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Abstract. There is very little literature concerning modeling the correlation be-
tween paired angular observations. We propose a bivariate model with von Mises
marginal distributions. An algorithm for generating bivariate angles from this von
Mises distribution is given. Maximum likelihood estimation is then addressed. We
also develop a likelihood ratio test for independence in paired circular data. Applica-
tion of the procedures to paired wind directions is illustrated. Employing simulation,
using the proposed model, we compare the power of the likelihood ratio test with six
existing tests of independence.
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1. Introduction

Testing for independence in paired circular (bivariate angular) data has been ex-
plored by many statisticians; see Fisher (1995) and Mardia and Jupp (2000) for thorough
accounts. Paired circular data are either both angular or both cyclic in nature. For in-
stance, wind directions at 6 a.m. and at noon recorded at a weather station for 21
consecutive days (Johnson and Wehrly (1977)), estimated peak times for two successive
measurements of diastolic blood pressure (Downs (1974)), among others. After indepen-
dence in circular variables been rejected, modeling circular correlation (association) and
making inferences become of primary interest.

In this article, we investigate inference procedures under a special case of the bi-
variate families proposed by Wehrly and Johnson (1980) (see also Johnson and Wehrly
(1977)). This case is the first bivariate correlated model with von Mises marginal distri-
butions. The probability density function (pdf) of von Mises is in closed form, and von
Mises is parallel to normal distribution for univariate data.

Some literatures related to this article are the following. Mardia (1975a, 1975b)
proposed a bivariate von-Mises model for paired angles (0;,6;) with probability density
functions proportional to

exp{k1 cos(f1 — p1) + Ko cos(f2 — p2) + (cos by, sin 6:)T A(cos B, sin 62)},

where 0 < k; < 00, 0 < p; < 27 with 4 = 1,2 and A is a 2 x 2 matrix. Although the
conditional distributions of 8; (62) given 62 (6) are von Mises-Fisher, the marginal dis-
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tributions are not von Mises. Saw (1983) constructed some distributions for dependent
unit vectors; Rivest (1988) provided thorough inference procedures for a bivariate gener-
alization of the Fisher-von Mises distribution. Singh et al. (2002) replaced the quadratic
term and the linear term in the bivariate normal density by their angular analogues and
proposed an interesting probabilistic model for bivariate circular variables.

In particular, we investigate inference procedures under the bivariate distribution
with von Mises marginals (BVM) having probability density function:

1
(1.1) Fr2(01,62) = 27 f1(01) fo(62) 5 ( )e'mCOS(%[FI(91)_F2(92)]““”),
Tio\K12
where 0 < 61, 0; < 27, k12 > 0, 0 < p12 < 27 and Ip(-) denotes the modified Bessel
function of order zero. The marginal densities

1

£i(65) = 557 ¢ )e”j cos0—#5)  for j=1,2
0\fvy

are von Mises with mean p; and dispersion parameter «;, respectively, and will be
denoted by VM(p;, ;) henceforth. This joint density involves the cumulative distri-
butions F;(6y) = : ® f;(6)df, but with todays computing power this is not a serious
drawback. We note that this class of bivariate circular distribution can include more
general marginals, for example t-distribution (Shimizu and Iida (2002)). However, the
pdf of von Mises distribution is in closed form, so we focus on von Mises marginals here.

In Section 2, we introduce the BVM model and an algorithm to generate the model is
given. 2D contours plots of the joint probability of some BVM models are demonstrated.
In Section 3, we investigate the maximum likelihood estimation and derive a likelihood
ratio test for independence under the BVM model. Next, we apply the model and
inference procedures to paired wind directions data in Section 4. Using the BVM model,
the power of a likelihood ratio test is compared to six existing tests (Johnson and Shieh
(2002)) in Section 5.

2. Some properties of the BVM model

2.1 Roles of u12 and ki

We first discuss the copula presentation of the BVM model and then we utilize
the copula to interpret the roles of two parameters p12 and K12. Let (u,v) be random
variables on the unit square with density function:

(2.1) £(u,v) = emzeos@rlu—vl=ma) /[y (c,5),

where k19 > 0 and 0 < p19 < 27. It is easily checked that the marginal distribution of
U and V are uniform so that f(u,v) is the density function of a copula. Let Fy and F»
denote von Mises marginal distributions, then (F~!(u), F~1(v)) has the proposed BVM
joint density function. From (2.1), it is clear that 2w(u — v) follows a VM(uy2, k12).
Thus ®; = 27F1(01) given 6, is VM(u12 + 2mF5(62), k12). When pi2 = 0, @1 centers
on 27F5(0;), and the dependence of ©; on Oy is through the magnitude of k2. The
conditional density of ©, | ©2 = 5 is given in Subsection 2.2.

The proposed model does reduce to the bivariate normal distribution as fluctuations
in #; and 6, are sufficiently small provided that pi2 = 27[Fi(u2) — Fa(uz2)] and f; is
continuous at u; for i = 1,2. With approximations cos(6; — u;) = 1 — (6; — u;)?/2 and
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sin(6; — ;) =~ (6; — ;) for i = 1,2, the proposed joint pdf reduces to C exp(x; + K2+ k12—
skt + w2/ I8 (5)](01 — p1)? + (K2 + k12/1§ (82)](82 — p2)® + 2612/ [To (k1) To(k2)] (61 —
p1)(62 —p2)}), where C is a normalizing constant. The parameters of the approximating
bivariate normal correspond to those of fi9 as follows:

pr2 = —k12{[K12 + K1 IE(K1)][k12 + K2l (r2)]} 712,

0} = [k + ral§ (k) {r1r2I§ (K2) + Kialkr + ko l§ (K2) /I3 (k1)]}
and

03 = [k1g + m1§ (k) {m1m2 LG (k1) + mialea + k1 I3 (k1) /I3 (k2)]} 7

The bivariate normal is unimodal thus a necessary condition for unimodality of
the proposed jpdf is u1g = 27 [F1{i1) — Fa{pe)]. After computing the first and second
derivatives of fy2, we applied the unimodality condition and test for extrema to show
that (u1,p2) is the mode. Setting the first derivatives 0f12/00) = — fia(k1 sin(6) —
,Uq) + K12 Sin{27r[F1 (61) — F2(92)] — [112} X 27Tf1) and 8f12/302 = —f12(IS72 sin(92 — ,ug) —
K12 sin{2n[Fy(61) — F2(62)] — w1z} x 27 f2) to zero, we had the solutions (u,, u2) and
(g1 + m, p2 + ) (mod 27) under the unimodality condition. Since 8% f12/80%|(,, up) =
~fizlk1 + K12/I§(k1)] < 0 and {0°f12/0070° f12/063 — [0°f12/0610602)"} | (s u0)=
falrike + k12(2m) 2 (k2 f? + K1 f2)] > 0, (u1,p2) is the mode. Similarly, we obtained
that (u1 + 7, g + 7) is the minimum.

Our numerical calculations suggest that the joint pdf of ©; and O3 is uni-modal
provided that p12 = 1 — us which is consistent with the aforementioned condition since
Fy and F; are uniform on [0, 1]. If 412 = 0, then p; = po is required for the unimodality
of fio. Thus u1o is also a shape parameter beside k1, k2 and K12. 2D contours of a BVM
with fixed g3 = m, 2 = 0, K1 = k2 = 3.0 and k12 = 4.0, and with gy varying from 0
(bi-modal) to w (uni-modal) are illustrated in Fig. 1, respectively.

The parameter k12 models the circular correlation of ©; and 6. This is illustrated
by the 2D contours of the jpdf of BVM(r, 3.0, x, 3.0,0, K12) in Fig. 2. As ki increases
from 0, 1, 4 to 7, the circular association of ©; and O increases since the 2D contours
of the jpdf get narrower and center around the 45° line. There is no unique theoretical
definition of association for bivariate circular random variables. Instead, a few variety
of circular-circular association estimates based on samples were proposed, for instance
71 to 1g In Section 5. Thus to illustrate the relationship between k15 and the association
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Fig. 1. Joint pdf of §; and 82 from BVM(x,3.0,0,3.0, z£12,4).
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Fig. 2. Joint pdf of 81 and 62 from BVM(=,3.0,7,3.0,0,x12).

between 6, and O, we have simulated 1,000 copies of r; to r¢ under the BVM model
with gy = ps = 7, p12 = 0 and k1 = ko = 1.5. Noticeably, the average of 1,000 r5’s
increases from 0.00 (rounded to 2 decimal place), 0.12, 0.24, 0.57 to 0.69 when k13 varies
from 0, 0.5, 1, 2 to 3; the other five association measures also show the same increasing
trend.

2.2 BVM random vector generator

We suppress the parameters and write f;(6;) and F;(6;), ¢ = 1,2 for the marginal
density functions and cumulative distribution functions, respectively. A simple integra-
tion verifies that f12(6;, 62) does indeed have these marginal distributions. Consequently,
the conditional density of ©; | ©; = 02 is

r1z cos(2m[F1(81)—F2(02)]—pa2)

Sij2(61 | 62) = 27 f1(61) e

1
271’[0(/‘.‘,12)

Under the BVM distribution, ®; = 27F;(0;), given 65 has a von Mises distribution
with k15 and location parameter u2 + 27 F5(62). This fact helps us generate pairs of
angles (©1,0-,) having the joint density function fiz(-,-). In particular,

1. Generate V; as von Mises(0, k2) and set ©g = V5 + pg (mod 27).

2. Generate V] as von Mises(0, x12) and, given Oy = 05, set

Wi = Vi + pi2 + 27 F5(62) (mod 27)

so W1 has the conditional distribution of 27 F;(0).

3. Finally, set
(W
=1 (EF)
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Then, (©1,02) are distributed as fi.
More generally, we can make the transformation 8 — 3.

B =0
B2 = 2m(F1(61) — F2(02))

which has Jacobian (—27 f2(6;)). Consequently, the joint density is

1 K1 cos(B1—puy) 1
2nlo(k1) 2nlo(K12)

ef12 cos(Ba—p12)

Since the joint density of 81 and f; factor into two parts, we conclude that ©, is indepen-
dent of 27 (Fy(©1) — F2(O2)) which has a von Mises {k12, pt12} distribution. Similarly, we
can show that ©5 is independent of 27 (F1(©1) — F»(02)). A BVM random vector gener-
ator written in Fortran 77 can be downloaded from http://www.stat.sinica.edu.tw/
“gshieh/.

The following is an algorithm to generator a BVM(u1, k1, p2, K2, f12, k12) random
vectors.

Step 1. We approximate the area under the von Mises density function (a curve)
by a polynomial of certain degree, using the gauleg function in Press (1999), in each
small interval { (i%l%', %2%), where N =500 and ¢ = 1,..., N. We note that N can be
other large constant.

Step 2. We tabulate all approximate cumulative areas under a VM(0, k2) density
and denote them FzN(WfOZW), i=1,...,500.

Next, we generate a random uniform variable from (0, 1), and denote it Uy. When
the generated uy in the interval [Fon (5552), Fan(55527)), we linearly interpolate be-
tween =127 and =27 to get a corresponding angle vo. Then we can shift the mean of

500 500
Vs to pg by Vo + pg (mod 27) and denote it by 6.

Step 3. Similarly, we can generate another von Mises random variable V; which
follows VM(p12, £12). Then, convoluting Vi and 2nF,n(602) (mod 27),

Wl = 1/1 + 27TF2N(92) (HlOd 27'(')
Recall that Fypy is the tabulated cumulative area under a VM(0, k2) from Step 2.

Step 4. Similar to Step 2, for ¢ = 1,...,500 we tabulate I} N(—E&Qﬂ-) which de-
notes the approximate cumulative area under a VM(0, ;). Finally, we invert W1 /(27)
according to the tabled values of Fin(-) to get 6.

2.3 2D contours and other properties
Contour plots of the joint density provide insight into the manner in which the
parameter %15 indexes the amount of probability that concentrates along the curve

27T(F1(91 | I€1,M1) - Fz(gz | Kz,/,l,g)) = K12 (mod27r).

When the marginal distributions are identical, probability concentrates along the line
f1 = 03 when p;2 = 0.
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For the case of identical marginal distributions, we have drawn the contours on
[0,27) x [0,27) for the values 0, 1, 4 and 7 of k12. We have selected pu; = py = «
so the peak is in the center of the region. We have selected 12 = 0 since fio takes
its maximum at g2 = 0 when F; = F,. The contours in Fig. 2 pertain to marginal
distributions having the common k; = kg = 3.0. The approximate 50%, 70% and 90%
contours nearby which their corresponding probability labeled are shown. Going from
independence k13 = 0 to K13 = 1, we see how the circular contours distort somewhat.
The densities for the intermediate values between 1 and 6 have some small secondary
modes. At k12 = 7 and beyond we see the concentration along a line. The contours are
clearly symmetric about the line #; = 6, and the line 27 — §; = 65. The contours for the
increasing values k12 = 0, 1, 4 and 7 are also symmetric about these two lines. Increasing
K12 concentrates the probability about the equal angular line. 2D contour plots instead
of 3D perspective plots are illustrated since contour plots indicate confidence regions
more clearly.

3. Estimation and testing

Although some of the parameters enter the joint density in a rather complicated
manner, modern maximization programs enable us to easily obtain the maximum likeli-
hood estimates (MLEs). We applied the FORTRAN code FFSQP, Version 3.7 by Zhou
et al. (1997) to obtain the MLEs of unknown parameters in model (1.1) and call the
program the MLE algorithm henceforth. Then, estimates of their variances and covari-
ances can be obtained from derivatives of the likelihood or by numerical integration of
the squares and products of the partial derivatives given below.

The code FFSQP does not prevent the estimates from being trapped in local max-
ima, thus we have applied a technique which is popular in the artificial intelligence com-
munity to get an approximate global maximum. To obtain the MLEs of a k-dimensional
(k > 1) parameter, we first partition the range of each parameter coordinate 27 into m
equal intervals. Next, we repeat the algorithm N (a big number) times; at each time
one starts the algorithm with a different initial vector value. The initial value is sampled
from N cubes out of the total m* cubes. A global maximum is equal to the maximum
of the N local ones. We further repeat the above process with Ny (> N) different initial
values. If the two global maxima obtained from the two experiments (with N and N;
different initial values) converge, then we stop and declare that the approximate global
maximum obtained. An alternative way to estimate these six parameters is to estimate
u; and k; for i = 1,2 from the marginals since the likelihood function given p; and k;
1 = 1,2 is concave in g2 and k2. Then one plugs the estimates in the joint likelihood
function to estimate py2 and k12 as proposed in Subsection 3.3 of Rivest (1988). The
latter algorithm reduces this optimization problem in R® to three optimization problems
in R? and hence is more efficient. '

We write 1 = (K1, 1, K2, 2, K12, 12)’ for the vector of six unknown parameters.
The parameter space is then

Q={0<k1 <00,0< p; <2m,0< kg < 00,0 < pg < 2m,
0§I‘L12<OO,OS/.L12<27F}.

Let l,,(n) denote the log-likelihood function, Un(n) and —I,(n) the first and the
second derivatives of [,,(n), respectively. Furthermore, we denote the neighborhood of the
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true parameter 1, by B(n,). The regularity conditions in Self and Liang (1987) imply
the root-n consistency of the MLEs. We restate the regularity conditions as follows:

(i) almost sure existence of the first three derivative of {,,(n) with respect to n on
the intersection of B(n,) and €2,

(ii) on the intersection of B(n,) and €2, n~! times the absolute value of the third
derivatives of [,,(n) is bounded by a function f(X1,...,X,), where Ef(X1,...,Xn) <
o0, Xi = (011-,021-)T and

(i) E(In(n)/n) = I(n) is positive definite on B(n,) and I(n,) is equal to the
variance-covariance matrix of n=/2U ,(n,).

When the vector of parameters 17 belongs to the interior of the parameter set, the
regularity conditions hold and the consistency of the MLEs follows. Then asymptotic
multivariate normality of the maximum likelihood estimators follows from Lemma 1 and
Theorem 2 of Self and Liang (1987).

THEOREM 3.1. Let np belong to the interior of the parameter set. The maximum
likelihood estimator, 1), is asymptotically multivariate normal, and

Vn(i) — n) converges in distribution Ng(0, ™),

where I is the Fisher information matriz with entries

Ly(m)=E

0 0
o In f12(©1, 02 | n)‘éﬁglnfl2(@1,@2 ln)]|.

Let A(x) = I})(k)/Io(k). The siz partial derivatives are straightforward and are omitted.

Remark. If some of the parameters are known, then asymptotic normality holds
for the reduced set with the corresponding entries in the information matrix.

Numerical integration can be used to obtain each of the entries I. However, this
could be difficult and it is better to use the estimated, or empirical, information with
terms

li 0 In f12(01;, 02; |17)ilnf12(91' 025 | m)
nj___l 8771 1117747 ank Jr V4] ’
where each partial derivative is evaluated at the maximum likelihood estimator.

Different asymptotics apply if we include 12 = 0 in the parameter space. If k1 and
ko are still bounded away from 0, or known, then according to the results in Self and
Liang (1987), Theorem 2 and Case 2 of p. 606.

V/nkie has limiting distribution Z;I[{Z; > 0] where Z; has a normal distribution
with variance determined from I™'. The cases where x; = 0 and/or ko = 0 are treated
similarly.

We next consider likelihood ratio tests. There are really three cases, each progres-
sively more complicated. In all cases, the test for independence is equivalent to testing

Hy:ki5=0 versus H;:k12>0.
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Case 1. The marginal distributions are known. Let L be the likelihood, the prod-
uct of the joint pdf’s, assuming that y; and ps are known, then

Lty /Lty = [o(mng)) ™2 2o csCrlP @)= a(Bal-nz)
L .
The likelihood ratio test, denoted by —21n )\, is based on

Z COS(27I'[F1(911‘) b F2(62i)] - .[1'12)7

where the maximum likelihood estimator fi;o = 27[F] — F3]. If pyo is also known,
this is a uniformly most powerful test since we are then in the exponential family case.
Otherwise, since the marginals are known, we treat 27 [F;(61;) — Fa(02:)] = ¢; as a single
angle. From the form of —2In A,,, this test can be viewed as the maximum likelihood
test for the concentration parameter in a one-sample case (p. 126 of Mardia and Jupp
(2000)) and it reduces to

2n[/%12R¢ - lnlo(f:.‘,12)],

where Ry = Rg/n, the resultant Ry = (/C3+ 52 Cy = 3 72 cos¢; and Sy =
Yoo, sing;.

We note that the null hypothesis raises the boundary probiem, and the limit dis-
tribution of —21n A, is not that of xZ. Instead, according to Self and Liang (1987), the

correct limiting null distribution of —21n A, is that of the random variable Z2I[Z > 0],
where Z has a standard normal distribution and I(A) is an indicator function.

Case 2. Von Mises marginals with location parameters py, po and g2 known.
The likelihood ratio test is denoted by —21n A,,, where

_osupy, o, T f1(600 | k1) f2(02i | 2)
SUDy, xy ko 11; J12(013, 02 | K1, K2, K12)

n

provided that k; and k2 are not 0. The limiting null distribution of —21In A,, is again
that of Z2I[Z > 0].

Case 3. All six parameters of the distribution are unknown. We do the full likeli-
hood ratio test with numerator of A,

sup [ ] f1(0ui | K1, p01) fa(2: | K2, pt2)

K1,K2,01,1H2 i

and denominator of A,

sup T f12(61i, 62i | 51, K2, K2, 1, o2, pa2).
K1,K2,812,01,H2,H12

There are three sub-cases: (a) when k; # 0 and k2 # 0, by Case 5 in Theorem 3 of Self
and Liang (1987), the limiting null distribution of —2In A, is that of Z2I[Z > 0], (b)
when k1 = 0 or k3 = 0 but K1 # kg, then the distribution is (1/2)Fx§ +(1/2)Fyz (Case 6
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of Theorem 3 in Self and Liang (1987)), and (c) when both x; = 0 and k2 = 0, then the

distribution is 5
3
W3 (3) P
k=0

where in denotes the cdf of random variable x% (Case 9 of Theorem 3 in Self and Liang
(1987)).

4. An application

In this section, we apply our model and algorithm to paired wind directions in
Johnson and Wehrly (1977). The wind directions at 6 a.m. and 12 noon were measured
each day at a weather station in Milwaukee for 21 consecutive days. The wind directions
in degrees are listed in Table 1 and plotted as dots in Fig. 3. We denote the wind
directions at 6 a.m. by ©; and those at noon ©,.

Testing for independence in ©, and ©; is equivalent to testing Hp : k12 = 0 under
model (1.1). We apply the likelihood ratio test in Section 3 (Case 3), with 4 parameters
under the null hypothesis and 6 parameters under the alternative. The likelihood ratio
test statistic (—2InA,) equals 11.3. The test is significant against both 99% critical
values of Case 3(a) (2.33)> (assuming ; # 0, ¢ = 1,2). Thus the circular association
between O and O, is significant at 99% significance level. This agrees with the results

Table 1. Wind directions at 6 a.m. (¢1) and at noon (2).

6, 356 97 211 232 343 292 157 302 335 302 324
62 119 162 221 259 270 29 97 292 40 313 94
01 85 324 340 157 238 254 146 232 122 329
02 45 47 108 221 270 119 248 270 45 23

Fig. 3. 2D Contour plots of BVM(4.8,0.6,4.6,0.2,5.1,1.2).
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Fig. 4. QQ-plots of 81 and 82 versus von Mises quantiles.

of applying circular Kendall’s tau and circular Spearman’s rho in p. 149 of Fisher (1995).
Next question of interest is: which BVM mode! do these wind directions fit?

We have fitted the data by the MLE algorithm with all six parameters unknown in
(1.1). The algorithm was run twice where the first run used 1,000 and the second 4,096
different initial vector values. The MLEs obtained by the two experiments converge at
the first decimal place. Thus we do not need to execute the algorithm at more initial
values. The approrimate MLEs obtained are fi; = 4.8, &3 = 0.6, fio = 4.6, &2 = 0.2,
f12 = 5.1 and A12 = 1.2. We plot the wind directions data on the approximate 50%, 70%
and 90% 2D contours of the jpdf of BVM(4.8,0.6,4.6,0.2,5.1,1.2) in Fig. 3. The data
seem to fit the BVM model well. QQ-plots of quantiles of ©; versus VM(4.8,0.6) and
quantiles of @, versus VM(4.6,0.2) in Fig. 4 also show that it is reasonable to assume
that the marginals are von Mises.

5. Empirical power study

We consider tests of independence under alternatives k;5 > 0. Powers of the likeli-
hood ratio test in Case 2 of Section 4, that use both the empirical critical value (from
5,000 simulations, denoted by 77x) and the theoretical critical value of Z2I[Z > 0] at the
95% level (r7), are compared with powers of the other six tests considered in Johnson
and Shieh (2002). This likelihood ratio test is expected to do best since some parameters
are assumed to be known. The general case, Case 3 of the likelihood ratio test, took too
long to simulate adequately.

Let 4,...,2, and y4,...,¥y, be two random samples of observations on two p-
dimensional spheres (SP~! x SP~1), respectively. The following tests have been proposed
for testing independence of bivariate p-dimensional data. Here, we apply them to bi-
variate circular data (the case that p = 2). We note that @; = (cos(6y;),sin(6y;))T, for
i=1,...,n,E=) 1, ®;i/n, y; = (cos(f2),sin(02))T and g =3, y;/n.

Stephens (1979), following Mackenzie (1957), proposed

z;Qy; 3
(5.1) 1 =mgx——g£ => V¥
=1

where Q is an orthogonal matrix and y4 > 72 > --- > 7, > 0 are the eigenvalues of
n'XY'YX' where X = [z1,...,z,) and Y = [y;,...,y,]. If Q is restricted to be
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a rotation so det{ @} = 1, the statistics is denoted by r; .
(5.2) IR T if det{XY'} >0,
. ' vnt+ e+t -1 — /Tp,  otherwise.
Fisher and Lee (1983, 1986) proposed the statistic
rg = Z(P) det[z;,, ..., i, detly, ..., yz'p]
\/i(p) det?[z,, ..., Ti,] > det®[y;,, . ., Yi,]

where >, denotes the sum over 1 <3 <--- < ip < n. Other well known statistics de-
pend on the centered observations @; —% and y, —y through the usual sample covariance

matrix .
Johnson and Wehrly (1977) introduced the statistic

(5.3)

)

(5.4) r3 = /\1(21_112122{21221),

which is the largest eigenvalue of the sample covariance matrix of the centered vectors.
Jupp and Mardia (1980, 1989) considered

(55) T4 = tr(f]ﬁlﬁ]uf];;ﬁ)m),

where tr(A) denotes the trace of matrix A. Johnson and Shieh (2002) study the centered
version of rq,

Z(p) det[mzl - E, veey :Blp - E] det[ytl - g’ ctt y’Lp - g]
\/f(p) det2[:1:i1 —T,..., %, — | Z(p) det2[yi1 Y, Y, — ]

Let sgn(z) = 1,0 or —1 if z >, = or < 0. Finally, we include the rank statistic

(56) Ts =

—1
re = (g) Z Sgn(91i — Hlj) Sgn(01j - Hlk) Sgn(alk _ 012)

1<i<j<k<n
x sgn(fz; — Oa;) sgn(fz; — O2x) sgn(fax — 62:)

developed by two different arguments (see Fisher and Lee (1982), and Shieh et al. (1994)).

Critical values of 71 to r¢ have been estimated by generating 5,000 simulations of
50 and 100 pairs of angles under model (1.1) with g3 = g2 = 7, p12 = 0, and both &,
and k2 varying from 0.5, 1.5 to 3.0.

Large values of k32 correspond to strong dependence between 6; and #; and hence
large power of each test. We increased k2 from 0.25 to 5.00 to obtain power in each
case. All cases simulated show that, as expected, the likelihood ratio test is the most
powerful among all tests in both sample sizes studied. Due to space limit, we only present
result of sample size 50 (Tables 2-4); results of sample size 100 can be obtained from the
corresponding author.

When both 6; and 6, are concentrated around their means (k3 = k2 > 1.5) and
K12 > 0.75, r5 is more powerful than its uncentered version r, except for one case in
Table 3 with k12 = 0.75. Whereas in all other cases, 75 is more powerful than r5. With
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Table 2. Empirical powers of some tests for independence with data simulated from
BVM(#,0.5,7,0.5,0, k12) and sample size 50.

K12 8} nt T2 3 4 T5 6 T7E 7

0.00 0.050 0.050 0.050 0.051 0.050 0.050 0.051 0.050 0.054
0.25 0.173 0.233 0.224 0.114 0.126 0.151 0.121 0.334 0.343
0.50 0.530 0.643 0.599 0.347 0.420 0.500 0.367 0.788  0.797
075 0.859 00913 0.883 0.682 0.777 0.828 0.710 0.973 0.975
1.00 0.979 0.990 0.981 0912 0.965 0.970 0.923 0.998 0.998
2.00 1000 1.000 1.000 1000 1.000 1.000 1.000 1.000 1.000
300 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Empirical powers of some tests for independence with data simulated from
BVM(n,1.5,7,1.5,0,12) and sample size 50.

K12 1 rt ) T3 T4 5 Tg g r7

0.00 0.051 0.050 0.050 0.050 0.050 0.050 0.051 0.050 0.053
0.25 0.115 0.165 0.166 0.108 0.106 0.116 0.121 0.331 0.339
050 0256 0.360 0.373 0.271 0.287 0.314 0.367 0.790 0.797
075 0483 0.597 0.617 0.514 0.558 0.591 0.710 0.975 0.976
1.00 0.699 0.789 0.798 0.731 0.795 0.803 0.923 0.999 0.999
2.00 0987 0.994 0993 0.996 1.000 0998 1.000 1.000 1.000
3.00 0999 0999 0999 1.000 1.000 1.000 1.000 1.000 1.000
5.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. Empirical powers of some tests for independence with data simulated from
BVM(r, 3.0,7,3.0,0,x12) and sample size 50.

K12 1 rt ro T3 T4 s 6 ™E Ty

0.00 0.050 0.050 0.050 0.051 0.050 0.050 0.0561 0.050 0.053
0.25 0.091 0.115 0.127 0.101 0.099 0.104 0.121 0.329 0.337
0.50 0.154 0.214 0.246 0.207 0.220 0.231 0.367 0.790 0.798
0.75 0.272 0.348 0.417 0.390 0.417 0427 0.710 0976 0.977
1.00 0.404 0.488 0.570 0.569 0.615 0.622 0923 0.999 0.999
200 0.745 0.806 0.873 0944 0971 0959 1,000 1.000 1.000
3.00 0879 0912 0949 0995 0999 0992 1,000 1.000 1.000
500 0955 0969 0988 1.000 1.000 0.999 1.000 1.000 1.000

k12 fixed, increasing both k; and k3, does not change the power of the rank test and
the likelihood ratio test (both 77 and r7g). The rank test is well known to be scale free;
the likelihood ratio test based on the proposed model is also scale free since it is based
on the joint distribution derived from the copula in (2.1). However, the power of each
of the other tests (r1 to r5) decreases, and we leave what causes this phenomenon as
an open question. When k; # kg, for instance 0.5 = k7 < ks = 1.5 or vice versa, for
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any fixed k12 the power of tests r; to r5 appears to be between those of r; to r5 with
k1 = kg = 0.5 in Table 2 and with k1 = k9 = 1.5 in Table 3. However, the power of
rg and the likelihood ratio test should remain invariant. We note that the power of all
seven tests will be invariant with respect to the location parameters u; for i = 1,2 as
shown in the dependence of ©; on O3 in Section 2. Thus our simulation study applies
to a wide range of situations.

6. Concluding remarks

We investigated inferences procedures under a bivariate circular model with von
Mises marginals. An algorithm to generate paired circular data and some 2D contour
plots of the model were provided. MLEs for parameters involved and tests for inde-
pendence were studied. A simulation study showed that the proposed likelihood ratio
test is more powerful than six existing tests for independence between paired circular
data. The copula in (2.1) entitles the likelihood ratio test scale free for circular-circular
dependence. Furthermore, the neat closed form of the von Mises marginals enables the
proposed model being extended to other bivariate models easily. Especially, marginals
of gene locations in circular genomes were found to be skewed (Horimoto et al. (1998)
and Horimoto et al. (2001)). Thus to compare similarity between two circular genomes,
we shall extend this bivariate family to one that has skewed marginals. We leave this as
an open question.
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