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Abst rac t .  In this paper we define multivariate versions of the medial correlation 
coefficient and the rank correlation coefficient Spearman's footrule in terms of cop- 
ulas. We also present corresponding results for the sample statistic and provide a 
comparison of lower bounds among different measures of multivariate association. 
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1. Introduction 

If X and Y are continuous random variables with medians 5 and ~, respectively, then 
the population version of the medial correlation coefficient (also known as Blomqvist 's 
beta) is given by ~x,y -- P r [ ( X - 5 ) ( Y - y ~  > 0 ] - P r [ ( X - ~ ) ( Y - y ~  < 0]: see Blomqvist 
(1950). When H denotes the joint distr ibution function of X and Y, it readily follows 
tha t  ~x,Y -- 4H(~,  y~ - 1. Another known nonparametr ic  measure of association is the 
coefficient known as "Spearman's  footrule" 

~ = 1  
3 n 

n 2--1 E I P i - q i l ,  
i = l  

where Pi and qi denote the ranks of n observed values of two variates X and Y: see 
Spearman (1906). 

The purpose of this paper is to define and s tudy multivariate versions of the medial 
correlation coefficient and the coefficient Spearman's  footrule. 

Since our results involve the concept of a copula we review this not ion--for  a com- 
plete survey, see Nelsen (1999). Let n _> 2 be a natural  number.  A (n-dimensional) 
copula (briefly n-copula) is the restriction to [0, 1] n of a continuous multivariate dis- 
t r ibut ion function whose margins are uniform on [0, 1]. The importance of copulas in 
statistics is described in the following result: Let X1, X 2 , . . . ,  Xn be n random variables 
with joint distribution function H and respective one-dimensional marginal distribution 
functions F1, F 2 , . . . ,  Fn. Then there exists an n-copula C such tha t  H(Xl, x2,.. . ,  xn) = 
C(Fl(xl),F2(x2),... ,F,(x,))  for all (xl,x2,. . .  ,x~) in [-(x~, (x)] n. Let u = (ul,u2,...,  
un) be in [0, 1] n, and let II ~ denote the n-copula of independent continuous random 
variables, i.e., I I " (u )  = ulu2""Un. Any n-copula C satisfies the following inequalities: 

n 
W n ( u )  = max(~-~i=l U i - n +  1,0) ~ C(u) < m i n ( u l , u 2 , . . .  ,Un)  = M n ( u ) .  M n is a n  

n-copula for all n > 2, but  not W "  (except if n = 2). Let X = ( X 1 , X 2 , . . . , X n )  and 
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X = ( X l , X 2 , . . .  ,Xn), and let X > x denote the component-wise inequality X~ > xi, 
i = 1, 2 , . . . ,  n. If U is a vector of uniform [0, 1] random variables with n-copula C, C 
denotes the survival function, C ( u )  = P r [ U  > u]; and C denotes the survival copula, 
C ( u )  = Pr[1 - U < u]. C" is always an n-copula; however C never is. Let  56 denote the 

diagonal section of an n-copula C, i.e., 5c(t) = C(t, t , . . . ,  t), t C [0, 1]; and 5(c -1) denotes 

the cadlag inverse of 5c, i.e., ~(-1)(t) = sup{u e [0, 1] [ 5c(u) < t}, t e [0, 1]. 

2. Concordance and measures of association 

Two observations (xt,  Yl) and (x2, Y2) from a pair of continuous random variables 
are concordant if Xl < x2 and Yl < Y2, or xl  > x2 and Yl > Y2; and they  are discordant 
if Xl < x2 and Yl > Y2, or x l  > x2 and Yl < Y2- Let (X1,Y1) and (X2, Y2) be two in- 
dependent  vectors of continuous random variables with common margins and respective 
2-copulas C1 and C2. Let Q2 denote the difference between the probabilities of concor- 
dance and discordance of (X1,Y1) and (X2,Y2), i.e., Q2 = P r [ ( X ~ -  X2) (Y1-  Y2) > 
0] - Pr[(X1 - X2)(Y1 - ]12) < 0]. Then Q2 = Q2(C1, C2) = 4 f[0,1] 2 C2(u, v)dCl(u, v) - 1 
(see Nelsen (1999) for details). 

Observe tha t  Blomqvist proposed the measure using a random vector and the pop- 
ulation medians rather than  two random vectors in the expression for Q2. Moreover, if 
C denotes the copula of the pair (X, Y), then ~x,Y = / ~ c  = 4C(1/2,  1/2) - 1. Note also 
tha t  the population version of Spearman's  footru]e---denoted by ~ox,y or we- - i s  given 
by ~Ox,v = ~oc = 1 -  3 f[0j]2 I x -  yldC(z,y) = (3Q2(C, M 2) - 1)/2: see Nelsen (1999). 

In higher dimensions, two observations x and y from a vector X of continuous ran- 
dom variables are concordant if for all i ~ j, (xi, xj) and (Yi, Yj) are concordant; however, 
discordance does not generalize. Nelsen (2002) presents the probabili ty of concordance 
in terms of n-copulas: Let  X1 and X2 be independent  vectors of continuous random 
variables with common univariate margins and n-copulas C1 and C2, respectively, and 
let Q~n denote the probabili ty of concordance between X1 and X2, i.e., Qr n = Pr[X1 > 
X2]+Pr[X1 < X2]. Then Q~ = Q~n(C1, C2) = f[0,1]~ C2(u)dCl(U)+f[o,ll- Cl(u)dC2(u). 

Qn is defined as a linear function of Q~n in the following manner: 

n - - 1  / 
(2.1) Qn(C1, C2) = 2 Qn(C1, C2) - 1 

2 n-1 - 1 

so tha t  Qn(M ~, M n) = 1 and Qn(HL n n) = o. 
In the literature we can find measures of multivariate association which are based 

upon the probability of concordance expressed in terms of the n-copula C associated with 
a continuous random vector: For example, ~-~,c = Q,~(C, C) and P,~,c = (n + 1)(2 n-1 - 
1)Q~(C, H~)/[2 n - ( n +  1)] (see Nelsen (1996, 2002) for more details). ~-~,c and Pn,c are 
generalizations of the well-known Kendall 's  tau  and Spearman's  rho, respectively: see 
Nelsen (1999). 

We finish this section with some notation.  If ft is a measure of multivariate associ- 
ation, let ftav,c denote the average of the (2) pairwise bivariate measures. 

3. A multivariate version of Blomqvist's beta 

Let H be a continuous n-variate distr ibution and let X have distr ibution H. If we 
define a multivariate version of Blomqvist 's beta, denoted by ~.,,,H, such tha t  fl~,H = 0 
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when H is the distr ibution of independent random variables, and fn,H = 1 for perfect 
positive dependence, as in the bivariate case, and based on the probabili ty of concordance 
using the population medians, i.e., P r [X < ~ or X > ~], where ~" = (~1,52, . . .  ,2n) 
denotes the respective medians, then we have 

2 n - l P r [ x < ~  or X > ~ ] - I  
(3 .1 )  fln,H = 2 ~ - 1  -- 1 

In the following result, we express the multivariate version of the medial correlation 
coefficient given in (3.1) in terms of n-copulas. 

THEOREM 3.1. Let U be a vector of uniform [0, 1] random variables with n-copula 
C. Then the measure defined by (3.1) is given by 

2~-1[C(1/2)  + 0(1/2)1 - 1 
/~n,C = 2 n-1 -- 1 

PROOF. Since C ( 1 / 2 )  = P r [U  > 1/2] = Pr[1 - U G 1/2] = C(1 /2 ) ,  we have the 
following chain of equalities: 

2 n - l p r [ U < l / 2  or U > 1 / 2 ] - 1  2 ~ - l ( p r [ U < l / 2 ] + P r [ U > l / 2 ] ) - i  
fln,c = 2 ~-1 - 1 = 2 n-1 - 1 

2 n-1[C(1/2) + ~ ( 1 / 2 ) ]  - 1 2 n - 1 [ C ( 1 / 2 )  + 0 ( 1 / 2 ) ]  - 1 

2 ~ - 1  - 1 2 n - 1  - 1 ' 

which completes the proof. 

Note tha t  the upper bound for f~ , c  is 1 (which, for instance, can be at tained when 
C = Mn).  In the following theorem we show tha t  the lower bound - 1 / ( 2  n-1 - 1)-- in 
the case tha t  P r [X < ~ or X > ~] = 0--is  best-possible. 

THEOREM 3.2. Let U = (U1,U2, . . . ,Un)  be a vector of uniform [0, 1] random 
variables with n-copula C. I f  at least one of the 2-margins of C is W 2 then fn , c  = 
- 1 / ( 2  n - '  - 1). 

PROOF. Let i , j  C { 1 , 2 , . . . , n }  such tha t  i r j ,  and suppose tha t  the 2-copula 
associated with the pair of random variables (Ui, Uj) is W 2. Then Ui = 1 - Uj; so tha t  
if Ui > 1/2 then U s < 1/2 or else if Ui < 1/2 then  U s > 1/2, and hence P r [ U  < 1 /2  or 
U > 1/2] = 0. Therefore f n , c  = - 1 / ( 2  n - I  - 1), which completes the proof. 

Let ( X , Y , Z )  be a random vector with 3-copula C, and let f ix,Y, f lx ,z  and flr, z 
denote the Blomqvist 's be ta  of the three bivariate margins of C. The following result 
shows tha t  fl3,c coincides with the average pairwise Blomqvist 's beta. 

THEOREM 3.3. Let (X, II, Z) be a vector of uniform [0, 1] random variables with 
3-copula C. Then f3,c  = ( f x ,Y  + f x , z  + fy ,  z ) /3 .  

PROOF. Since we have 0(1/2 ,  1/2, 1/2) = 3 / 2 - 2 + C ( 1 ,  1/2, 1/2)+C(1/2, 1, 1 /2)+  
C(1/2, 1/2, 1) - C(1/2, 1/2, 1/2), then f3,c = (4[C(1/2, 1/2, 1/2) + C(1/2, 1/2, 1/2)] - 
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1) /3  = (4/3)[C(1,  1/2, 1/2)+C(1/2,  1, 1 /2)+C(1/2 ,  1/2, 1 ) ] -1  = (13x,Y+3x,z+l~y,z)/3,  
as required. 

Example 1. Let C be the n-copula given by 

(3.2) C(~t) : W2(Ul,U2)u3 . . . u n ,  'tt ~--- ( ? . t l ,~2 , . . . ,Un)  �9 [0,1] n. 

C is an n-copula such tha t  only one bivariate margin is W 2 and the rest ][I 2. From 
Theorem 3.2, we have tha t  t3n,c = - 1 / ( 2  n-1 - 1); however , /3~ ,c  = - 2 / [ n ( n -  1)], and, 
by induction, it is easy to  prove tha t  t3~,c  < / ~ , c  for all n > 4. 

In some sense, the  version /~n,C 'can improve'  to that  of /3~. ,0 ,  as the following 
example shows. 

Example 2. Let Ca be the n-copula given by 

,] (3.3) C a ( u )  = - , 

i=l  
= (u, ,  u 2 , . . . ,  �9 [0 ,17 ,  

with A in [0, 1]. Ca belongs to the Farl ie-Gumbel-Morgenstern family of n-copulas (see 
Nelsen (1999) for more details). Since C a ( u )  = (1-]/~=1 ui)[1 + (-1)hAl-In=l(1 - ui)], 
u e [0,1] n, then 3n,Cx ---- A(1 + (-1)n)/[2n(2 n-1 - 1)], and t3a,,C~ = 0. Observe that  
all the bivariate margins of Ca are 1] 2, however fln,Cx > 0 for all even natural  number  
n > 4. Note also that  Tn,C~ = A(1 + (--1)n)/[3n(2 n-1 -- 1)] and Pn,c~ = A(n + 1)(1 + 
( - 1 ) n ) / ( 2  �9 3~[2 n - (n + 1)]), while tha t  ~-a.,c~ -- Pa~,c~ = O. 

Nelsen (2002) defines a multivariate version of the medial correlation coefficient in 
the  following manner: /3~, C = (2~C(1 /2)  - 1)/(2 ~-1 - 1) for any n-copula C. We note 
tha t  /~'n,C is a 'part icular  case' of /3n,c .  For instance, suppose tha t  the distr ibution 
function of a random vector  X is radially symmetric, i.e., for any vector U of uniform 
[0, 1] random variables, we have that  P r [ U  < u] = P r [ U  > 1 - u], u e [0, 1] n (see 
Nelsen (1993) for details), or C(u)  = C(u)  where C is the n-copula associated with U; 
whence t3~, C = 13n,C. 

Recently, it has been proved that  the pointwise best-possible bounds  on the set of 
2-copulas and a given value of Blomqvist 's  be t a  are 2-copulas (see Nelsen and lJbeda- 
Flores (2004) for more details). It has been also shown tha t  the best-possible bounds  
on the set of n-copulas C such that  C ( 1 / 2 )  = ~ (for appropriate  0 in [0, 1]) are not n- 
copulas: see Rodriguez-Lallena and Ubeda-Flores  (2004). This suggests that  we can not  
generalize in a same manner  the s tudy of the  best-possible bounds  on sets of n-copulas 
when the value of the multivariate version of Blomqvist 's  be t a  is known, as can be done 
in the bivariate case. 

4. A multivariate version of Spearman's footrule 

We now define a multivariate analog populat ion version of the Spearman's  footrule 
based on the probabil i ty  of concordance. This multivariate version will be denoted as 
~ x  (or ~On,c, where C is the n-copula associated with a vector X ) .  If we require tha t  
this version should be of the form ~Pn,C -- aQn(C, M n) ~- b, with a, b E IR, and such 
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tha t  ~On,n~ = 0 and (fln,M n = 1, as in the bivariate case, then we have to define ~n,C as 
follows: 

(n + 1)(2 ~-1 - 2 n -  (n + 1) 
(4.1) ~ x  = ~n,C = - 2 n - 2 ~  - 1) 1)Qn(C, M n) 2 n - l ( n  -- 1)" 

We provide the expression for the measure defined by (4.1) in terms of the diagonal 
sections of C and C, but  first we need a prel iminary lemma. 

LEMMA 4.1. Let C be an n-copula. Then f[0,1]~ M n ( u ) d C ( u )  = f~  5d(t)dt  and 

flo,l]~ C ( u ) d M ~ ( u )  = f~  5c( t )d t .  

PROOF. Let X and Y be two vectors of uniform [0, 1] random variables with 
respective n-copulas C and M n. Then 

/co /0 M ~ ( u ) d C ( u )  = E [ M ~ ( X ) ]  = t d P r [ M ~ ( X )  < tJ(t) 
,1] n 

= 1 - Pr[M~(X) < t]dt 

~01 ~01 ~01 = P r [ X  > t]dt  = 5 0 ( 1 -  t)dt = ~o ( t )d t .  

On the other hand,  and using a similar argument ,  we have 

C ( , ~ ) d M n ( , ~ )  = 1 -  
,11 n 

= 1 - - ~  1 

which completes the proof. 

j•51 P r [ C ( Y )  < t]dt = 1 - Pr[Sc(Y1) <_ t]dt 

/o 1 Pr[Y1 < 5(c-1)(t)]dt = 1 - ( t)dt  = 5c( t )d t ,  

THEOREM 4.1. Let C be an n-copula and let ~ , c  be the Spearman's footrule co- 
efficient defined by (4.1). Then 

n + l f 0 1  (4.2) ~n,c  - n-----1 [Sc(t) + 5c(t)]dt  2 
- n - 1  

PROOF. From expressions (2.1) and (4.1), and using Lemma  4.1, we have the 
following chain of equalities: 

(n + 1)(2 n - i  - 1) ( 2 n - I Q ~ n ( C ~ M  n) - 1"~ 2 n - (n + 1) 
~On,C = 2-n---l(-n-- ~ ~x 2 n - l -  1 ] 2 n - l ( n -  1) 

= 2 r ~ - l ( n -  1) 2n- t  C ( u ) d M n ( u )  + ( u ) d C ( u )  - 1 
,11 n ,1] '~ 

2 n - (n + 1) 

2 " - 1 ( n  - 1) 

_ n + l  fo l  n 1 [Sc(t) + e c ( t ) ] d t  2 
n-l' 
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as claimed. 

Observe that  for a pair of continuous random variables with 2-copula C we have 
~2,c = 6 f01 5c ( t )d t  - 2, since 5&(t) = 2t - 1 + 5c(1 - t) for each t in [0, 1]. 

The upper  bound for ~,~,c is 1 (which is a t ta ined only in the  case C -- Mn).  In the 
next result we provide a lower bound for ~n,c. 

THEOREM 4.2. Let C be an n-copula. Then ~n,c >_ - 1 / n .  

PROOF. Since W ~ < C for any n-copula C, we have that  ~c(t) >_ 5w~(t) = 
max(n t  - n + 1, 0) for all t in [0, 1]. Since C is also an n-copula, from (4.2) we obtain 
tha t  

> 2(n + 1) [ 1  
- n - 1  J0 m a x ( n t - n + l , 0 ) d t  n - 1 2  _ n'l ~ , c  

which completes the proof. 

Whereas  the lower bound  in Theorem 4.2 is best-possible when n = 2 (for instance, 
when C = W2), the bound  may well fail to be best  possible for n > 3 since the Fr~chet 
lower bound is not a dis tr ibut ion function for these cases. 

We now show that  the  coefficient ~3,c for a vector (X, Y, Z) of continuous random 
variables with 3-copula C can be wri t ten as the  arithmetic mean of the Spearman's  
footrule of the three bivariate margins (~xY ,  ~ x z  and ~YZ) of C. 

THEOREM 4.3. Let (X, ]I, Z)  be a vector of uniform [0, 1] random variables with 
3-copula C. Then ~3,c = ( 9 x Y  + 9 x z  + ~ y z ) / 3 .  

PROOF. Since 55(t)  = 3 t - 2 + C ( 1 - t ,  l - t ,  1 ) + C ( 1 - t ,  1, 1 - t ) + C ( 1 ,  t - t ,  t - t ) -  

5c(t) ,  from (4.2) it is easy to obtain that  ~3,c = 2 fo[C(t,  t, 1)+C( t ,  1, t ) + C ( t ,  t, t ) ] d t -2 .  

On the  other hand, ~Pxv = 6 f 0 1 C ( t , t ,  1 ) d t -  2, ~ x z  = 6 f o  1 C ( t , l , t ) d t -  2 and ~Yz = 

6 f01 C(1, t, t)dt - 2, whence the result follows. 

Example 3. Consider the n-copula C given by (3.2). Then, we have that  ~av,c = 
- 1 / [ n ( n  - 1)]. On the other  hand, since 55(t)  = 5c(t) = max(2t  - 1, 0)t n-2, t �9 [0, 1], 
from (4.2) we obtain that  ~n,C = (n + 1 - 2n) / (2n-2n(n  - 1)2). By induction, it is easy 
to prove that  ~av,C < ~,~,c for all n > 4. 

Example 4. Let CA be the n-copula given by (3.3). Then, after some calculations, 
we have that  ~n,c~ = [(1 + (-1)n)/~(n + 1)(n!)2]/[(n - 1)(2n + 1)!]. Observe also that  
~av,C~ = O. 

Let m _> 2 be a natural  number. If Xi = ( X i l , X i 2 , . - .  ,X~m), i = 1 ,2 , . . .  ,n,  is a 
random sample of size n from a continuous distr ibution function, then 

n 
m + l  ~-~i= 1Ri  

fm,s = 1 -  - -  
m - 1  n 2 - 1  

is the sample version of (4.2), where Ri is the range (maximum minus minimum) of the 
ranks of the variables in the i- th observation. Note  that ,  unlike the populat ion version, if, 
for example, the rankings are identical for all variables except reversed for one variable, 
then fm,s  will be near - . 5  while the pairwise average will be near zero. 
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5. A comparison of lower bounds among measures of multivariate association 

Nelsen (1996) shows that a lower bound for Tn, C is --1/(2 n-1 -- 1). The next result 
proves that this bound is also best-possible for Tn,C. 

THEOREM 5.1. Let U = (U1,U2, . . . ,Un)  be a vector of uniform [0,1] random 
variables with n-copula C. If at least one of the 2-margins of C is W 2 then 7n,c = 
- - 1 / ( 2  n -1  - -  1). 

. . U I , , PROOF. Let (Ul, U 2 , . ,  Un) and ( 1, u~,. .  Urn) be two observations of U. Let 
i , j  E {1, 2 , . . . ,  n} such that  i r j ,  and suppose that the 2-copula associated with the 
pair of random variables (Ui, Uj) is W 2. Then the pairs (ui, uj)  and (u~, u}) satisfy that 

and uj < t. f[ a n d u j  > u } , o r u i > u  i ui < u i uj, so that 2 0 ,1]  n C ( u ) d C ( u )  = Pr[X < Y 
or X > Y] = 0, where X and Y are two independent random vectors each with 
distribution function H; and hence Tn,C = - 1 / ( 2  ~-1 - 1). 

As Nelsen (1996) points out, a lower bound for Pn, C is (2 n _ (n + 1)!) / (n ![2 ~ - (n + 1 )]), 
but  this bound may well fail to be best-possible. We have a similar situation with 
the lower bound for ~n,c--recal l  Theorem 4.2. The following example shows that we 
probably do not have a similar result for Pn,C and ~n,c to those of Theorems 3.2 and 
5.1 for/3n,c and ~-~,c, respectively. 

Example 5. Consider the n-copula C given by (3.2). Then, after some algebra, we 
have that Pn,C = - - (n+  1)/[3(2 n --n--1)].  Note that this value is greater than the bound 
given by Nelsen for all n > 4. We have a similar situation with the value for ~n,C (given 
in Example 3) and the bound given in Theorem 4.2. 

It is still an open problem to know the best-possible lower bounds for Pn,c and ~n,C. 
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