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A b s t r a c t .  This paper is concerned with the problem of computing approximate D- 
optimal design for polynomial regression with analytic weight function on a interval 
[m0 - a, m o +  a]. It is shown that the structure of the optimal design depends on a 
and weight function. Moreover, the optimal support points and weights are analytic 
functions of a at a = 0. We make use of a Taylor expansion to provide a recursive 
procedure for calculating the D-optimal designs. 
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1. Introduction 

Consider the weighted polynomial regression models of degree d 

(1.1) 

d 

y(x) = E g i x  
i=0 

Var(y(x)) --- a2/w(x)  

x E I  

where w(x) > 0 denotes a nonnegative weight function on the design interval I -- [m0 - 
a, m0+a], a > 0, and the control variable x is taken from I. These models are widely used 
in situations where the response is curvilinear, as even complex nonlinear relationships 
can be adequately modeled by polynomials over reasonably small range of the x's. The 
problem of determining optimal designs for weighted polynomial regression models has 
been investigated by several authors (e.g. Hoel (1958), Karlin and Studden (1966a), 
Huang et al. (1995), Chang and Lin (1997), Imhof et al. (1998), Dette et al. (1999), and 
Antille et aI. (2003), among many others). All of these studies concentrate on deriving 
the closed forms of the optimal designs. However, the analytic results exist only for very 
special classes of weight functions and design intervals. 

The differential equation and canonical moments are two main powerful tools for 
determining the closed forms of the D-optimal designs for weighted polynomial regres- 
sion. The first approach is used in Karlin and Studden (1966a), Huang et al. (1995), 
Chang and Lin (1997), Imhof et el. (1998), Dette et al. (1999), and Antille et al. (2003) 
among many others. The second approach is used in Studden (1982), Lau and Studden 
(1985), Dette (1990, 1992), and Fang (2002). 
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The pioneering work of Melds (1978) uses a functional approach to obtain Taylor 
expansion of the optimal designs for exponential regression. This powerful and interesting 
tool is also used by Melds (2000, 2001), Chang (2005) and Dette et al. (2004). In the 
recent two papers Dette et al. (2002a) and Dette et al. (2002b) proves that for the 
trigonometric regression models on a partial circle the approximate D-optimal design 
depends only on the length of the design interval and that the support points (and 
weights) are analytic functions of this parameter by combining Taylor expansion and 
differential equation. Furthermore, Dette et al. (2004) provides a recursive algorithm to 
determine the coefficients of Taylor expansion. 

Chang (2005) shows that for the model (1.1) if w'(x)/w(x) is a rational function 
and a is sufficiently small, then the problem of constructing D-optimal designs can be 
transformed into a differential equation problem leading us to a certain matrix including 
a finite number of auxiliary unknown constants. Those auxiliary unknown constants 
are analytic functions at a = 0 and can be approximated by Taylor polynomials whose 
coefficients can be computed recursively. Then the interior optimal support points can 
be computed from the zeros of a polynomial which the coefficients can be calculated 
from a linear system. 

The purpose of this paper is to extend the Taylor expansion approach of Dette et al. 
(2002b) and Chang (2005) to compute the D-optimal designs for polynomial regression 
with a broad class of analytic weight functions satisfying 

(1.2) w ( x ) = a ( X - m o )  ~+o( (x -mo)" ) ,  ~ > 0 ,  s = 0 , 2 , . . . ,  

as x --+ m0. This class of weight functions covers almost all of weight functions for 
polynomial regression considered in the literature. The Taylor polynomials of the opti- 
mal support points and weights will be calculated directly instead of computing Taylor 
polynomials of auxiliary unknown constants in differential approach of Chang (2005). 

This paper is organized in the following way. In Section 2, the structure of the 
D-optimal designs as a approaches to 0 is given. We also derive the D-optimal designs 
for polynomial regression with weight function w(x) = ix[ ~ which will be used in Taylor 
expansion of D-optimal support points and weights as the constant terms. In Section 3, 
we show that if w(x) is analytic at a = 0, then the D-optimal support points and weights 
are analytic functions of a. A recursive formula is given for computing Taylor polynomials 
of D-optimal support points and weights. Finally, in Section 4 three examples are used to 
illustrate the Taylor expansion method established in Section 3. Concluding comments 
are given in Section 5. The proofs of two main lemmas in Section 2 are deferred to 
Appendixes A and B. 

2. Preliminary results 

An approximate design ~ is a probability measure with finite support on the design 
interval I. The information matrix of a design ~ for the parameter/3 = (/3o, r ~d) T 
is defined by 

M(~) = ], w(x)f(x)fT(x)d~(x),  

where f (x)  = (1, x , . . . ,  xd) T denotes the vector of regression functions. A design ~* is 
called approximate D-optimal for/3 if ~* maximizes the determinant of the information 
matrix M(~) among the set of all approximate designs on I. For more about the theory 
of optimal designs see Fedorov (1972), Silvey (1980) and Pukelsheim (1993). 
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First we consider the structure of the D-optimal designs for polynomial regression 
f ( x )  with w(x)  on [ m o -  a, m0 + a] where w(x)  = ~ (x  - mo) ~ + o((x  - m0)~), ~ > 0 
and s = 0 ,2 , . . .  as a ---* 0. Consider the linear transformation x -- mo + at which 
m a p s t i n I - l , 1 ]  t o x i n  [ m 0 - a ,  m o + a ] .  It is easy to see that  f ( x )  = L f ( t )  where 
L = ((~)m~o -3 a j)d,j= o is a (d + 1)x (d + 1)lower triangular matrix. Then the information 

matrix of a design ~ supported at {xi}iml is given by 

m 

M(~)  = E w ( x i ) ~ ( x i ) f ( x ~ ) f T ( x ~ )  
i=1 

= L ~ (mo  + at i )~(mo § a t i ) f ( t i ) f T ( t i  
\ i = 1  

L T 

Since w(x)  ~ a ( x  - mo) ~ -- aaSt ~ as a -~ O, it follows that  the structure of approximate 
D-optimal design for f ( x )  with weight function w(x)  on [m0 - a, m0 + a] is the same as 
that  of D-optimal design for f ( t )  with t ~ on [-1, 1] as a --~ 0. 

The following two lemmas characterize the D-optimal designs for polynomial re- 
gression with weight function Ixl ~ on [-1, 1]. The proofs are tedious and deferred to 
Appendixes A and B. 

LEMMA 2.1. For the polynomial regression model f ( x )  with w(x)  = Ixl s, s >_ o, on 
[-1,1], the D-opt imal  design is supported on 

(a) symmetr ic  d + 1 points including both end-points +1 if  s = 0 or s > 0 and d is 
odd, 

(b) symmetr ic  d + 2 points including both end-points •  i f  s > 0 and d is even. 

Combining Lemma 2.1 and the discussions at the beginning of this section, we 
conclude that there exists an ~ such that  if 0 < a < d, then the D-optimal design for 
weighted polynomial regression on [m0 - a, m0 + a[ is unique and has the form 

(2.1) 

I xo Xl ... x d 
{ 1 / ( d  + l)  1 / (d  + l)  --- 1 / ( d + 1 ) }  

if s = 0 o r s > 0 a n d d i s o d d ,  

~ =  { Xo Xl "'" Xd+l } 
WO Wl " "  Wd+ 1 

if s > 0 and d is even, 

w h e r e m 0 - a = x 0 < x l  < . . . < X d ( X d + l ) = m 0 + a a n d ~ w i = l ,  w i > 0 .  
Now we are ready to derive the D-optimal designs for the model in Lemma 2.1. 

The results will be used in Taylor expansion of D-optimal designs in Section 3 as the 
constant terms. Chang (1998) derives the D-optimal designs on [a, 1], a _> 0, in terms 
of the smallest eigenvalue of a certain tridiagonal matrix. The following lemma gives 
the closed forms of the D-optimal designs in terms of Jacobi polynomial and an explicit 
formula for the determinant of information matrix of a design in (2.1). 

L E M M A  2.2. 

O, on [-1, 1]. 
Consider the polynomial regression model f ( x )  with ~(x) = Ix[ ~, s _> 
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(a) I f  s = O, then the D-optimal design tt~ puts equal masses at the zeros of (1 - 

x2)P~(x) -- (1 /2)(d  + 1)(1 - x2)P(dO'O)(x ) where Pd(x) is the d-th Legendre polynomial 

and P(n a'z) (x) denotes the n-th Jacobi polynomial orthogonal with respect to the measure 
( 1  - x)a(1  + x) ~ on the interval [ -1 ,  1]. 

(b) I f  s > 0 and d is odd, then the D-optimal design #~ puts equal masses at the 

zeros of the polynomial (1 - x 2 ~ p  0'(s-1)/2) (2x 2 - 1) J (d-1)/2 
(c) / f ~  denotes a design of the form (2.1), then 

(2.2) d e t M ( ~ )  = { - -  

1 d 
(d+l)d+l Hi:O OJ(Xi) HO<i<j~_d( xi - -  Xj) 2 

i f  s = O or s > O and d is odd, 

E0<ko< <k <d+l - xk ) 
i f  s > 0 and d is even. 

The  D-opt imal  designs #~ for f ( x )  with w(x) = Ixl ~ on [ -1 ,  1] are listed in Table 1 
for d = 1, 2 , . . . ,  5 and s -- 0, 2 , . . . ,  10. There  is no closed form available for the case 
s > 0 and d even. It  can be computed  by a modified Fedorovs exchange algori thm 
(Fedorov (1972), Chapte r  3) for exact  opt imal  designs. All of the designs are symmetr ic  
about  the origin and include the two end-points.  Moreover, the number  of the optimal  
suppor t  points is d + 1 if s =- 0, or s > 0 and d odd, and d + 2 otherwise. The  optimal  
suppor t  points spread more closer to the two end-points  and the opt imal  weights for d 
even do not vary too much as s increases. 

Table 1. D-optimal design tt~ for f(x) with w(x) = Ixl s on [-1, 1]. 

s\d 1 2 3 4 5 

0 1/2 1/3 1/3 [ 1/4 1/4 1/5 1/5 1/5 1/6 1/6 1/6 
{ •  ~ , 6 0 2  • } [• •  {• ~.781 • } {• i.830 •  

2 1/2 [ .178 .322 [ 1/4 1/4 .124 .178 .198 1/6 1/6 1/6 

4 1/2 .179 .321 [ 1/4 1/4 .127 .175 .198 1/6 1/6 1/6 

6 1/2 [ .180 .320 [ 1/4 1/4 .128 .174 .198 1/6 1/6 1/6 

8 1/2 [ .180 .320 1/4 1/4 .129 .174 .197 1/6 1/6 I/6 

10 1/2 .180 .320 1/4 1/4 .130 .173 .197 1/6 1/6 1/6 

3. Taylor expansion for D-optimal designs 
To relate the D-opt imal  support  points and weights to the Taylor  expansion we 

now consider the s tandardized design p( t )  = ~(x) where x = mo + at. Note that  
d-1 

t o = - - 1 ,  t d : 1 and Wd = 1 -- ~ i = 0  wi if s = 0 or s > 0 and d odd; ta+l = 1 and 

Wd+l = 1 -- ~-]d_o Wi if s > 0 and d even. Th en  the D-opt imal  design problem reduces 
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to determine the maximum of 
a ( d + l ) ( s + d )  d cO(mo+aQ) 
(d-I-1)d+l H i = 0  a ~ YIo<_i<j<_d( ti -- tJ) 2 

if s = 0 o r s > 0 a n d d i s o d d ,  

(3.1) det M(~) = a(d+l)(s+d) EO<ko<...<kd<_d+l 1-Iid=o w(m~ Wki 

• -- tkj )2 1-[O<_i< j<d( tk, 
if s > 0 and d is even, 

where xi = mo +at~,  i = 1 , . . . , d -  1, by Lemma 2.2(c). I f s  = 0 or s > 0 and d is odd, 
then the determinant  can be wri t ten as 

a (d+l)(s+d) w(m0 - a) w(rno + a) 
(3.2) det M ( ( )  = 4~-~T 1 ~  a d a s r l a) 

where r I a) = 1-[/=1d-1 ~(mo+atdas [II<i<j<d-l(t i_ _ -- t j )  2 and T = (tl,  . . .  , td_l)  T. On the 
other  hand, if s > 0 and d is even, then it can be expressed as 

(3.3) det M ( ( )  = a(d+l)(s+d)r I a) 

d ~(mo+atk~) tk~) 2) and, to where r l a) = Y'~O<__kO<...<k~<__d+l(1-Ii=o ,s Wk, l-[o<__i<j<d(tk, -- = 
--1, td+l = 1, W = ( t l , . . .  , t a , W o , . . .  ,Wd) T. Thus the problem of finding max~ M(~) is 
equivalent to that  of finding max~ r ] a). 

Next we s tudy  the maximum of the function r  I a). For a fixed a close to 0, the 
function r  I a) has a unique maximum in 

{ { ( t l , . . .  , te-1) l  - 1 < tl < . . .  < td-1 < 1} if s = 0 or s > 0 and d odd, 
d 

T = { ( t l ,  , td, Wo , . . .  , W d ) l -  1 < t l  < " ' "  < ta < 1,0 < wi < 1,0 < y'.i=0 wi < 1} 

if s > 0 and d even, 

�9 T * f a  ~ r  where k is the dimension of T. which will be denoted by T*(a) = (T~(a) , . .  , k ,  , ,  
Note that  the maximum point T*(a) of r I a) is a vector function of a. It is clear that  
if the partial derivative of w(mo + at) with respect  to t exists for t C ( - 1 ,  1), then T*(a) 
can be obtained as the unique solution of the k simultaneous equat ions by taking partial 
derivatives of r I a) with respect to 7 

(3.4) g(T [a)  = OTT ( l a) = 0 �9 

Moreover, if w(mo + at) is an analytic function at t = 0 and the Jacob/an  of r I a) 
with respect to 7- is given by 

(3.5) H(T  l a) = r a) 
i , j=l 

is a nonsingular matr ix at a ---- 0, then from the implicit function theorem (see Khuri 
(2002), Theorem 7.6.2), T*(a) are analytical functions of a on the interval ( - R ,  R) where 
R is the radius of convergence and a function of w(x)  and d. This implies that  the Taylor 
series of T* at the origin exists. If a < R, then 

(3O 

(3.6) 7*(a) = E'r(i)a* / 
i=0 
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where T(*0) = r*(0) = l ima-0 r*(a) can be found from Lemma 2.2 and Table 1. 
To determine the coefficients r~) in this expansion, we will make use of the following 

recursive formula, which has been found explicitly in Theorem 3.4 of Dette et al. (2004): 

(3.7) 

where 

, 1 H _ I ( T . ( n  ~ d n + l  a=O 
T ( n + l )  - -  (7t-+- 1)! ~ ~vj I O)-~gTTg(T~n>(a)la) 

n 

= r(0 a 
i = 0  

denotes the n-th degree Taylor polynomials of r* (a) at a = 0. The preceding recursive 
formula of r(*n+l) provides an easy and simple way to calculate the Taylor polynomials 
of r* (a). 

4, Examples 

In this section we will present three examples to illustrate the Taylor expansion 
method for computing the D-optimal designs given in Section 3. 

Example 4.1. In the first example we consider the quadratic polynomial regression 
model with co(x) = 2 + x on the interval [ -a ,  a]. If a is close to 0, then the D-optimal 
design has the form of 

~ , = { - a  at~ a } 
1/3 1/3 1/3 

by Lemma 2.1. From (3.7) the 10th-degree Taylor polynomial of t~(a) at a = 0 is given 
by 

tl,lO(a) = .125a - .00977a 3 + . 0 0 1 5 3 a  5 - . 0 0 0 2 9 8 0 2 3 a  r + .0000651926a 9. 

Let 
a a } 

1/3 1/3 1/3 
denote the numerical approximation of {*. Numerical result shows that if a < 1.473, then 

is nearly D-optimal in the sense of the D-Equivalence criterion (see Fedorov (1972)) 
satisfying 

(4.1) max d(x, ~) - (d + 1) _< 10 -5 
xE[--a,a] 

where d(x, ~) = w(x) fT(x)M -l(~)f(x) .  For example, if a = 1, then the nearly D-optimal 
design is given by 1} 

1/3 1/3 1/3 " 

Throughout this paper we use the criterion (4.1) to compute the nearly D-optimal de- 
signs. 

In this case the analytic formula of t~ can be obtained by solving the maximizer 
of the function det M(~*) = - 4 a 6 ( - 4  + a2)(2 + a te ) ( -1  + (t~)2)2/27 directly. Simple 
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algebra yields tha t  t I = ( - 4  + x/16 + 5a2)/(5a). The 10th-degree Taylor polynomial of 
t~ at  a = 0 is given by 

.125a - .00976563a 3 + .00152588a 5 - .000298023a 7 + .0000651926a 9 

which coincides with tl,lo(a) except the rounding error. 
Figure 1 shows the graph of the difference of the nearly and truly optimal support  

point e(a) = a(Q,lo - t~) for 0 < a < 1.5. It reveals tha t  e(a) is a strictly convex, 
positive and increasing function in a and e(.1) = 7.177 • 10 - t~ ,  e(.5) = 3.515 • 10 -9, 
e(1) = 1.228 • 10 -5, e(1.5) -- 1.283 • 10 -3. It follows tha t  both  the nearly and truly 
opt imal  design points are very close to each other. Note tha t  if 1.48 < a < 2, then the 
optimM support  contains the right end-point a and one positive and one negative interior 
points. 

One of the quantities used to measure the efficiency of a design ~ is the D-efficiency 
given by 

det M(~)"~ 1/(d+1) 

r(~) = \ d e t  M(~*) 7 

Figure 2 gives the plot of the D-efficiency function r(~) for 0 < a < 1.5. It shows 
tha t  r(~) is a strictly concave and decreasing function, and the design ~ has very high 
efficiency. 

e ( a )  

0.0012 

0.001 

0 . 0 0 0 8  

0.0006 

0.0004 

0 . 0 0 0 2  

0:2 0:4 b:6 0:8 l 1.2 ~.4 

Fig. 1. Plot ofe(a) f o r 0 < a <  1.5. 

r(~) 

0.99999: 

0.999998 

0.999997 

0,999996 

0.999995 

a 
0.2 0.4 0.6 0.8 1 1 .~'~i. 4 

\ 

Fig. 2. The D-efficiency function r(~) for 0 < a < 1.5. 
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Example 4.2. Our second example considers d = 2 and w(x) = x 2 + x 4 on the 
interval I - a ,  a]. In this case s = 2 and d even, from Lemma 2.2 and the symmetry  of 
weight function and design interval it can be argued tha t  if a is close to 0, then the 
unique D-optimal  design has the form 

~ . = {  - a  -at~ at~ a } 
1/2-w  

This case is more complicated since there are one support  point and one weight need 
to be determined. Therefore we have to compute the two Taylor expansions for two 
variables in two equations at a = 0. From (3.7) the 10th-degree Taylor polynomials for 
t~ and w~ are given as 

tl,lO(a) = .601706 + .0597043a 2 --.0109969a 4 --.0106096a 6 + .0138087a s --.0112085a 1~ 

wajo(a)  = .17792 -- 0.00278443a 2 + .00512734a 4 --.00602918a 6 

+ .00631595a s --.0065627a 1~ 

All these polynomials are even. Let 

--a -atl,lO(a) atl,lO(a) a } 
= 1/2 -- Wl,lo(a) w13o(a) wl,10(a) 1/2 -- Wl,lo(a) 

denote the numerical approximation of ~*. Numerical result shows tha t  if a < .451, then 
is nearly D-optimal.  For example, if a = .3, then  the nearly D-optimal  design is given 

by 
~ = { - . 3 - . 1 8 2  .182 .3 } 

.322 .178 .178 .322 " 

T ab l e  2. a n  for va r i ous  we igh t  func t ions .  

w ( x )  n d = 2 d = 3 d = 4 

x + 2 5 1.240 1.284 1.352 

10 1.473 1.681 1.777 

x 2 + 1 5 1.352 0.661 0.614 

10 1.352 1.080 0.914 

e x+1 5 1.220 1.649 1.994 

10 1.560 2.438 3.097 

e z2 5 1.390 1.036 0.814 

10 1.390 1.366 1.665 

5 0.723 0.595 0.556 l + x  
10 0.887 0.791 0.752 

2+x 5 0.638 0.566 0.550 

10 0.813 0.859 0.827 

cos  x 5 1.201 0.974 1.396 

10 1.202 1.342 1.419 
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Example 4.3. In this example we consider the problem of the radius R of conver- 
gence for the Taylor expansion of t~'s and w~'s at a = 0. In general, a closed form 
of R seems to be intractable. Even the task of computing the numerical values of R 
is formidable since the length of expressions involved in computing Taylor expansion 
growths quickly as n increases. Let an denote the maximum of a such that ti,n'S and 
wi,n's give nearly D-optimal designs on [-a ,  a]. Then the function an can serve as an 
approximation of R and limn-.or an = R. Table 2 lists an for various weight functions, 
d = 2 , 3 , 4 ,  a n d n = 5 , 1 0 .  For example, i fw(x) = 2 x  2 + x + 1  and d = 2 ,  t h e n a n  for 
n = 5 and 10 is .644 and .752, respectively. For any w(x), R5 is always less than R10. If 
w(0) ~ 0, w'(O) = 0 and d = 2, then an is independent of n. 

5, Conclusions 

The main thrust of this article has been to provide a systematic procedure for 
computing the D-optimal designs for polynomial regression for a broad class of weight 
function on [m0 - a, m0 + a] for any a in a neighborhood of 0 at a time. The only 
requirement is that  weight function is analytic at m0. The structure of the optimal 
designs is derived for a close to zero. Then we can use a recursive algorithm by Dette et 
al. (2004) to evaluate the Taylor polynomials of the optimal support points and optimal 
weights (if necessary) in a. This method is more efficient in determining the D-optimal 
designs for various a at a time. 

All computations discussed in this article were performed on an IBM compatible 
PC using the numeric and symbolic computational software Mathematica 4.1 (Wolfram 
(1999)) and most of calculations with 16-digit precision. 
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Appendix A: Proof of Lemma 2.1 

The following is the proof for the case (a). The proof for the case (b) is omitted 
since it can be proved similarly. 

The assertion for the case s = 0 is well known in Fedorov (1972), Theorem 2.3.3 and 
is omitted here. Let ~* denote a D-optimal design. First we will show the symmetry of ~*. 
Consider the reflected design ~R of the design ~*, i.e. ~R(x) -- ~*(-x).  Then it is easy to 
see that  det M((~* + ~n)/2) _> (det M(~*))l/2(det M(~R)) 1/2 = det M(~*) with equality 
holding if and only if ~* is a symmetric design since log(det M(~)) is a strictly concave 
function in ~. The last equality follows from the fact that  det M(~ R) = det M(~*). Thus 
~* must be a symmetric design with the form 

I _ X  k . . . .  X 1 X l  �9 . . X k ( 

wk/2 . . .   1/2  1/2 . . .   k/2 f 
k where 0 < xl < -'- < xk < 1 and ~-~i=1 wk --- 1, wi > 0. 



842 FU-CHUEN CHANG 

Next we will show that Xk ---- 1. Suppose that  xk < 1 and let v(x) = ~*(XkX). 
Then it will imply that det M(T) ---- x[  (d+s)(d+l) det M(~*) > det M(~*) which would 
contradict the D-optimality of ~*. 

Finally we will show that the number of the optimal support points is d + 1 if d is 
odd. The Kiefer and Wolfowitz (1960) Equivalence Theorem (KWT) states that a design 
~* is approximate D-optimal if and only if the directional derivative of log det M(~*) (see 
Silvey (1980), p. 20) 

(A.1) d(x, ~*) = w(x ) fT (x )M- l (~* ) f ( x )  -- (d + 1) 

is less than or equal to zero for all x in l -a ,  a], with equality holding at the support 
point of ~. The symmetry of ~* implies that d(x, ~*) has the form 

IxlSQ2d(x) - (d + 1) 
where Q2d(X) is an even function and a polynomial of degree 2d. Let y = x 2. Then 
elY) = d(x, ~*) has the form 

yS/2Ud(y) - (d + 1) 

where Ud(X) is a polynomial of degree d. The function elY) has at most d + 1 zeros 
counting the multiplicity since {1,yS/2,y~/2+l,...  ,yS/2+d} forms a Chebyshev system 
on [0, 1] (Zarlin and Studden (1966b)). Therefore it follows that k < ( d +  2)/2 since the 
function elY) has k - 1 zeros at Yi = x? i = 1, 2, k - 1 with multiplicity 2 and one ~ ,  " ' ' ,  

simple zero at Xk = 1. Then the assertion of the theorem follows from that the number 
of the support points of ~* is greater than or equal to d + 1 since the optimal information 
matrix must be nonsingular. 

Appendix B: Proof of Lemma 2.2 

(a) It is well known that the D-optimal design for f (x )  with w(x) = 1 on [-1,  1] 
puts equal masses at the zeros of (1 -x2)P~(x)  (Fedorov (1972), Theorem 2.3.3(1)). The 
alternative representation of the polynomial Pj(x) is given by the formula (4.21.7) of 
Szeg5 (1975). 

(b) From Lemma 2.1(a) the number of the optimal support points is equal to d + 1, 
the number of the parameters. Therefore the optimal design has equal masses 1/(d + 1). 
The optimal design has the form 

* I - - X k  " " " lB.1) 1/(2k) . . .  

where k = ( d + 1 ) / 2  and xk = 1. 
determinant yields that 

--Xl Xl "'" Xk I 
1/(2k) 1/(2k) .-- 1/(2k) f 
An application of the formula of Vandermonde 

det M(#~) = (det F)diag(w(-xk) / (2k) , . . . ,  w(xk)/(2k))(det F T) 
k--1 k-1 

= (1/k)2k n ( 1 -  x~) 4 H (x2 -- x2)4 n ~i 2(s+l) 
i=1 l~_i<j~_k-1 i=1 

where F = ( f ( - - xk ) , . . . ,  f(--Xl),  f ( x l ) , . . . ,  f (xk)) .  Let Yi = x~, i ---- 1, 2 , . . . ,  k - 1. We 
now study the function 

k-1 k-1 

lB.2) g(Yl �9 , Y k - 1 )  n (1 yi) 4 H (Yi y j )4  n . s + l  , '"  ---- - -  - -  Y i  " 

i=1 l<i<j<k--1 i=1 
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Note that the function g is a strict concave function and consequently there is a unique 
maximum. Consider the partial derivative of log g ( Y l , . . . ,  Yk-1)  with respect to Yi 

(B.3) O l o g g ( y l , . . . ,  Yk-1)  _ 4 ~ 4 s + 1 

Oyi Yi 1 + ~ + - . . y~ - y j  Y~ 

(B.4) = 0 

for i = 1 , . . . ,  k -  1. Similar arguments as given in Theorem 2.3.3 of Fedorov (1972) show 
that the polynomial u(y)  k-1 = l-[i=1 (Y - Yi) satisfies the differential equation 

(B.5) 2 y ( y  - 1)u"(y) + (4y + (s + 1)(y - 1))u'(y) -- (k - 1)(2k + s + 1)u(y). 

Let z = 2 y - 1  and u(y)  = v ( z ) .  After substituting u'(y)  = 2v'(z) and u"(y)  = 4v"(z) 
in (B.5) and simple algebra yields the following differential equation 

(B.6) (1 - zZ)v"(z )  + (/3 - ~ - (c~ + / 3  + 2 ) z ) v ' ( z )  + n ( n  + ~ + ~ + 1)v(z) = 0, 

where c~ = 1,/3 = (s - 1) /2 and n = ( d -  1)/2.  From Theorem 4.2.2 of Szeg5 (1975) the 

equation (B.6) has a unique polynomial solution P(~'Z) (z). The assertion of the theorem 

is proved after substituting z -- 2x 2 - 1 into Pn (~'z) (z). 
(c) The proof is straightforward by a direct application of the Binet-Cauchy and 

Vandermonde formulas. 
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