Eq(1)

rm∗(θ) = m∗

n
+ 1

(m∗ + 1)2q
∼n

−2q

(2q+1) asymptotically,

i.e., lim
n→∞ n

−2q

(2q+1) sup
θ∈Eq(1)

rm∗(θ)<∞. (18)

Thus rm∗ is a rule which attains the asymptotic minimax rate of convergence. Now
note that rm0(θ) ≤ rm∗(θ), ∀θ ∈ Eq(1), i.e.,

sup
θ∈Eq(1)

rm0(θ) ≤ sup
θ∈Eq(1)

rm∗(θ) ∼ n
−2q

(2q+1) asymptotically, (19)

whence the rule rm0 based on the oracle m0 does at least as well as the rule rm∗

asymptotically.
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Step 2. In this step we will consider the lower truncated AIC and derive several
properties associated with it.

First recall the definitions of Ln(m) and S(m) from Eqs. (8) and (7) respectively.
Note,

Ln(m) =
m∑

1

e2
i +

∞∑

m+1

θ2
i = rm(θ) +

(
m∑

1

e2
i − m

n

)
.

Again,

S(m) =
n∑

m+1

e2
i +

n∑

m+1

θ2
i + 2

n∑

m+1

θiei + 2m

n

=
n∑

1

e2
i −

m∑

1

e2
i +

n∑

m+1

θ2
i + 2

n∑

m+1

θiei + 2m

n

= Ln(m) + Rn(m) +
n∑

1

e2
i −

∞∑

n+1

θ2
i

= Ln(m) + Rn(m) + (“constants” independent of m),

where

Rn(m) = 2
n∑

m+1

θiei − 2

(
m∑

1

e2
i − m

n

)
.

Hence, minimizing S(m) with respect to m is equivalent to minimizing Ln(m) +
Rn(m) over m. So we have, with ml , ml

0 and ml
1 as in Eqs. (13) and (14),

Ln(m
l) + Rn(m

l) ≤ Ln(m
l
0) + Rn(m

l
0) (20)

and

Ln(m
l) + Rn(m

l) ≤ Ln(m
l
1) + Rn(m

l
1). (21)

Let us now prove three lemmas which essentially show that the remainder terms
Rn(m

l), Rn(m
l
0) and Rn(m

l
1) in Eqs. (20) and (21) are negligible. These lemmas

are crucial for proving the theorem.

Lemma 3.1
m∑

1

e2
i − m

n
= op(rm(θ)) (22)

and
n∑

m+1

θiei = op(rm(θ)), (23)
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uniformly θ ∈ Eq(1) and for mn ≤ m ≤ n as n → ∞.

So, for such a sequence {mn}, we also have,

Rn(m) = op(rm(θ)) (24)

uniformly in θ ∈ Eq(1) and for mn ≤ m ≤ n as n → ∞.

Proof E
(∑m

1 e2
i − m/n

) = 0. Fix ε > 0. Then,

P

(∣∣∣∣

∑m
1 e2

i − m/n

rm(θ)

∣∣∣∣ > ε

)
≤ E

(∑m
1 e2

i − m/n
)2

ε2r2
m(θ)

.

But,

E

(
m∑

1

e2
i − m

n

)2

= Var

(
m∑

1

e2
i −m

n

)
= mVar

(
e2
i

) = 2m

n2
.

Also,

r2
m(θ) =

( ∞∑

m+1

θ2
i

)2

+ m2

n2
+ 2m

n

( ∞∑

m+1

θ2
i

)
.

So,

E
(∑m

1 e2
i − m/n

)2

ε2r2
m(θ)

= 1

ε2
· 2m/n2

(∑∞
m+1 θ2

i

)2 + m2/n2 + 2m/n
(∑∞

m+1 θ2
i

)

<
2

ε2m
≤ 2

ε2mn

→ 0 as n → ∞,

for each θ ∈ Eq(1), proving Eq. (22). Similarly,

E

(
n∑

m+1

θiei

)
= 0 and Var

(
n∑

m+1

θiei

)
=
(

n∑

m+1

θ2
i

)
1

n
,

whereby

Var
(∑n

m+1 θiei

)

r2
m(θ)

=
(∑n

m+1 θ2
i

)
1
n

m2/n2 + (∑∞
m+1 θ2

i

)2 + 2m/n
(∑∞

m+1 θ2
i

)

<
1

2m
≤ 1

2mn

→ 0 as n → ∞,

for each θ ∈ Eq(1), proving Eq. (23). Equation (24) now follows trivially from
Eqs. (22) and (23) as

Rn(m) = 2
n∑

m+1

θiei − 2

(
m∑

1

e2
i − m

n

)
.

So, Lemma 3.1 is proved. ��
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Corollary 3.1

Ln(m
l
1)(1 + op(1)) = rml

0
(θ)(1 + op(1)) (25)

almost surely, where the op(1) terms on both sides of Eq. (25) tend to zero in
probability as n → ∞ uniformly in θ ∈ Eq(B).

Proof Using Lemma 3.1, we get

Ln(m) = rm(θ) +
(

m∑

1

e2
i − m

n

)
= rm(θ)(1 + op(1)),

uniformly in θ ∈ Eq(1) and for mn ≤ m ≤ n as n → ∞.
As ml

0 is a nonrandom integer in [mn, n], it also follows from the above obser-
vation that

Ln(m
l
0) = rml

0
(θ) +




ml

0∑

1

e2
i − ml

0

n





= rml
0
(θ)(1 + op(1)) uniformly in θ ∈ Eq(1) as n → ∞.

Now observe that, from definition, Ln(m
l
1) ≤ Ln(m

l
0), rml

0
(θ) ≤ rml

1
(θ). Also note

that

ml
1∑

1

e2
i − ml

1

n
= op(rml

1
(θ)), uniformly in θ ∈ Eq(1) as n → ∞.

The last statement follows using the same argument employed in provingRn1(m
l) =

op(rml (θ)) uniformly in θ ∈ Eq(1) as n → ∞ in Lemma 3.3. Combining all the
above facts, one gets after some algebra,

Ln(m
l
1) ≤ rml

0
(θ)(1 + op(1)) ≤ rml

1
(θ)(1 + op(1))

= Ln(m
l
1)(1 + op(1)) almost surely,

where all the op(1) terms tend to 0 in probability as n → ∞ uniformly in θ ∈
Eq(B). The proof of Eq. (25) now follows immediately from the above sequence
of inequalities. ��
Lemma 3.2 Rn(m) = op(Ln(m)) uniformly in θ ∈ Eq(1) and for mn ≤ m ≤ n
and as n → ∞.

Proof Fix 0 < ε < 1.

P

{∣∣∣∣
Rn(m)

Ln(m)

∣∣∣∣ > ε

}
= P

{∣∣∣∣
Rn(m)

Ln(m)

∣∣∣∣ > ε,

∣∣∣∣
Ln(m)

rm(θ)

∣∣∣∣ < 1 − ε

}

+P

{∣∣∣∣
Rn(m)

Ln(m)

∣∣∣∣ > ε,

∣∣∣∣
Ln(m)

rm(θ)

∣∣∣∣ > 1 + ε

}

+P

{∣∣∣∣
Rn(m)

Ln(m)

∣∣∣∣ > ε, 1 − ε ≤
∣∣∣∣
Ln(m)

rm(θ)

∣∣∣∣ ≤ 1 + ε

}
. (26)
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The first two terms on the r.h.s. of Eq. (26) converge to zero as Ln(m)/rm(θ) =
1 + op(1), uniformly in θ ∈ Eq(1) and for mn ≤ m ≤ n as n → ∞. The third
term is less than

P

{∣∣∣∣
Rn(m)

rm(θ)

∣∣∣∣ > ε(1 − ε)

}
→ 0 as n → ∞,

by Lemma 3.1 uniformly in θ ∈ Eq(1) and for mn ≤ m ≤ n. This proves
Lemma 3.2.

Lemma 3.3 Rn(m
l) = op(Ln(m

l)) uniformly in θ ∈ Eq(1) as n → ∞.

Proof We first prove that

Rn(m
l) = op(rml (θ)), uniformly in θεEq(1) as n → ∞. (27)

Now write,

Rn(m) = Rn1(m) + Rn2(m),

where

Rn1(m) = −2

(
m∑

1

e2
i − m

n

)
and Rn2(m) = 2

n∑

m+1

θiei .

Fix ε > 0. Then,

P

{∣∣∣∣
Rn1(m

l)

rml (θ)

∣∣∣∣ > ε

}
≤ P

{
max

mn≤m≤n

∣∣∣∣
Rn1(m)

rm(θ)

∣∣∣∣ > ε

}

≤
∑

mn≤m≤n

P

{∣∣∣∣
Rn1(m)

rm(θ)

∣∣∣∣ > ε

}
≤
∑

mn≤m≤n

1

ε4

E(R4
n1(m))

r4
m(θ)

.

Noting that
{∑m

1 e2
i − m/n, m ≥ 1

}
is a Martingale, we have, by a result

proved in Dharmadhikari et al. (1968),

E

(
m∑

1

e2
i − m

n

)4

≤ D1m
2E

(
e2

1 − 1

n

)4

for a positive constant D1

= D1m
2

n4
E
(
ne2

1 − 1
)4

= D2m
2

n4
, for some new constant D2 as ne2

1 ∼ χ2
(1).

In the above χ2
(1) refers to a central chi-square distribution with one degree of

freedom.

So,
∑

mn≤m≤n

E(R4
n1(m))

r4
m(θ)

≤
∑

mn≤m≤n

16D2m
2/n4

(
m/n +∑∞

m+1θ
2
i

)4

≤
∑

mn≤m≤n

16D2

m2
→ 0
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as n → ∞, whence Rn1(m
l) = op(rml (θ)), uniformly in θ ∈ Eq(1) as n → ∞.

Now consider Rn2(m) and note that

1

2
Rn2(m) =

n∑

m+1

θiei ∼ N

(
0,

(
n∑

m+1

θ2
i

)
1

n

)
.

So we get, E
(∑n

m+1 θiei

)4 = 3
(∑n

m+1 θ2
i

)2 · 1/n2. This implies, by a simple
algebra, that

E

(∑n
m+1 θiei

)4

r4
m(θ)

<
1

2m2
.

Using the last inequality in the same way as we did for Rn1(m
l), we have Rn2(m

l) =
op(rml (θ)) uniformly in θ ∈ Eq(1) as n → ∞, proving Eq. (27).

We are done if we can show that Ln(m
l) = rml (θ)(1 + op(1)) uniformly in

θ ∈ Eq(1) as n → ∞, because then Rn(m
l) = op(Ln(m

l)) will follow by using
exactly the same logic as in the proof of Lemma 3.2.

Fix ε > 0. Then, by a simple argument,

P

{∣∣∣∣
Ln(m

l)

rml (θ)
− 1

∣∣∣∣ > ε

}
≤
∑

mn≤m≤n

1

ε4
· E
(∑m

1 e2
i − m/n

)4

r4
m(θ)

→ 0

as n → ∞ for all θ ∈ Eq(1), as already shown before. So, Lemma 3.3 is proved.
��

Step 3. In this step we combine the results in Step 1 and Step 2 to finally prove
Theorem 2.1.

Equation (15) of Part (a) of Theorem 2.1 follows by applying Lemma 3.3 to
the left-hand side of Eq. (20) and Lemma 3.2 to the right-hand side of Eq. (20), by
just noting that ml

0 is a nonrandom integer in [mn, n].
Equation (16) is then proved as follows. By Eqs. (15), (25) and the facts that

Ln(m
l
0) = rml

0
(1 + op(1)) uniformly in θ ∈ Eq(1) as n → ∞ and Ln(m

l
1) ≤

Ln(m
l), one has

Ln(m
l
1)(1+op(1))≤Ln(m

l)(1+op(1))≤rml
0
(1+op(1))=Ln(m

l
1)(1+op(1)),

where the above holds on a set whose probability tends to 1 as n → ∞ uniformly
in θ ∈ Eq(B). (Note that all the op(1) terms in the above statement tend to 0
in probability as n → ∞ uniformly in θ ∈ Eq(B).) Equation (16) then follows
immediately from the above.

We shall now prove Part (b) of Theorem 2.1. To prove this, we first recall the
definitions of ml

0, m∗ and the asymptotic minimaxity property of rm∗ as in Eqs. (13),
(17) and (18) respectively. Then it follows that

rml
0
(θ) ≤ rm∗(θ) ≤ Dn−2q/(2q+1)

for some D > 0 for each θ ∈ Eq(1) for all sufficiently large n in the same way as
one shows in Eq. (19). Part (b) then follows easily by applying this fact together
with Corollary 3.1 in part (a) of Theorem 2.1.
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Remark If we choose mn = m∗ in Theorem 2.1 and then combine with it the result
of Theorem 2.3, Theorem 2.2 follows immediately. To see this one has to note that

(i) P
{
n

2q

2q+1 Ln(m
u) > K

}
≤ n

2q

2q+1
E(Ln(m

u))

K
, for each K > 0,

(ii) n
2q

2q+1 E(Ln(m
u)) is bounded for each θ ∈ Eq(1) for each n, and

(iii) Ln(m
AIC) ≤ max

{
Ln(m

u), Ln(m
l),Ln

(
mAIC

[n
1

2q+1
]<m<m∗

)}
if m∗>n

1
2q+1,

Ln(m
AIC) ≤ max

{
Ln(m

u), Ln(m
l)
}

if m∗ ≤ n
1

2q+1 ,

and E(Ln(m)) ≤ Fn
− 2q

2q+1 for all large enough n, if [n
1

2q+1 ] < m < m∗,

where F is a positive number. In the above,

mAIC

[n
1

2q+1 ]<m<m∗
= argmin

[n
1

2q+1 ]<m<m∗

S(m),

where S(m) is as in Eq. (7). ��
But we present a more direct proof of Theorem 2.2 which does not require

Theorem 2.3 and which explains the interesting behaviour of AIC for relatively
small m.

Proof of Theorem 2.2 Fix ε > 0 and η > 0 arbitrary. We can choose m̃ large
enough such that

P

{
2

∣∣∣∣
n∑

m̃+1

θiei

∣∣∣∣ < εLn(m̃)

}
> 1 − η

6
, ∀n ≥ m̃, ∀θ ∈ Eq(B)

and

P
{
n

2q

2q+1 Ln

(
mAIC

m≥m̃

) ≤ Kε

}
> 1 − η, for all large enough n > m̃, ∀θ ∈ Eq(B)

for some suitably chosen Kε , where mAIC
m≥m̃

is defined as

mAIC
m≥m̃ = argmin

m̃≤m≤n

S(m).

The above two probability statements follow directly from the arguments used in
the proof of Theorem 2.1. We shall henceforth write mAIC

old = mAIC
m≥m̃

. For each
θ ∈ Eq(B), define

K(θ) = max

{
I :

m̃∑

i=I

θ2
i > εn−2q/(2q+1)

}
,

where the maximum is taken over the range [1, m̃].
Now note, for each θ ∈ Eq(B), the following two cases occur.
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Case 1.
m̃∑

m1+1
θ2
i > εn−2q/(2q+1) if 1 ≤ m1 ≤ K(θ) − 1.

Case 2.
m̃∑

m1+1
θ2
i ≤ εn−2q/(2q+1) if K(θ) ≤ m1 < m̃.

Consider Case 2 first. Let m̃ > m1 ≥ K(θ). Then

Ln(m
1) = Ln(m̃) − R1

n(m
1), where

R1
n(m

1) =
m̃∑

m1+1

(yi − θi)
2 −

m̃∑

m1+1

θ2
i .

Now fix η1 > 0, arbitrarily small. It is easy to show, by noting that n
∑m̃

m1+1(yi−
θi)

2 ∼ χ2
(m̃−m1)

and m̃ is fixed, that for all large enough n,

P

{∣∣∣∣n
2q/(2q+1)R1

n(m
1)

∣∣∣∣ ≤ 2ε

}
> 1 − η1, ∀θ ∈ Eq(B) and K(θ) ≤ m1 < m̃.

Letting S̃(m) = S(m) − (∑n
1 e2

i −∑∞
n+1 θ2

i

)
, henceforth, we have

S̃(m1) = Ln(m
1) + 2

m̃∑

m1+1

θiei + 2
n∑

m̃+1

θiei − 2




m1∑

1

e2
i − m1

n



 .

Now note that m̃ is a fixed number, θiei ∼ N(0, θ2
i /n) independently and e2

i −1/n

are independently distributed with mean 0 and variance 2/n2. Using these facts
and the last equality, it is easy to show that

n2q/(2q+1)Ln(m
1) ≤ n2q/(2q+1)S̃(m1) + 2ε + 2n2q/(2q+1)

∣∣∣∣
n∑

m̃+1

θiei

∣∣∣∣,

for all large enough n with probability at least 1 − 2η1, for each θ ∈ Eq(B) and
K(θ) ≤ m1 < m̃.

We now consider Case 1. Note that

S(m̃) = S(m1) +



2

(
m̃ − m1

n

)
−

m̃∑

m1+1

y2
i






and

m̃∑

m1+1

y2
i − 2

(
m̃ − m1

n

)
D=1

n

{
χ2

(m̃−m1−1) + W 2 − 2
(
m̃ − m1

)}

where

W ∼ N





√√√√n

m̃∑

m1+1

θ2
i , 1



 .
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Since, m1 ≤ K(θ) − 1, n
∑m̃

m1+1 θ2
i > εn1/(2q+1) → ∞ as n → ∞. So, again, we

can choose n large enough so that

P






m̃∑

m1+1

y2
i − 2

(
m̃ − m1

)

n
> 0




 > 1 − η1,

for all θεEq(B) and 1 ≤ m1 ≤ K(θ) − 1, implying

S(m̃) < S(m1), i.e., mAIC
new,m1 = mAIC

old ,

where mAIC
new,m1 = argmin

m≥m̃,

m=m1

S(m), with

probability bigger than 1 − η1 each 1 ≤ m1 ≤ K(θ) − 1.
Finally note that the fact S̃(mAIC

old ) = Ln(m
AIC
old ) + Rn(m

AIC
old ), where Rn(m) is

as defined in the proof of Theorem 2.1, implies, by an easy argument, that each of
the following events

n
2q

2q+1 Ln

(
mAIC

old

) ≤ n
2q

2q+1
1

1 − ε
S̃
(
mAIC

old

)+ 4ε

1 − ε

and

S̃
(
mAIC

old

) ≤ (1 + ε)Ln

(
mAIC

old

)

holds with probability bigger than 1 − η/3, for all θ ∈ Eq(B) and ∀n ≥ m̃.
Now, consider, for each θ ∈ Eq(B), the probability of the following occurring

simultaneously

{
n

2q

2q+1 Ln

(
m1
) ≤ n

2q

2q+1 S̃(m1)+2ε+2n
2q

2q+1

∣∣∣∣
n∑

m̃+1

θiei

∣∣∣∣ for all K(θ)≤m1 <m̃,

∣∣∣∣n
2q

2q+1 R1
n

(
m1
) ∣∣∣∣ ≤ 2ε for all K(θ) ≤ m1 < m̃,

Ln

(
mAIC

new,m1

) = Ln

(
mAIC

old

)
for 1 ≤ m1 ≤ K(θ) − 1,

n
2q

2q+1 Ln

(
mAIC

old

) ≤ n
2q

2q+1
1

1 − ε
S̃
(
mAIC

old

)+ 4ε

1 − ε
,

2

∣∣∣∣
n∑

m̃+1

θiei

∣∣∣∣ < εLn(m̃), n
2q

2q+1 Ln

(
mAIC

old

) ≤ Kε,

S̃(mAIC
old ) ≤ (1 + ε)Ln(m

AIC
old )
}
.

The probability of this event can be shown to be larger than 1 − 11/6η − 4m̃η1

for all large enough n for each θ ∈ Eq(B). So the above event, in turn implies, the
following event,

n
2q

2q+1 Ln

(
mAIC

) ≤ 1 + ε

1 − ε
Kε + 4ε

1 − ε
.
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The above statement follows by observing that

mAIC = mAIC
old or mAIC

new,m1 for some 1 ≤ m1 < m̃.

Now we are done, as m̃ is a fixed number for a given η and ε and so η1 can be
chosen to be η/24m̃, to start with, making the quantity 1 − 11/6η − 4m̃n1 equal
to 1 − 2η. This completes the proof of Theorem 2.2. ��

Proof of Theorem 2.3 Fix any C > 0. Define λ(θ) as in Zhao (2000), i.e.,

λ(θ) = max

{
I :

∞∑

i=I

θ2
i ≥ (B + C)n

− 2q

2q+1

}
.

It is easy to see, vide Zhao (2000), that λ(θ) ≤ n1/(2q+1).

Now recall the definition of mu from Eq. (12). Note that

E
(
||θ̂ − θ ||2

)
= E(Ln(m

u))

= E

{
mu∑

1

(yi − θi)
2 +

∞∑

mu+1

θ2
i

}
.

Now E(Ln(m
u)) = E(Ln(m

u)1(mu≤λ(θ))) + E(Ln(m
u)1(mu>λ(θ))). But,

E(Ln(m
u)1(mu>λ(θ))) = E

{
mu∑

1

(yi − θi)
21(mu>λ(θ))

}

+E

{( ∞∑

mu+1

θ2
i

)
1(mu>λ(θ))

}
. (28)

The second term in the r.h.s. of Eq. (28) is trivially less than (B + C)n−2q/(2q+1).

The first term is less than or equal to E
{∑[n1/2q+1]

1 (yi − θi)
2
}

= [n1/(2q+1)]/n

≤ n−2q/(2q+1), whence E(Ln(m
u)1(mu>λ(θ))) < (B + C + 1)n−2q/(2q+1).

Again,

E(Ln(m
u)1(mu≤λ(θ))) = E









mu∑

1

(yi − θi)
2 +

λ(θ)∑

mu+1

θi
2 +

∞∑

λ(θ)+1

θ2
i



 1(mu≤λ(θ))






< (B + C + 1)n
− 2q

2q+1 + E

{(
λ(θ)∑

mu+1

θ2
i

)
1(mu≤λ(θ))

}
. (29)
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Now consider any number K >
√

2. The second expression in Eq. (29) equals

E

{(
λ(θ)∑

mu+1

θ2
i

)
1(

mu≤λ(θ),
∑λ(θ)

mu+1 θ2
i ≤K2n−2q/(2q+1)

)

}

+E

{(
λ(θ)∑

mu+1

θ2
i

)
1(

mu≤λ(θ),
∑λ(θ)

mu+1 θ2
i >K2n−2q/(2q+1)

)

}

≤ K2n
− 2q

2q+1 + E

{(
λ(θ)∑

mu+1

θ2
i

)
1(

mu<λ(θ),
∑λ(θ)

mu+1 θ2
i >K2n−2q/(2q+1)

)

}

≤ K2n
− 2q

2q+1 +
λ(θ)−1∑

m=1

BP(mu = m)I

(
λ(θ)∑

m+1

θ2
i > K2n−2q/(2q+1)

)
,

as θ ∈ Eq(B).

Now for any m < λ(θ),

P (mu = m) ≤ P {S(λ(θ)) > S(m)} = P

{
n

λ(θ)∑

m+1

y2
i < 2(λ(θ) − m)

}
. (30)

Noting that n
∑λ(θ)

m+1 y2
i

D= χ2
(λ(θ)−m−1) + W 2, where W ∼ N

(√
n
∑λ(θ)

m+1 θ2
i , 1

)
,

the expression in Eq. (30) is less than

P
{
W <

√
2
√

λ(θ) − m
}

≤ P
{
Z < (

√
2 − K)n

1
2(1+2q)

}
,

where Z ∼ N(0, 1), using the fact that
∑λ(θ)

m+1 θ2
i > K2n−2q/(2q+1) and λ(θ) ≤

n1/(2q+1). But,

P
{
Z < (

√
2 − K)n1/[2(1+2q)]

}

≤ 1/
√

2π exp{−1/2(K−√
2)2n1/(1+2q)}

(K−√
2)n1/2(1+2q)

.

So,

λ(θ)−1∑

m=1

BP(mu = m)I

(
λ(θ)∑

m+1

θ2
i > K2n−2q/(2q+1)

)

≤ Bn1/[2(1+2q)]

√
2π(K − √

2) exp{1/2(K − √
2)2n1/(1+2q)} ≤ C1n−2q/(2q+1),

for some constant C1. Hence Theorem 2.3 is proved. ��
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4 Discussion

A counter-example to show the nonoptimal behaviour of BIC

Consider q = 1, B = 1. Define H(n) =
[

n1/3

(log n)(1−δ)/2

]
, where 0 < δ < 1.

Consider a sequence θn as follows.

θ = θn =
{
θj = (log n)1−δ/2

√
n

, j = 1, 2, . . . , H(n) and θj = 0 if j > H(n)

}
.

Fact 1. Easy to check that for large enough n, θn ∈ E1(1).

Fact 2. For θ = θn as defined above
H(n)∑
i=2

θi
2 = {H(n) − 1} (log n)1−δ

n
.

Consider now the upper truncated BIC defined as follows:

mu = argmin
1≤m≤[n1/3]

{
n∑

i=m+1

yi
2 + m

n
log n

}
.

Then the estimate of this rule followed by least squares estimates is θ̂i = yi for i ≤
mu and θ̂i = 0 otherwise. It is easy to see that the expected squared error loss for
this estimate is greater than or equal to

E

(
H(n)∑

i=mu+1

θi
2

)
≥E

((
H(n)∑

i=mu+1

θi
2

)
I(mu=1)

)
=
{

H(n)∑

i=2

θi
2

}

1−
[n1/3]∑

j=2

P(mu =j)




.

Now evaluating at θ = θn, the last expression is

{H(n) − 1} (log n)1−δ

n




1 −
[n1/3]∑

j=2

P(mu = j)




 .

Note that P(mu = j) ≤ P(Y 2
j ≥ log n/n).

Now P(Y 2
j ≥ log n/n) = P(Yj ≥ √

log n/n) + P(Yj ≤ −√
log n/n). Using

tails of standard normal probabilities, it is easy to show that for each 2 ≤ j ≤ H(n),
under θ = θn, the above probability is less than 4n

1/(log n)δ/2√
log n

√
n

. So

[n1/3]∑

j=2

P(mu = j) ≤ 4n
1/(log n)δ/2

√
log n × (n1/6)

.

Then it immediately follows by a simple algebra that


1 −
[n1/3]∑

j=2

P(mu = j)



 >
1

2

for all sufficiently large n.
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But note that

n2/3{H(n) − 1} (log n)1−δ

n
→ ∞ as n → ∞.

Using the above facts it follows that lim
n→∞ sup

θ∈E1(1)

n2/3E
(∑∞

i=1(θ̂i − θi)
2
)

= ∞.

So the upper truncated BIC does not achieve the minimax rate of convergence.
In fact, a careful inspection reveals that this same sequence θn can be used

to show that BIC does not attain the minimax rate of convergence for any kind
of upper truncation. More importantly, the same sequence can be used to show
unrestricted BIC followed by least squares also does not achieve the minimax rate,
even in the sense of convergence in probability as shown to be true for AIC. But
we do not present those arguments in the present paper.

We explore below the connection between the problem studied in our paper
and nonparametric regression, vide Eq. (7). Define

f̄ (t) = f

(
i

n + 1

)
, if

i − 1

n
≤ t <

i

n
for i = 1, 2, . . . , n − 1

= f

(
n

n + 1

)
if

n − 1

n
≤ t ≤ 1.

It is shown in Brown and Low (1996) that under certain conditions, estimating
{f (t)} in problem (1.1) through {Z(t)} is asymptotically equivalent to estimating
{f̄ (t)} through {Z̄(t)}, where

dZ̄(t) = f̄ (t)dt + dB(t)√
n

, 0 ≤ t ≤ 1.

They also observe that {Si = n
(
Z̄i/n − Z̄i−1/n

)
, i=1,2, . . . , n} are sufficient for

Z̄(t). Now note that n(Z̄i/n − Z̄i−1/n)
D= Yi , i = 1, 2, . . . , n, and the Yi’s are

trivially sufficient for the problem (Eq. 7). So any decision rule based on Si’s can
be replaced by the same decision rule based on the Yi’s and both will have the same
properties. It is also easy to verify, at least heuristically, that the minimization cri-
terion for AIC studied in our theorems is close (up to Op(1/n)) in distribution to
the minimization criterion for AIC based on the Yis and so the models selected by
AIC in these two problems are also expected to be close.

We briefly explain below how the theoretical results about the rate optimality
of AIC obtained for continuous path data can be applied to the situation when one
observes the process {Z(t)} only at points {tK = K/N : K = 0, 1, . . . , N}, where
N = Nn; i.e, N depends on n.

Let {φi : i ≥ 1} be the usual Fourier basis of L2[0, 1]. Analogous to the yis, let
us define

y ′
i =

N∑

K=1

φi

(
K

N

)(
Z

(
K

N

)
− Z

(
K − 1

N

))
,

i = 1, . . . , n; which can be rewritten as

y ′
i = θ ′

i + ε′
i; i = 1, . . . , n
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where θ ′
i = ∑N

K=1

∫ K/N

K−1/N
φi(K/N)f (u) du and ε′

i = 1√
n

∑N
K=1 φi(K/N)

(B(K/N) − B(K − 1/N)); where B(.) is the Brownian motion. It follows that
|θi − θ ′

i | ≤ ci
N

for some positive constant c which does not depend on i, θ ’s and

θ ′’s and ε′
i ∼ N(0, 1/n · 1/N

∑N
K=1 φ2

i (K/N)). So, if N is large compared to n as
n → ∞; it is expected that θ ′

i and θi will be close; ε′
i will be approximately N(0, 1

n
)

i.e., distributionally close to εi and then any result/procedure obtained from using
the continuous data will be expected to be asymptotically close to the correspond-
ing analogous one based on the discretized version of the problem. Towards that,
let us define

S1(m) =
n∑

i=m+1

y ′
i

2 + 2m

n
;

the criterion function based on the y ′
is corresponding to S(m). Let us heuristically

define the “Akaike Information Criterion” for the discrete problem as

mAIC
1 = argmin

1≤m≤n

S1(m)

and the loss L′
n(m

AIC
1 ) =∑mAIC

1
i=1 (y ′

i − θi)
2 +∑n

i=mAIC
1 +1 θ2

i +∑∞
i=n+1 θ2

i , which is

defined in a manner analogous to Ln(m
AIC) (as in Sect. 2). Note that L′

n(m) is the
loss in estimating θi by y ′

i if i ≤ m and by 0 otherwise and L′
n(m) = ||f − f̂ ||2,

where f̂ (t) =∑m
i=1 y ′

iφi(t).
We have a rigorous argument (not presented here, so as to not increase the

length of the paper) which shows, that

Ln(m
AIC) − L′

n(m
AIC
1 ) = Op

(
n−2q/(2q+1)

) ; (31)

uniformly over θ ∈ Eq(B); provided n3+2q/(2q+1)

N
= O(1) as n → ∞. This implies

that L′
n(m

AIC
1 ) = Op(n−2q/(2q+1)), uniformly in θ ∈ Eq(B) using our previous

result (Theorem 2.2). (The heart of the argument in proving Eq. (31) lies in show-
ing that with probability tending to 1 (uniformly over θ ∈ Eq(B)) as n → ∞;
S(m)−S1(m) and Ln(m)−L′

n(m) are uniformly small in magnitute for 1 ≤ m ≤ n
(upto the minimax rate n−2q/2q+1)).

In summary, we heuristically apply the analogous definition of AIC based on
the y ′

i’s and define the natural loss function based on the same observations. We
are able to establish that this transformed version of the AIC for the discretized
process does as good a job as the AIC based on the original continuous process, in
terms of minimax rate of convergence, provided we observe the discrete process at
enough number of equally spaced points. So the results proved for the continuous
path data are adaptive to the need for adjustment for discrete data.
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