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A b s t r a c t .  There is very little literature concerning modeling the correlation be- 
tween paired angular observations. We propose a bivariate model with von Mises 
marginal distributions. An algorithm for generating bivariate angles from this von 
Mises distribution is given. Maximum likelihood estimation is then addressed. We 
also develop a likelihood ratio test for independence in paired circular data. Applica- 
tion of the procedures to paired wind directions is illustrated. Employing simulation, 
using the proposed model, we compare the power of the likelihood ratio test with six 
existing tests of independence. 
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1. Introduction 

Testing for independence in paired circular (bivariate angular) data has been ex- 
plored by many statisticians; see Fisher (1995) and Mardia and Jupp (2000) for thorough 
accounts. Paired circular data are either both angular or both cyclic in nature. For in- 
stance, wind directions at 6 a.m. and at noon recorded at a weather station for 21 
consecutive days (Johnson and Wehrly (1977)), estimated peak times for two successive 
measurements of diastolic blood pressure (Downs (1974)), among others. After indepen- 
dence in circular variables been rejected, modeling circular correlation (association) and 
making inferences become of primary interest. 

In this article, we investigate inference procedures under a special case of the bi- 
variate families proposed by Wehrly and Johnson (1980) (see also Johnson and Wehrly 
(1977)). This case is the first bivariate correlated model with von Mises marginal distri- 
butions. The probability density function (pdf) of von Mises is in closed form, and yon 
Mises is parallel to normal distribution for univariate data. 

Some literatures related to this article are the following. Mardia (1975a, 1975b) 
proposed a bivariate von-Mises model for paired angles (01,02) with probability density 
functions proportional to 

exp{s;1 cos(O1 - ~Zl) -~-/';2 cos(02 - ~2) ~- (cos 01, sin 01)TA(cos 02, sin 02)}, 

w h e r e 0 <  ~ < cr 0 < #i < 27r w i t h i =  1,2 and A i s a 2 •  2matr ix .  Although the 
conditional distributions of 01 (02) given 02 (01) are von Mises-Fisher, the marginal dis- 
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tributions are not von Mises. Saw (1983) constructed some distributions for dependent 
unit vectors; Rivest (1988) provided thorough inference procedures for a bivariate gener- 
alization of the Fisher-von Mises distribution. Singh et al. (2002) replaced the quadratic 
term and the linear term in the bivariate normal density by their angular analogues and 
proposed an interesting probabilistic model for bivariate circular variables. 

In particular, we investigate inference procedures under the bivariate distribution 
with von Mises marginals (BVM) having probability density function: 

1 e~12 cos(27r[Fl(O1)-F2(02)]--1~12) 
(1.1) f12(01,02) = 27rfl(Ol)f2(02)27:[o(~12) 

where 0 < 01, 02 < 27r, ~12 _> 0, 0 ~ #12 < 27r and I0(') denotes the modified Bessel 
function of order zero. The marginal densities 

1 ~ r for j 1, 2 
:j(Oj) - 2~o(,~j) e = 

are von Mises with m e a n  ~ j  and dispersion parameter ~j, respectively, and will be 
denoted by VM(# j ,~ j )  henceforth. This joint density involves the cumulative distri- 

butions Fj(Oo) = f:o fj(O)dO, but with todays computing power this is not a serious 
drawback. We note that  this class of bivariate circular distribution can include more 
general marginals, for example t-distribution (Shimizu and Iida (2002)). However, the 
pdf of von Mises distribution is in closed form, so we focus on von Mises marginals here. 

In Section 2, we introduce the BVM model and an algorithm to generate the model is 
given. 2D contours plots of the joint probability of some BVM models are demonstrated. 
In Section 3, we investigate the maximum likelihood estimation and derive a likelihood 
ratio test for independence under the BVM model. Next, we apply the model and 
inference procedures to paired wind directions data  in Section 4. Using the BVM model, 
the power of a likelihood ratio test is compared to six existing tests (Johnson and Shieh 
(2002)) in Section 5. 

2. Some properties of the BVM model 

2.1 Roles of #12 and tc12 
We first discuss the copula presentation of the BVM model and then we utilize 

the copula to interpret the roles of two parameters #12 and tc12. Let (u, v) be random 
variables on the unit square with density function: 

(2.1) f(u, v) = ~12 cos(2"Ir[~-v]-.12)/io(]~12), 

where ~12 ~ 0 and 0 < #12 < 27r. It is easily checked that the marginal distribution of 
U and V are uniform so that  f(u, v) is the density function of a copula. Let F1 and F2 
denote von Mises marginal distributions, then (F-l(u), F-l(v)) has the proposed BVM 
joint density function. From (2.1), it is clear that 27r(u - v) follows a VM(#12, ~12). 
Thus O1 = 27rF1(O1) given 02 is VM(#12 + 27rF2(02), ~12). When #12 -- 0, 01 centers 
on 27rF2(02), and the dependence of O1 on 02 is through the magnitude of ~12. The 
conditional density of O1 [ O2 = 02 is given in Subsection 2.2. 

The proposed model does reduce to the bivariate normal distribution as fluctuations 
in 01 and 02 are sufficiently small provided that ~12 = 27r[F1(/z2) - F2(/A2)] and fi is 
continuous at #i for i = 1, 2. With approximations cos(0i - #i) ~ 1 - (0i - #i)2/2 and 
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sin(0i - #~) ~ (0~ - #~) for i -- 1, 2, the proposed joint pdf  reduces to C exp(~l + ~2 + t{12 - -  

1{[/';1 71- 1~12/ I2 (K '1 ) ] (01  - -  ~1) 2 ~- [/';;2 At- t ' ~12 / I2 (K '2 ) ] (02  - -  ~2) 2 ~- 2K'12/[ ' [O(I~1) Io(K '2)] (01  - -  
#1) (02-  #2)}), where C is a normalizing constant,  The parameters of the  approximating 
bivariate normal correspond to those of f12 as follows: 

and 

P12 = -- 12{[1 12 -[-  112(1 1)1[ 12 l 2102(t 2)]} -1/2,  

a l  = [ 12 + + + - 1  

0"2 ~-~ [~12 n u t~112(~l)](t~lt~212(t~l) -~- t~12[t~2 -[- t ~ l [ 2 ( t ~ l ) / I 2 ( K 2 ) ] }  - 1 .  

The bivariate normal is unimodal  thus a necessary condition for unimodali ty of 
the proposed jpdf  is #12 = 2~r[Fl(#~) - F2(#2)]. After computing the first and second 
derivatives of f12, we applied the unimodal i ty  condition and test  for extrema to show 
tha t  (#1,#2) is the mode. Setting the first derivatives 0f12/001 = -f12(nl sin(01 - 
#1) + hi2 sin{27r[F1 (0a) - F2(02)] - tq2} x 2zcfa) and 0s  -- - f12(~2 sin(02 - #2) - 
n12sin{27r[F1(01) -F2(02)]- ,12} • 27rf2) to zero, we had the solutions (#1,#2) and 
(it1 + 7r, #2 + 7r) (mod 27r) under the unimodal i ty  condition. Since 02f12/OO2[(ul,u2) = 
- - f l 2 [n l  + n12/Io2(nl)] < 0 and {02f12/OO~O2f~/00~- [02f12/001002] 2} [(/Zl,/~2) = 
f~2[~1~2 + ~12(2zr)2(~2f~ + ~1]~)] > 0, ( #1 ,#2 ) i s  the mode. Similarly, we obtained 
tha t  (Pl + 7r, #2 + zr) is the minimum. 

Our numerical calculations suggest tha t  the joint pdf  of Oa and 02 is uni-modal 
provided tha t  #12 = ~1 - -  i~2 which is consistent with the aforementioned condition since 
F1 a nd / ' 2  are uniform on [0, 1]. If #12 -- 0, then  #1 = #2 is required for the unimodali ty 
of f12. Thus #12 is also a shape parameter  beside ~1, ~2 and ~12- 2D contours of a BVM 
with fixed ~t I = 71-, ~t 2 : 0 ,  t~  1 = t~  2 = 3.0 and ~a2 -- 4.0, and with #12 varying from 0 
(bi-modal) to 1r (uni-modal) are illustrated in Fig. 1, respectively. 

The parameter  n12 models the circular correlation of 01 and 02. This is illustrated 
by the 2D contours of the jpdf  of BVM(r ,  3.0, n, 3.0, 0, n12) in Fig. 2. As ~12 increases 
from 0, 1, 4 to 7, the circular association of O1 and 02 increases since the 2D contours 
of the jpdf  get narrower and center around the 45 ~ line. There is no unique theoretical 
definition of association for bivariate circular random variables. Instead, a few variety 
of circular-circular association estimates based on samples were proposed, for instance 
r l  to r6 in Section 5. Thus to illustrate the relationship between n12 and the association 

/J12 = 0 /J12 " ~ "  

0 1 2 3 4 5 6  0 1 2 3 4 5 6  

r 

o 

01 61 

Fig. 1. Joint pdfof01 and 02 from BVM(~r, 3.0, 0, 3.0, ttt2,4). 
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Joint pdf of 01 and 02 from BVM(~r, 3.0, ~r, 3.0, 0, ~12). 

between O1 and 82, we have simulated 1,000 copies of r] to r6 under the BVM model 
with #1 = #2 = 7r, #12 = 0 and ~1 = ~2 = 1.5. Noticeably, the average of 1,000 rs's 
increases from 0.00 (rounded to 2 decimal place), 0.12, 0.24, 0.57 to 0.69 when ~12 varies 
from 0, 0.5, 1, 2 to 3; the other five association measures also show the same increasing 
trend. 

2.2 B VM random vector generator 
We suppress the parameters and write fi(Oi) and Fi(Oi), i = 1, 2 for the marginal 

density functions and cumulative distribution functions, respectively. A simple integra- 
tion verifies that f12 (01,02) does indeed have these marginal distributions. Consequently, 
the conditional density of O1 I 02 -- 02 is 

1 e,~l 2 cos(27r[F1(O1)_F2(O2)]_tt12 ) 
fl12(01 I 02) = 27rf1(01) 27r/0(t~12 ) 

Under the BVM distribution, (I>] = 2rrF1 (01), given 02 has a von Mises distribution 
with ~]2 and location parameter #12 + 2~F2(02). This fact helps us generate pairs of 
angles (81 ,82)  having the joint density function f12(', ")- In particular, 

1. Generate V2 as von Mises(0, n2) and set O2 = V2 + #2 (mod 2~r). 
2. Generate V1 as yon Mises(0, n12) and, given 82 = 02, set 

W 1 ~-- V 1 +/./,12 -~- 2~rF2(02) (mod27r) 

so W1 has the conditional distribution of 27rF1(O1). 
3. Finally, set 

01 = F 1  1 - ~  �9 
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Then, (O1,02) are distributed as f12. 
More generally, we can make the transformation 0 --*/3. 

/31 ---- 01 

~2 = 27r(F1(Oi) - F2(02)) 

which has Jacobian (-2~f2(02)).  Consequently, the joint density is 

1 r 1 e~l~ cos(~-m~) 
27rI0 (~1) e~l 27rI0(~12) " 

Since the joint density of fit and/32 factor into two parts, we conclude that  O1 is indepen- 
dent of 27r(Ft ( O ~ ) -  F2(O2)) which has a yon Mises (~1~, P~2) distribution. Similarly, we 
can show that 02 is independent of 27r(F1(O1) -F2(O2)) .  A BVM random vector gener- 
ator written in Fortran 77 can be downloaded from h t tp : / /www,  s t a r .  s i n i c a ,  edu. tw/  
-gshieh/. 

The following is an algorithm to generator a BVM(#I, ~I, #2, ~2, #12, ~12) random 
vectors. 

Step 1. We approximate the area under the von Mises density function (a curve) 
by a polynomial of certain degree, using the gau leg  function in Press (1999), in each 

small interval 27r, ~2tr), where N = 500 and i = 1 , . . . ,  N. We note that N can be 
other large constant. 

Step 2. We tabulate all approximate cumulative areas under a VM(0, a2) density 
and denote them i F2N(5--ff621r), i = 1 , . . . ,  500. 

Next, we generate a random uniform variable from (0, 1), and denote it U2. When 
the generated u2 in the interval i-1 [F2N(5-N27r), F2N(5@6027r)), we linearly interpolate be- 

i--1 i tween 5-5-627r and 5---d-627r to get a corresponding angle v2. Then we can shift the mean of 
V2 to #2 by V2 + #2 (mod 27r) and denote it by 02. 

Step 3. Similarly, we can generate another yon Mises random variable V1 which 
follows VM(#12, ~12). Then, convoluting V1 and 27rF2N(02) (mod 27r), 

W1 = Yl --~ 27rF2N(02) (mod27r). 

Recall that F2N is the tabulated cumulative area under a VM(0, ~2) from Step 2. 

Step 4. Similar to Step 2, for i = 1 , . . . ,  500 we tabulate F1N(~27r)i which de- 
notes the approximate cumulative area under a VM(0, ~1)- Finally, we invert W1/(27r) 
according to the tabled values of FIN(-) to get 01. 

2.3 219 contours and other properties 
Contour plots of the joint density provide insight into the manner in which the 

parameter ~12 indexes the amount of probability that concentrates along the curve 

27r(Fl(01 I F2(02 I = ]-t12 (mod2 '). 

When the marginal distributions are identical, probability concentrates along the line 
01 = 02 when #12 = 0. 
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For the case of identical marginal distributions, we have drawn the contours on 
[0,27r) • [0,27r) for the values 0, 1, 4 and 7 of ~12. We have selected #1 = #2 = rr 
so the peak is in the center of the region. We have selected ttl2 = 0 since f12 takes 
its maximum at #12 = 0 when F1 = F2. The contours in Fig. 2 pertain to marginal 
distributions having the common ~1 = ~2 = 3.0. The approximate 50%, 70% and 90% 
contours nearby which their corresponding probability labeled are shown. Going from 
independence tr = 0 to ~12 = 1, we see how the circular contours distort somewhat. 
The densities for the intermediate values between 1 and 6 have some small secondary 
modes. At ~12 = 7 and beyond we see the concentration along a line. The contours are 
clearly symmetric about the line 01 = 02 and the line 27r - 01 = 02. The contours for the 
increasing values ~12 = 0, 1, 4 and 7 are also symmetric about these two lines. Increasing 
t~12 concentrates the probability about the equal angular line. 2D contour plots instead 
of 3D perspective plots are illustrated since contour plots indicate confidence regions 
more clearly. 

3. Estimation and testing 

Although some of the parameters enter the joint density in a rather complicated 
manner, modern maximization programs enable us to easily obtain the maximum likeli- 
hood estimates (MLEs). We applied the FORTRAN code FFSQP, Version 3.7 by Zhou 
et al. (1997) to obtain the MLEs of unknown parameters in model (1.1) and call the 
program the MLE algorithm henceforth. Then, estimates of their variances and covari- 
ances can be obtained from derivatives of the likelihood or by numerical integration of 
the squares and products of the partial derivatives given below. 

The code FFSQP does not prevent the estimates from being trapped in local max- 
ima, thus we have applied a technique which is popular in the artificial intelligence com- 
munity to get an approximate global maximum. To obtain the MLEs of a k-dimensional 
(k > 1) parameter, we first partition the range of each parameter coordinate 27~ into m 
equal intervals. Next, we repeat the algorithm N (a big number) times; at each time 
one starts the algorithm with a different initial vector value. The initial value is sampled 
from N cubes out of the total m e cubes. A global maximum is equal to the maximum 
of the N local ones. We further repeat the above process with N1 (> N) different initial 
values. If the two global maxima obtained from the two experiments (with N and N1 
different initial values) converge, then we stop and declare that  the approximate global 
maximum obtained. An alternative way to estimate these six parameters is to estimate 
#i and tci for i = 1, 2 from the marginals since the likelihood function given #i and ~i 
i = 1, 2 is concave in #12 and ~12. Then one plugs the estimates in the joint likelihood 
function to estimate #12 and tr as proposed in Subsection 3.3 of Rivest (1988). The 
latter algorithm reduces this optimization problem in R 6 to three optimization problems 
in R 2 and hence is more efficient. 

We write r/ = (n1,#1,/~2,~t2,/~12,~12) I for the vector of six unknown parameters. 
The parameter space is then 

ft  = { O < ~ l < c o ,  O < # , < 2 7 r ,  O < s 2 < c o ,  O < # 2 < 2 7 r ,  

0 </s < 0o, 0 < ~12 < 27r}. 

Let ln(r/) denote the log-likelihood function, Un(r/) and - I n ( r / )  the first and the 
second derivatives of In (r/), respectively. Furthermore, we denote the neighborhood of the 
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true parameter rl0 by B(rlo). The regularity conditions in Self and Liang (1987) imply 
the root-n consistency of the MLEs. We restate the regularity conditions as follows: 

(i) almost sure existence of the first three derivative of In (rl) with respect to r I on 
the intersection of B(rl0) and ~,  

(ii) on the intersection of B(rl0 ) and Ft, n -1 times the absolute value of the third 
derivatives of In(~) is bounded by a function f ( X 1 , . . . ,  Xn) ,  where E f ( X 1 , . . . ,  X n )  < 
0 0 ,  X i = (Ol i  , 02i) T and 

(iii) E(InO?)/n) = I(rl) is positive definite on B(rl0) and I(rl0) is equal to the 
variance-covariance matrix of n -1/2 U n ( ~o ). 

When the vector of parameters rl belongs to the interior of the parameter set, the 
regularity conditions hold and the consistency of the MLEs follows. Then asymptotic 
multivariate normality of the maximum likelihood estimators follows from Lemma 1 and 
Theorem 2 of Self and Liang (1987). 

THEOREM 3.1. Let ~? belong to the interior of the parameter set. The maximum 
likelihood estimator, i7, is asymptotically multivariate normal, and 

v/-n(i?- rl) converges in distribution N6(0 , i - 1 ) ,  

where I is the Fisher information matrix with entries 

I lk( , )  = E  [ 0 ~ l n f t 2 ( O i ,  O 2 , ~ 7 ) ~ l n f 1 2 ( O 1 , O 2 , , ) ]  

Let A(~;) = I~(a)/Io(a). The six partial derivatives are straightforward and are omitted. 

Remark. If some of the parameters are known, then asymptotic normality holds 
for the reduced set with the corresponding entries in the information matrix. 

Numerical integration can be used to obtain each of the entries I .  However, this 
could be difficult and it is better to use the estimated, or empirical, information with 
terms 

i ~ 0 0 
.i~1 ~ In fl2(0ai, 02j ] *1)-~ k ln f12(Olj, 02j I vl), 

where each partial derivative is evalua!t,.d at the maximum likelihood estimator. 
Different asymptoties apply if we include hi2 = 0 in the parameter space. If ~1 and 

tr are still bounded away from 0, or known, then according to the results in Self and 
Liang (1987), Theorem 2 and Case 2 of p. 606. 

v/nk12 has limiting distribution ZII[Z1 > 0] where Z1 has a normal distribution 
with variance determined from 1-1.  The cases where al = 0 and/or ~2 = 0 are treated 
similarly. 

We next consider likelihood ratio tests. There are really three cases, each progres- 
sively more complicated. In all cases, the test for independence is equivalent to testing 

Ho : ~i2 = 0 versus H1 : st2 > 0. 
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Case 1. The marginal distributions are known. Let L be the likelihood, the prod- 
uct of the joint pdf's, assuming that #1 and #2 are known, then 

L~/LHo = [I0(~12)]-~e ~ Y~, ~o~(2~[F~(O~d--F2(O~dl-m~). 

The likelihood ratio test, denoted by - 2  In An, is based on 

E COS(27Y[Fl(01i) -- F2(02i)] - / t 1 2 ) '  
i 

where the maximum likelihood estimator /t12 : 2T'[F 1 -- F2]. If ~12 is also known, 
this is a uniformly most powerful test since we are then in the exponential family case. 
Otherwise, since the marginals are known, we treat 2~r [F1 (01~)- F2 (02i)] = @ as a single 
angle. From the form of -21nAn, this test can be viewed as the maximum likelihood 
test for the concentration parameter in a one-sample case (p. 126 of Mardia and Jupp 
(2000)) and it reduces to 

2n[k12Rr - In I0 (k12)], 

where Re  = Re~n, the resultant Re = + S~, C4 = Ei= l  CO8r and Sr = 

1 s in  r 

We note that the null hypothesis raises the boundary problem, and the limit dis- 
tribution of - 2  ln An is not that of X~- Instead, according to Self and Liang (1987), the 
correct limiting null distribution of - 2  In An is that  of the random variable Z2I[Z > 0], 
where Z has a standard normal distribution and I(A) is an indicator function. 

Case 2. Von Mises marginals with location parameters #1, it2 and ~t12 known. 
The likelihood ratio test is denoted by - 2  In An, where 

)~n = sup~,~= H i  fl(01i ] m1)f2(02i ]tr 

sUp~1,~2,~12 H i  f12( 01i' 82i I/~1,/~2,/~12) ' 

provided that t~l and n2 are not 0. The limiting null distribution of - 2  ln An is again 
that  of Z2I[Z > 0]. 

Case 3. All six parameters of the distribution are unknown. We do the full likeli- 
hood ratio test with numerator of An 

sup n fl(Oli ]~l,]-t1)f2(02i t /'~2,.2) 

and denominator of An 

sup n f12(01i, 02i [ ~1, tr tr ~tl, ~t2, /s 
i 

There are three sub-cases: (a) when ~1 # 0 and ~2 # 0, by Case 5 in Theorem 3 of Self 
and Liang (1987), the limiting null distribution of -21nAn is that of Z2I[Z > 0], (b) 
when/~1 : 0 or ~2 = 0 but / s  # /~2 ,  then the distribution is (1/2)Fx~ + (1/2)Fx~ (Case 6 
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of Theorem 3 in Self and Liang (1987)), and (c) when bo th  gl ---- 0 and ~2 = 0, then  the 
dis tr ibut ion is 

3 

k--~0 

where F ~  denotes the cdf of random variable X 2 (Case 9 of Theorem 3 in Self and Liang 

(1987)). 

4. An application 

In this section, we apply  our model  and algori thm to paired wind directions in 
Johnson and Wehrly (1977). The  wind directions at  6 a.m. and 12 noon were measured 
each day at a weather  s ta t ion  in Milwaukee for 21 consecutive days. Th e  wind directions 
in degrees are listed in Table  1 and plo t ted  as dots in Fig. 3. We denote  the wind 
directions at 6 a.m. by {31 and those at noon 02.  

Testing for independence in O1 and O2 is equivalent to test ing H0 : ~m = 0 under  
model  (1.1). We apply the  likelihood rat io test  in Section 3 (Case 3), with 4 parameters  
under  the null hypothesis  and 6 parameters  under  the alternative.  Th e  likelihood rat io 
test  statistic ( -21nAn)  equals 11.3. The  test  is significant against b o th  99% critical 

values of Case 3(a) (2.33) 2 (assuming ~i r 0, i = 1, 2). Thus the circular association 
between O1 and O2 is significant at 99% significance level. This  agrees with the results 

Table 1. Wind directions at 6 a.m. (01) and atnoon (02). 

01 356 97 211 232 343 292 157 302 335 302 324 
92 119 162 221 259 270 29 97 292 40 313 94 

91 85 324 340 157 238 254 146 232 122 329 
02 45 47 108 221 270 119 248 270 45 23 

~a,, o 

l l , ~ i 

0 , 2 3 4 

o 

o/  
i i 5 6 

Fig. 3. 2D Contour plots of BVM(4.8, 0.6, 4.6, 0.2, 5.1, 1.2). 
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Fig.  4. Q Q - p l o t s  of  0 1  and  02 versus  von Mises  quant i les .  

of applying circular Kendall's tau and circular Spearman's rho in p. 149 of Fisher (1995). 
Next question of interest is: which BVM model do these wind directions fit? 

We have fitted the data by the MLE algorithm with all six parameters unknown in 
(1.1). The algorithm was run twice where the first run used 1,000 and the second 4,096 
different initial vector values. The MLEs obtained by the two experiments converge at 
the first decimal place. Thus we do not need to execute the algorithm at more initial 
values. The approximate MLEs obtained a r e  ~t 1 = 4 .8 ,  k 1 = 0.6, /22 = 4.6, ~2 = 0.2, 
/512 = 5.1 and k12 = 1.2. We plot the wind directions data on the approximate 50%, 70% 
and 90% 2D contours of the jpdf of BVM(4.8, 0.6, 4.6, 0.2, 5.1, 1.2) in Fig. 3. The data 
seem to fit the BVM model well. QQ-plots of quantiles of O1 versus VM(4.8, 0.6) and 
quantiles of O2 versus VM(4.6, 0.2) in Fig. 4 also show that it is reasonable to assume 
that  the marginals are von Mises. 

5. E m p i r i c a l  p o w e r  s t u d y  

We consider tests of independence under alternatives ~12 > 0. Powers of the likeli- 
hood ratio test in Case 2 of Section 4, that  use both the empirical critical value (from 
5,000 simulations, denoted by r7E) and the theoretical critical value of Z2I[Z > 0] at the 
95% level (r7), are compared with powers of the other six tests considered in Johnson 
and Shieh (2002). This likelihood ratio test is expected to do best since some parameters 
are assumed to be known. The general case, Case 3 of the likelihood ratio test, took too 
long to simulate adequately. 

Let Xl,.  �9 �9 ~n and YI, �9 --, Yn be two random samples of observations on two p- 
dimensional spheres (S p- 1 x S p-l) ,  respectively. The following tests have been proposed 
for testing independence of bivariate p-dimensional data. Here, we apply them to bi- 
variate circular data (the case that  p = 2). We note that xi = ( c o s ( O l i ) ,  sin(Oli)) T, for 

n i = 1 , . . . ,  n, -~ = ~-~-i=1 x i / n ,  Yi = (cos(02~), sin(02i)) T and ~ = ~i%1 Yi /n .  
Stephens (1979), following Mackenzie (1957), proposed 

! P 

(5.1) r l  = mQ ax xi Q---yin -- E V~, 
i=1 

where Q is an orthogonal matrix and "}/1 ~-- ")'2 ~ " ' "  ~ ~p > 0 are the eigenvalues of 
n - i X  Y ' Y X ' ,  where X = [Xl , . . . , xn ]  and Y = [ Y l , . . ,  Y~]. If Q is restricted to be 
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a rotation so det{ Q} = 1, the statistics is denoted by r +. 

rl ,  if de t{X  Y'} > 0, 

(5.2) r+ = x / ~  + v f ~  + " "  + 7v@7 L7-1 - v /~ ,  otherwise. 

Fisher and Lee (1983, 1986) proposed the statistic 

(5.3) r 2 =  
Y~.(p) de t [x i l , . . . ,  xip] det[yi~, . . . ,  Yip] 

i~--~.(p) det2[xi~, . . . ,  xip] }-~.(p)det2[yi~,..., yip]' 

where y~.(p) denotes the sum over 1 _< i l  _< " ' "  < ip <_ n. Other well known statistics de- 
pend on the centered observations xi  - ~  and Yi - Y  through the usual sample covariance 
matrix E. 

Johnson and Wehrly (1977) introduced the statistic 

(5.4) r 3 : ~ 1 ( ~ - ' ] 1 ~ - ] q 2 ~ ] 2 ~ - ~ 2 1 ) ,  

which is the largest eigenvalue of the sample covariance matrix of the centered vectors. 
Jupp and Mardia (1980, 1989) considered 

(5.5) r4 = tr(~11~12~]2-21~21), 

where tr(A) denotes the trace of matrix A. Johnson and Shieh (2002) study the centered 
version of r 2 ,  

(5.6) r s =  
~(p)  det[xi~ - ~ , . . . ,  xiv - ~] det[yi~ - Y , . . . ,  Yip - Y] 

~/Y~(p) det2[xil - $ , . . . ,  xip - 5] }-~.(p) det2[yil - y , . . . ,  Yip - Y] 

Let sgn(x) = 1, 0 or - 1  if x >, = or < 0. Finally, we include the rank statistic 

/ '6 ~-- (3)-l E 8gn(eli-Olj)sgn(elj-elk)sgn(elk-eli) 
l<_i<j<k<_n 

X sgn(02i - -  O 2 j ) s g n ( O 2 j  - -  0 2 k ) s g n ( O U k  -- 02i) 

developed by two different arguments (see Fisher and Lee (1982), and Shieh et al. (1994)). 
Critical values of rl to r6 have been estimated by generating 5,000 simulations of 

50 and 100 pairs of angles under model (1.1) with/.t 1 : /.t 2 ---- 71", ~12 ---- 0 ,  and both tel 
and ~2 varying from 0.5, 1.5 to 3.0. 

Large values of ~12 correspond to strong dependence between 01 and 02 and hence 
large power of each test. We increased n12 from 0.25 to 5.00 to obtain power in each 
case. All cases simulated show that, as expected, the likelihood ratio test is the most 
powerful among all tests in both sample sizes studied. Due to space limit, we only present 
result of sample size 50 (Tables 2-4); results of sample size 100 can be obtained from the 
corresponding author. 

When both 01 and 02 are concentrated around their means (~1 = tr > 1.5) and 
n12 _> 0.75, r5 is more powerful than its uncentered version r2 except for one case in 
Table 3 with n12 = 0.75. Whereas in all other cases, r2 is more powerful than rs. With 
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Table 2. Empirical powers of some tests for independence with da ta  simulated from 
BVM(Tr, 0.5, r ,  0.5, 0, tr and sample size 50. 

~12 r l  r l  + r2 r3 r4 r5 T6 r7E r7 

0.00 0.050 0.050 0.050 0.051 0.050 0.050 0.051 0.050 0,054 

0.25 0.173 0.233 0.224 0.114 0.126 0.151 0.121 0.334 0,343 

0.50 0.530 0.643 0.599 0.347 0.420 0.500 0.367 0.788 0.797 

0.75 0.859 0.913 0.883 0.682 0.777 0.828 0.710 0.973 0.975 

1.00 0.979 0.990 0.981 0.912 0.965 0.970 0.923 0.998 0.998 

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 3. Empirical powers of some tests for independence with da ta  simulated from 
BVM(Ir, 1.5, 7r, 1.5, 0, t~12) and sample size 50. 

t~12 r l  r l  + r2 r3 r4 r5 T6 TTE T7 

0.00 0.051 0.050 0.050 0.050 0.050 0.050 0.051 0.050 0.053 

0.25 0.115 0.165 0.166 0.108 0.106 0.116 0.121 0.331 0.339 

0.50 0.256 0.360 0.373 0.271 0.287 0.314 0.367 0.790 0.797 

0.75 0.483 0.597 0.617 0.514 0.558 0.591 0.710 0.975 0.976 

1.00 0.699 0.789 0.798 0.731 0.795 0.803 0.923 0.999 0.999 

2.00 0.987 0.994 0.993 0.996 1.000 0.998 1.000 1.000 1.000 

3.00 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

5.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 4. Empirical powers of some tests for independence with data  simulated from 
BVM(vr, 3.0, 7r, 3.0, 0, ~12) and sample size 50. 

~12 r l  W1 + r2 r3 r4 r5 T6 r7E r7 

0.00 0.050 0.050 0.050 0.051 0.050 0.050 0.051 0.050 0.053 

0.25 0.091 0.115 0.127 0.101 0.099 0.104 0.121 0.329 0.337 

0.50 0.154 0.214 0.246 0.207 0.220 0.231 0.367 0.790 0.798 

0.75 0.272 0.348 0.417 0.390 0.417 0.427 0,710 0.976 0.977 

1.00 0.404 0.488 0.570 0.569 0.615 0.622 0,923 0.999 0.999 

2.00 0.745 0.806 0.873 0.944 0.971 0.959 1,000 1.000 1.000 

3.00 0.879 0.912 0.949 0.995 0.999 0.992 1,000 1.000 1.000 

5.00 0.955 0.969 0.988 1.000 1.000 0.999 1.000 1.000 1.000 

~12 f ixed ,  i n c r e a s i n g  b o t h  t~ 1 a n d  ~2, d o e s  n o t  c h a n g e  t h e  p o w e r  o f  t h e  r a n k  t e s t  a n d  

t h e  l i k e l i h o o d  r a t i o  t e s t  ( b o t h  r7 a n d  rTE) .  T h e  r a n k  t e s t  is we l l  k n o w n  t o  b e  sca le  f ree;  

t h e  l i k e l i h o o d  r a t i o  t e s t  b a s e d  o n  t h e  p r o p o s e d  m o d e l  is a l so  s ca l e  f ree  s i nce  i t  is b a s e d  

o n  t h e  j o i n t  d i s t r i b u t i o n  d e r i v e d  f r o m  t h e  c o p u l a  in  (2.1) .  H o w e v e r ,  t h e  p o w e r  o f  e a c h  

o f  t h e  o t h e r  t e s t s  ( r l  t o  r5)  d e c r e a s e s ,  a n d  w e  l e a v e  w h a t  c a u s e s  t h i s  p h e n o m e n o n  as 

a n  o p e n  q u e s t i o n .  W h e n  n l  # n2, for  i n s t a n c e  0.5 = n l  < n2 = 1.5 o r  v i c e  v e r s a ,  for  
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any fixed a12 the power of tests rl to r5 appears to be between those of rl to r5 with 
t~ 1 = t~ 2 ~-- 0.5 in Table 2 and with al  = a2 = 1.5 in Table 3. However, the power of 
r6 and the likelihood ratio test should remain invariant. We note that  the power of all 
seven tests will be invariant with respect to the location parameters #~ for i = 1, 2 as 
shown in the dependence of O1 on 02 in Section 2. Thus our simulation study applies 
to a wide range of situations. 

6. Concluding remarks 

We investigated inferences procedures under a bivariate circular model with von 
Mises marginals. An algorithm to generate paired circular data and some 2D contour 
plots of the model were provided. MLEs for parameters involved and tests for inde- 
pendence were studied. A simulation study showed that  the proposed likelihood ratio 
test is more powerful than six existing tests for independence between paired circular 
data. The copula in (2.1) entitles the likelihood ratio test scale free for circular-circular 
dependence. Furthermore, the neat closed form of the yon Mises marginals enables the 
proposed model being extended to other bivariate models easily. Especially, marginals 
of gene locations in circular genomes were found to be skewed (Horimoto et al. (1998) 
and Horimoto et al. (2001)). Thus to compare similarity between two circular genomes, 
we shall extend this bivariate family to one that  has skewed marginals. We leave this as 
an open question. 
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