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Abs t r a c t .  In this paper we develop a new family of tests for the dilation order based 
in a characterization of the dilation order. This family of tests statistics can be used 
for testing the exponentiality against HNBUE (HNWUE) alternatives. Asymptotic 
distributional results are given for both families of tests. For the HNBUE (HNWUE) 
we also derive the exact distribution under the null hypothesis. 
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1. Introduction and motivation 

In the l i terature several orderings of distr ibutions have been defined to describe 
when one random variable is more dispersed t h an  another  r andom variable, examples 
of such orderings are the dispersive order (see Lewis and Thompson  (1981) and Shaked 
and Shanth ikumar  (1994)) and the right spread order  (see Fernandez-Ponce  et al. (1998) 
and Shaked and Shanth ikumar  (1998), Section 2.B.). 

Hickey (1986) gives a more general concept  of dispersive ordering. A random variable 
Y is more dispersed in dilat ion than  a r andom variable X (denoted by X _<dil Y) if 

E[ (X - E[X])] E[ (Y - E[Y])], 

for every convex function ~, provided previous expectat ions exist. Taking ~(x)  = x 2, we 
get X ~_di] Y ~ Var(X)  < Var(Y); therefore the dilation order  is a s tronger notion to 
compare  the dispersion of two random variables than  to compare  the numerical  values of 
the variances (which is less informative).  It  is clear from the definition of dilation order 
tha t  it is location-free. 

However this is a weaker notion than  the dispersive and right spread orders, in fact 
we have the following relationships (see Ferns  et al. (1998) and Fagiouli et 

al. (1999)): 
disp ==~ ~ rs =22 ~-~ dil �9 

For a s tudy of the previous orderings, relations with other  orderings and applica- 
tions, see Shaked and Shanth ikumar  (1994) and the references therein.  

�9 Supported by Ministerio de Ciencia y Tecnologfa under Grant BFM2003-02497/MATE. 
�9 *Supported by Fkmdacidn S~neca (CARM). 
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An interesting property of the dilation order is the characterization of the HNBUE 
(HNWUE) aging classes. It can be seen (see Shaked and Shanthikumar (1994), p. 68) 
that 

(1.1) X is HNBUE (HNWUE) if, and only if, X <_dil (Zdil)Y, 

where Y is an exponential random variable with E[Y] -- E[X]. Let us recall that the 
exponential random variable has the non-aging property. 

Applications of HNBUE (HNWUE) aging classes in reliability theory, including 
bounds for the survival function, can be seen in Klefsj6 (1981, 1982a), Basu and Ebrahimi 
(1986), Basu and Kirmani (1986), Klefsj5 (1986), Pal (1988), P~rez-Oc6n and G~miz- 
P~rez (1995a, 1995b), Cai (1995) and Pellerey (2000), which shows the importance of 
HNBUE (HNWUE) aging notion in reliability theory. 

In order to verify the notions of dilation order and HNBUE (HNWUE) aging classes 
several tests and graphical techniques have been developed, as can be seen in Hollander 
and Proschan (1975, 1980), Klefsj5 (19825, 1983b), Basu and Ebrahimi (1985), Singh 
and Kochar (1986), Aly (1990), nendi et al. (1998), Jammalamadaka and Lee (1998), 
Belzunce et al. (2000) and Klar (2000). 

The purpose of this paper is to develop a family of tests for dilation order and 
HNBUE (HNWUE) alternatives. 

For this purpose, in Section 2, we address the problem of testing the dilation order. 
Later in Section 3 we develop the family of tests for HNBUE (HNWUE) alternatives, 
which is based on the family developed in Section 2 from characterization (1.1). For 
both families we give the asymptotic distribution and we prove the consistency of our 
proposed tests. We also compare these tests with other existing tests in terms of Pitman's 
asymptotic efficiency. For the family developed in Section 3 we also give the exact 
distribution under the null hypothesis. Applications to some data sets are given in 
Section 4. 

Throughout this paper "increasing" means "nondecreasing". 

2. A family of tests for dilation order 

Let X and Y be two random variables, with distribution functions F and G respec- 
tively. In this section we consider the problem of testing the null hypothesis 

H 0 : X : d i l  Y 

vs the alternative 
H1 : X  ~.~dil Y, 

given random samples of X and Y. 
This problem has been considered by Aly (1990) and Belzunce et al. (2000). Aly 

(1990) considers the problem of testing the dispersive order, but, as can be seen in 
Belzunce et al. (2000), his test is consistent against the dilation order. 

For the dilation order Fagiouli et al. (1999) and Belzunce et al. (2000) have proved, 
independently, the following characterization: 

X ~dil Y if, and only if, 

f f (2.1) F x l E ( x ) ( t ) d t  > F~l_E(v)(t)dt,  for all p ~ (0, 1), 
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where F-l(p) = inf{x : F(x) > p}. 
Therefore if X _<dil Y, we have that 

fo 8 s g(s) = F-l(t)dt - sE[X] - G-l(t)dt + sE[Y] > 0, 

so h(p) -- fPg(s)ds is an increasing function in p �9 (0, 1). Then 

~0 
1 

A~il(X, Y) = (h(p) - h(ap))dp > O, for all a � 9  

Clearly, A~il(X,Y ) is a family of measures of deviation from H0 to H1, since 
A~il(X , Y) = 0 if X =dil Y and A]il(X , Y) > 0 if X ~ d i l  Y. 

As can be easily shown, 

where 

~01 
Adil(X, Y) -- J~(p)g(p)dp, 

J~(P) = { P (1-~p a <_ p < <- P <- a' 

Replacing the distribution functions of X and Y by their empirical versions we 
obtain a family of statistics depending on a parameter a E (0, 1), which can be used for 
testing the dilation order. 

If X(1),... ,X(n) and Y(1),... ,Y(m) are ordered samples of X and Y respectively, 
our family of tests can be written, after some algebraic manipulations, in the form 

~ i l ( X , y ) =  l ~ - ~ ( c  a 1 - c ~ 2 )  _1 ~-~(ca 1 ~  (~2) 
- i,n ~ X(i)  - m i,m Y(i), 
n i--1 i=1  

where 

(2.2) 

{ ( I  - 1) 3T2~-3i2+3i-1 
6T 2 

C ~. : 3 c ~ ( r - k - 1 ) 2 + ( k - - r o ~ ) 3 + c ~ ( 3  r - 3 k - 2  ) 

3 ( r - - i ) 2 + 3 ( v - - i ) + l  
6 r  2 

~ < k + l ,  

i = k + l ,  

i > k + l ,  

with _k < a < k+l 
r - -  r 

Next we study the asymptotic distribution of A~il(X, Y), that follows from Theo- 
rems 2 and 3 from Stigler (1974). 

Let us denote 

(2.3) a2(P~, F) =/jfR2 P~(F(x))P~(F(y))[F(min(x, Y)) F(x)F(y)]dxdy, 

and 

(2.4) F) = fR xP (F(x))dY(x), 
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where 

!(i l~(a (2.5) p~(p) = 2 , ,  - , ,  - P 2 )  i 

1 2 I-- .  2 
~(1  - p) 6 

Then we get the following result. 

1 - - .  2 p < o~, 
p > a .  

THEOREM 2.1. Let X and Y be two continuous nonnegative random variables, 
with distribution functions F and G respectively, such that E[X2], ElY 2] < +oc and 
a2(P~, F), a2(P~, G) > O. Let 

o ~ ( n , m )  = 
mo2(P., v) + n~(P., G) 

n + m  

and let X(1), . . . ,  X(n) and YO)," "', Y(m) be the ordered samples from random samples of 
sizes n and m from X and Y respectively. Then 

(2.6) . ~ )  ~(n,m) 

if min(n,m) --+ +oc and (re, n) E D~ : :  {(m,n) ] A <_ m/ (n  + m) < 1 - A} for some 
A e (0, 1/2]. 

In practice a 2 (n, m) is unknown, but it can be replaced by the consistent estimator 

(2.7) ~2(n,m) = m~2(Fn) + n~2(Cm) 
n + m  

where 

n--1 n 

i=1 j= i  

and 

i=l  j= i  

w i t h 6 i i : l a n d 6 i j - - 2 i f i C j .  

~__~32) (X(j+l)  __ X ( j ) ) ( X ( i + l )  __ X ( i )  ) 

Tg~2 ) (Y(j+I) - Y ( j ) ) ( Y ( i + I )  - ]'r(i)), 

From (2.6) and (2.7) an asymptotically distribution free test for testing H0 against 
H1 can be given. We reject H0 if ( - -~)* /2s  , Y)/3(n,  m) > %, where zq is the 
(1 - q)-quantile of the standard normal distribution function. 

The consistency of our tests follows if we show that 

(2.8) A3i~(X, Y) = ~(P,~, F) - ~(P., G). 

It is not difficult to see that 

L 1 J , ( p )  ( L P F - I ( s ) d s  - pE[X]) dp 

JO 2 
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Table 1. Maximum A R E  of Zk~il(X, Y). 

807 

Test Marzec 8z Marzec Wilcoxon Savage W S V0.6, N 

Exponent ia l  1.170 1.475 1.106 1.348 1.311 1.320 

LFR  2.282 3.295 0.618 1.339 0.732 0.584 

Makehann  1.329 2.033 0.678 0.949 0.650 0.581 

Table 2. Min imum A R E  of Zk~il(X , Y). 

Test Marzec • Marzec Wilcoxon Savage W S Vo.6, N 

Exponent ia l  0.944 1.189 0.892 1.087 1.057 1.065 

LFR 1.885 2.723 0.511 1.107 0.605 0.483 

Makehann  1.302 1.991 0.664 0.929 0.636 0.569 

D 

1 ,75  - -  

1 , 50  - -  

1 , 25  - -  

1 , 00  - -  

0 , 75  - -  
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0 , 00  - -  
I I I I I I ! I I I I 

0 ,0  0 , I  0 ,2  0,3 0.4 0,5 0 .6  0,7 0,9 0 ,9  1.0 

Exp  

LFR  

Makehen  

Fig. 1. Efficiency of ~ u ( X ,  Y) as a funct ion of (~, for t r ans la ted  exponent ial ,  LFR  and  
Makehann  models. 

/ x (1 - F(x))  2 dF(x) + 
-1(~) 

// = xP~(F(x))dF(x), 

and the same holds for G, which proves (2.8). 

1 -- Ol 2 
6 E[X] 

2.1 Asymptotic relative efficiency 
In order to see the performance of our test, we have compared Pitman's  asymptotic 

efficiency of our test with that  of Marzec and Marzec (1991) test, Wilcoxon (1945) test, 
Savage (1956) test and W, S, VO.6,N tests proposed by Kochar (1979, 1981) and Bagai 
and Kochar (1986). We have considered that Y follows an exponential distribution with 
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unit mean and three possible alternatives for X, with distribution functions 

1 - exp{- (1  + 0)x}, 1 - exp { -  (x  + ~ - ~ )  } and 

1 - exp{- [x  + O(x + exp( -x )  - 1)]}: 

which correspond to a translated exponential, a linear failure rate (LFR) and a Makehann 
distribution respectively. 

The asymptotic relative efficiencies (ARE) of our test with respect to the previous 
ones are functions of a C (0, 1); we give in Table 1 the maximum ARE and in Table 2 
the minimum ARE. These tables show that  our test is quite efficient with respect to 
Marzec and Marzec (1991), Witcoxon (1945) and Kochar (1979) tests, and in particular 
for the translated exponential distribution (for a complete description of the efficiencies 
for all values of a, see Fig. 1). 

3. A family of tests for HNBUE [HNWUE] aging class 

The ideas developed in previous section can be used to develop a family of tests for 
HNBUE (HNWUE) alternatives. 

In this section we consider a random sample of a random variable X,  with distribu- 
tion function F,  and we want to test the null hypothesis 

H 0 :  X is exponential (F(t) = 1 - exp(-At) ,  A unspecified) 

against the alternative 

HI : X is HNBUE [HNWUE] but  it is not exponential. 

If Y follows an exponential distribution with mean E[X], by characterization (1.1) 
we get that  A~NBUE(X ) ~ i ~ i l ( X  , Y) is a family of measures of deviation from H0 to 
HI.  It is easy to see that  

A~tNBUE(X) = LI ja(p) (LPF-I( t)dt-  pE[X]) dp 

l - a  ( 5  5a ( S a a ) 2  ) 
+ - - ~  3 - T  + l n ( 1 - a )  E[X]. 

Our family of tests is based on the empirical counterpart of this measure, which can 
be written in the form of linear combination of order statistics as 

^ l f i ( c a  1 - - a [ ~  
- ~,n + - - - g - -  (3.1) A~NBUE(X) = n i=l 

where c~ is as in (2.2). 

l l a  _ _  ( 1 -  a)2a I n ( i - c t ) ] ) X ( i ) ,  

In order to make our tests scale invariant, we take the statistic 
A 

~N~u~(X)  -- A~N%uE(X) 
X 

where X is the sample mean. 
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This family of statistics can be writ ten in terms of the normalized spacings, tha t  is, 
Di - (n - i + 1)(X(0 - X(i-1)), in the way 

where 

n f~NBuE(X)  -- }--~i=1 D~ 

~,n n _ i + l E Cj~,n + - - - ~  ~ -  -4- a ln(1 - a)  . 
j = i  

Next we s tudy the exact distribution of ~'~NBuE(X). 
Since the statistics are scale invariant, we can take A = �89 in Theorem 2.4 of Box 

(1954) to obtain the exact distribution of ~ N B u E ( X )  under the null hypothesis. 

THEOREM 3.1. Let X be a random variable with distribution function given by 
g(t)  -- 1 - e x p ( - t / 2 )  for t > O, and let X(1) , . . . ,X(~)  be the ordered sample for a 
random sample from X .  Then 

P(~t~NBuE(X ) < x) = 1 - H lea: e o~ I(X, ei~,n) 
i=1 j = l , j # i  \ - i , n  - -  j , n  

for ea'~,n # eja~n, for all i ~ j ,  for fixed n, where I(x,  y) = 1 if x < y and l(x ,  y) = 0 if 
x > y .  

Now we s tudy the a s y m ~ o t i c  distr ibution using Theorems 2 and 3 from Stigler 
(1974). First  we infer tha t  of A~NBuE(X) from (3.1). 

THEOREM 3.2. Let X be a continuous nonnegative random variable with distribu- 
tion function F, such that E[X  2] < +oc. Let #(Qa:, F) and a2(Qa:, F) be as in Section 2, 
where 

I 1 2 1--~[2_ ~ - ~ - ( 1 - ~ ) ~ l n ( 1 - a ) l  p < a ,  
(3.2) Q,(p) = 5(~ - 1 ) ( a - p  ) + 6 L3 

~(1 - p ) l  2 + __g_ [g~-~ 2 11~6 + (1~ '~)2 In(1 - a)] p > a ,  

and suppose a2(Q~, F) > O. Then 

ZXHN uE(X) F) • N(O, 1). 

Now we use the previous result and Slutsky's theorem to get the limiting distribution 

of ~NBuE(X). 

THEOREM 3.3. 

(~INBUE ( x ) 

where #* -- #(Q*~,F)/E[X], ((7,)2 
#(Q~, F)/E[X].  

Under the conditions of Theorem 3.2 it follows that 

# ( Q ~ , F ) ~  L N ( # . , ( a . ) 2 ) ,  
E[X] ] 

(T2 * = (Qa:,F)/E[X] and Q*~(p) = Qa: (p ) -  
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Finally we derive the asymptotic distribution of ~ N B u E ( X )  under the null hypoth- 
esis. Due to scale invariance, we can take F to be exponential with parameter A = 1, 
and then we get #(Qa, F) = 0 and a2(Qa, F) = 1 1 g~-g6 (~ - 1)2[ 1080a - 2744a2 + 2492~3 - 

767~ ~ + 60(18 - 22~  + 1 1 ~ ) ( 1  - ~)~ in(1 - ~)  - 180(1 - ~)~  ln~(1 - ~)].  Therefore under 
H0 we have that 

n h 1/2 
(3.3) ( ~ ( ~ , r ) /  ~ ( x )  

converge towards a standard normal distribution. 
Thus for high values of n we can reject the null hypothesis if (3.3) is greater than 

Zq [less than Zl-q]. 
Since #(Q~, F)  = 0 when F is exponential, in order to prove the consistency of our 

test we only need to show that  #(Q~, F)  > [<]0 when X is HNBUE [HNWUE] but it is 
not exponential, and this follows from the equality /N~NBuE(X ) = #(Qa, F), obtained 
in a similar way to (2.8). 

3.1 Asymptotic relative efficiency 
As in Section 2 we have calculated our test's ARE with respect to some existing 

tests for aging classes, namely: 
�9 A2 and V for IFR [DFR] class, given by Klefsj5 (1983a) and Proschan and Pyke 

(1967), respectively. 
�9 Jn, Un and Sn for NBU [NWU] class, given by Hollander and Proschan (1972), 

Ahmad (1975) and Deshpande and Kochar (1983), respectively. 
�9 B for IFRA [DFRA] class, given by Klefsj5 (1983a). 
�9 V* and V,~(k) for DMRL [IMRL] class, given by Hollander and Proschan (1975) 

and Bandyopadhyay and Basu (1990), respectively. 
�9 K* for HNBUE [HNWUE] class, given by Hollander and Proschan (1975, 1980) 

and Klefsj5 (1983b). 
The alternatives we have considered in this case are LFR, Makehan, Weibull and 

Gamma models. LFR and Makehan models are given in Subsection 2.1; Weibull and 

1,50 - -  

1,2E; - -  

1,00 

0,75 - -  

0,50 - -  

0,25 - -  

0 , 0 0  - -  
I I i i I I I i I i f 

0,0 0,1 0,2 0,3 0,4 0,6 0,6 0,7 0,8 0,9 1,0 

c~ 

I tv~ 

! O o m m a  

Fig. 2. Efficiency of A~NBuE(X ) as a function of a,  for LFR, Weibull, Makehann and Gamma 
models. 
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Table 3. Maximum ARE of ~tNBuE(X) .  

Test LFR Makehan Weibull Gamma 

A2 2.255 1.420 2.072 2.673 

V 1.454 1.325 1.397 * 

Jn 2.436 1.243 1.118 * 

Un 2.684 1.487 2.062 * 

Sn 21.077 16.899 2.579 * 

B 3.246 1.420 1.199 1.053 

V* 1.002 1.420 2.153 3.735 

Vn (0.01) 1.105 1.001 1.105 1.283 

Vn(0.05) 1.100 1.030 1.242 1.547 

K* 1.096 0.998 1.047 1.175 

811 

Table 4. Minimum ARE of ~ N B u E ( X ) .  

Test LFR Makehan Weibull Gamma 

A2 1.524 1.340 1.838 1.986 

V 0.983 1.250 1.240 * 

Jn 1.646 1.173 0.992 * 

Un 1.814 1.403 1.830 * 

S~ 14.245 15.944 2.288 * 

B 2.194 1.340 1.064 0.782 

V* 0.677 1.340 1.911 2.775 

V~(0.01) 0.747 0.945 0.981 0.953 

Vn(0.05) 0.743 0.972 1.102 1.149 

K* 0.741 0.941 0.929 0.873 

G a m m a  d i s t r i b u t i o n  f u n c t i o n s  a re  g iven  b y  1 - e x p ( - x  ~ a n d  r-~ fo te-' exp(-t)dt, 
r e spec t ive ly .  

As  we can  see f rom T a b l e  3, we can  choose  va lues  of  a E (0, 1) so t h a t  ou r  t e s t  

p e r f o r m s  well  a g a i n s t  al l  t h e  o t h e r  t e s t s .  T a b l e  4 shows  t h a t  i t  r e m a i n s  qu i t e  eff icient  

a g a i n s t  m o s t  of  t h e  o t h e r  t e s t s  even  a t  wors t ,  spec i f i ca l ly  for M a k e h a n  a n d  W e i b u l l  

a l t e r n a t i v e s  (a  c o m p l e t e  d e s c r i p t i o n  for al l  va lues  a ,  c an  b e  seen  in  F ig .  2). 

4. Applications to some data sets 

In  o r d e r  to  a p p l y  t h e  p r e v i o u s  to  s o m e  d a t a  se ts ,  we need  to  know in w h a t  s i t u a t i o n s  

t h e  a s s u m p t i o n s  of  t h e  h y p o t h e s i s  a r e  r e a s o n a b l e .  F o r  e x a m p l e  for t h e  d i l a t i o n  o r d e r  t e s t ,  

we need  to  a s s u m e  t h a t  X --~dil Y,  a s im i l a r  c o m m e n t  ho lds  for t h e  H N B U E  [ H N W U E ]  

t e s t .  
F r o m  c h a r a c t e r i z a t i o n  (2.1),  we shou ld  check w h e t h e r  t h e  i n e q u a l i t y  

Dx (p) ~ Dy (p), for al l  p E [0, 1], 

ho lds ,  w h e r e  Dx(p) = fo F- l (  t)dt -E[X]p. 
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Following Barlow et al. ((1972), pp. 235-237), a nonparametric estimator of Dx (p), 
given a random sample X1, X2,. �9 Xn of X, is given by interpolation of the points (0, 0) 
and (k/n, (~-~i=]k X( 0 _ k-X)/n) for k -- 1,. . . ,  n. Then comparing the two nonparamet- 
ric estimators of Dx (p) and Dy(p), we can have some empirical evidence about the 
assumption X ~dil Y. 

For the HNBUE hypothesis a similar argument can be done. In fact Aly (1992) 
proposes a so called HNBUE plot, based on the characterization 

X is HNBUE [HNWUE] r A(p) = r + exp{-Fxl(p) /E[X]} - 1 > (<_)0 

for all p E ( 0 , 1 ) ,  

Fig. 3. 
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Nonparametric estimators of D x  (p) and Dy  (p) for Data set I. 
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Fig. 4. Nonparametric estimator of A(p) for Data set II. 
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where r = f o  F - I  ( t ) d t / E [ X ] .  
Analogously a nonparametr ic  es t imator  for A(p), can be obta ined  by interpolat ion 

of the  points (0, 0) and ( k / n ,  ~-~k=l (1 - (i - 1 ) / n ) ( Z ( o  - X ( i _ I ) ) / - X  + e x p { - - X ( k ) / - X }  + 1) 
for k =  l , . . . , n .  

�9 Data  set I. The  da t a  set we have considered to test  equali ty in dilation order 
consists of two groups of survival t imes of RF M strain male mice (Hoel (1972)). The  first 
group lived in a conventional  laboratory  environment ,  while the  second did in a germ 
free environment.  Mice died because of thymic  lymphoma.  

First  we plot the nonparametr ic  est imators  of D x  (p) and D y  (p) (here X and Y are 
the random variables representing the survival t imes of a RF M strain male mouse in a 
conventional labora tory  environment  and in a germ free environment,  respectively).  The 
plot (see Fig. 3) suggests t ha t  we can assume tha t  X ~dil Y. 

We carried out the test  for different values of a C (0, 1). Results are given in Table 5; 
( nm hl /2s  [ X  Y ~ /  the  p-value was calculated using the asymptot ic  distr ibution of ~n-W~J dill , ]/  

~(n, m).  
According to results, we come to the conclusion tha t  X ~dil Y, and the rejection of 

the equali ty is more clear for higher values of a .  
�9 Data  set II. Next  we apply the test  developed in Section 3 to X -- "Fatigue life 

of 6061-T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 
18 cycles per second" (Engelhardt  et al. (1981)). Again we first plot the nonparametr ic  

Table 5. 

Ol X-~--m][ n m  "~ 1/2 Aadil~ ,Ix, Y) /d(n ,  rn) p-value 

0.1 2.3425 0.0096 

0.2 2.3683 0.0089 
0.3 2.4084 0.0080 
0.4 2.4660 0.0068 
0.5 2.5456 0.0055 
0.6 2.6464 0.0041 
0.7 2.7772 0.0027 

0.8 2.8996 0.0019 
0.9 3.0129 0.0013 

Table 6. 

n 1/2 a ( ~ )  ~HNBuE(X) p-value 

0.1 3.6758 0.00012 
0.2 3.6274 0.00014 
0.3 3.5691 0.00018 
0.4 3.5292 0.00021 
0.5 3.5346 0.00020 
0.6 3.5885 0.00017 
0.7 3.6718 0.00012 
0.8 3.7678 0.00008 
0.9 3.8422 0.00006 
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est imator of A(p) .  In this case the plot (see Fig. 4) suggests that  X is HNBUE.  
In this case we test the  hypothesis  

H0 : X is exponential  (F(t) = 1 - e x p ( - A t ) ,  A unspecified) 

against the alternative 

H1 : X is H N B U E  and is not  exponential .  

In Table 6 we summarize the results where the p-value are computed by the approxi- 
mat ion to the normal distribution. As we can see our test accepts clearly the H N B U E  
alternative for all values of a ,  and more clearly for low and high values of a.  

REFERENCES 

Ahmad, I. (1975). A nonparametric test for the monotonicity of a failure rate function, Communications 
in Statistics. Theory and Methods, 4, 967-974. 

Aly, E.-E. A. A. (1990). A simple test for dispersive ordering, Statistics ~ Probability Letters, 9, 
323-325. 

Aly, E.-E. A. A. (1992). On testing exponentiality against HNBUE alternatives, Statistics ~ Decision, 
10, 239-250. 

Bagai, I. and Kochar, S. C. (1986). On tail ordering and comparison of failure rates, Communications 
in Statistics. Theory and Methods, 15, 1377-1388. 

Bandyopadhyay, D. and Basu, A. P. (1990). A class of tests for exponentiality against decreasing mean 
residual life alternatives, Communications in Statistics. Theory and Methods, 19, 905-920. 

Barlow, B. S., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference under 
Order Restrictions, John Wiley and Sons Ltd, London. 

Basu, A. P. and Ebrahimi, N. (1985). Testing whether survival function is harmonic new better than 
used in expectation, Annals of the Institute of Statistical Mathematics, 37, 347-359. 

Basu, A. P. and Ebrahimi, N. (1986). HNBUE and HNWUE distributions-a survey, Reliability and 
Quality Control (ed. A. P. Basu), 33-46, North-Holland, Amsterdan. 

Basu, A. P. and Kirmani, S. N. U. A. (1986). Some results involving HNBUE distributions, Journal of 
Applied Probability, 23, 1038-1044. 

Belzunce, F., Candel, J. and Ruiz, J. M. (2000). Testing mean residual alternatives by dispersion of 
residual lives, Journal of Statistical Planning and Inference, 86, 113-127. 

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis variance 
problems, 1. Effect of inequality of variance in the one way classification, Annals of Mathematical 
Statistics, 25, 290-302. 

Cai, J. (1995). Reliability lower bounds for HNBUE distributions class with known mean and variance, 
Mathematica Applicata, 8, 440-445. 

Deshpande, J. V. and Kochar, S. C. (1983). A linear combination of two U-statistics for testing new 
better than used, Communications in Statistics. Theory and Methods, 12, 153-159. 

Engelhardt, M., Bain, L. J. and Wright, F. T. (1981). Inferences on the parameters of the Birnbaum- 
Saunders fatigue life distribution based on maximum likelihood estimation, Technometrics, 23, 
251-256. 

Fagiouli, E., Pellerey, F. and Shaked, M. (1999). A characterization of the dilation order and its 
applications, Statistical Papers, 40, 393-406. 

Ferns J. M., Kochar, S. C. and Muoz-Prez, J. (1998). Partial orderings of distributions 
based on right spread functions, Journal of Applied Probability, 35, 221-228. 

Hendi, M., A1-Nachawati, H., Montasser, M. and Alwasel, I. (1998). An exact test for HNBUE class of 
life distributions, Journal of Statistical Computation and Simulation, 60, 261-275. 

Hickey, R. J. (1986). Concepts of dispersion in distributions: A comparative note, Journal of Applied 
Probability, 23, 914-921. 

Hoel, D. G. (1972). A representation of mortality data by competing risks, Biometrics, 28, 475-489. 



ON TESTING THE DILATION ORDER 815 

Hollander, M. and Proschan, F. (1972). Testing when new is better than used, Annals of Mathematical 
Statistics, 43, 1136-1146. 

Hollander, M. and Proschan, F. (1975). Tests for the mean residual life, Biometrika, 62, 585-593. 
Hollander, M. and Proschan, F. (1980). Amendments and Corrections: "Tests for the mean residual 

life" (Biometrika 62 (1975), 585-593), Biometrika, 67, 259. 
Jammalamadaka, S. R. and Lee, E.-S. (1998). Testing for harmonic new better than used in expectation, 

Probability in the Engineering and Informational Sciences, 12, 409-416. 
Klar, B. (2000). A class of tests for exponentiality against HNBUE alternatives, Statistics ~ Probability 

Letters, 47, 199-207. 
Klefsj5, B. (1981). HNBUE survival under some shock models, Scandinavian Journal of Statistics, 8, 

39 47. 
Klefsj5, B. (1982a). The HNBUE and HNWUE classes of life distributions, Naval Research Logistics 

Quarterly, 29, 331-344. 
KlefsjS, B. (1982b). On aging properties and total time on test transforms, Scandinavian Journal of 

Statistics, 9, 37-41. 
KlefsjS, B. (1983a). Some tests against aging based on the total time on test transform, Communications 

in Statistics. Theory and Methods, 12, 907-927. 
KlefsjS, B. (1983b). Testing exponentiality against HNBUE, Scandinavian Journal of Statistics, 10, 

65-75. 
Klefsj6, B. (1986). Some bounds on an HNBUE survival function, IAPQR Transactions, 11, 1-12. 
Kochar, S. C. (1979). Distribution-free comparison of two probability distributions with reference to 

their hazard rates, Biometrika, 66, 437-441. 
Kochar, S. C. (1981). A new distribution-free test for the equality of two failure rates, Biometrika, 68, 

423-426. 
Lewis, T. and Thompson, J. W. (1981). Dispersive distributions, and the connection between dispersivity 

and strong unimodality, Journal of Applied Probability, 18, 76-90. 
Marzec, L. and Marzec, P. (1991). On testing the equality in dispersion of two probability distributions, 

Biometrika, 78, 923-925. 
Pal, M. (1988). A note on some bounds on an HNBUE survival function, IAPQR Transactions, 13, 

57-63. 
Pellerey, F. (2000). Random vectors with HNBUE-type marginal distributions, Statistics ~r Probability 

Letters, 50, 265-271. 
P~rez-Oc6n, R. and Gs M. L. (1995a). Conditions on the arrival process to obtain HNBUE 

survival using a shock model, Communications in Statistics. Theory and Methods, 24, 931 944. 
P~rez-Oc6n, R. and Gs M. L. (1995b). On the HNBUE property in a class of correlated 

cumulative damage shock models, Advances in Applied Probability, 27, 1186-1188. 
Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate, Proceedings of 5th Berkeley Sympo- 

sium on Mathematical Statistics and Probability, 3, 293-312. 
Savage, I. R. (1956). Contribution to rank order statistics: The two sample case, Annals of Mathematical 

Statistics, 27, 590-615. 
Shaked, IV[. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications, Academic 

Press, Inc, San Diego. 
Shaked, M. and Shanthikumar, J. G. (1998). Two variability orders, Probability in the Engineering and 

Informational Sciences, 12, 1-23. 
Singh, H. and Kochar, S. C. (1986). A test for exponentiality against HNBUE alternatives, Communi- 

cations in Statistics. Theory and Methods, 15, 2295-2304. 
Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions, Annals of 

Statistics, 2, 676-693. 
Wilcoxon, F. (1945). Individual comparisons by rank methods, Biometrics, 1, 80-83. 


