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Abstract. In this paper we define multivariate versions of the medial correlation
coefficient and the rank correlation coefficient Spearman’s footrule in terms of cop-
ulas. We also present corresponding results for the sample statistic and provide a
comparison of lower bounds among different measures of multivariate association.
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1. Introduction

If X and Y are continuous random variables with medians Z and ¥, respectively, then
the population version of the medial correlation coefficient (also known as Blomqvist’s
beta) is given by Bx y = Pr[(X —z)(Y —%) > 0] - Pr[(X —Z)(Y —¥) < 0]: see Blomgqvist
(1950). When H denotes the joint distribution function of X and Y, it readily follows
that Bx y = 4H(Z,y) — 1. Another known nonparametric measure of association is the
coefficient known as “Spearman’s footrule”

3 n
fs=1- _1Z|pi—l1i|,
i=1

n2

where p; and g¢; denote the ranks of n observed values of two variates X and Y: see
Spearman (1906).

The purpose of this paper is to define and study multivariate versions of the medial
correlation coefficient and the coefficient Spearman’s footrule.

Since our results involve the concept of a copula we review this notion—for a com-
plete survey, see Nelsen (1999). Let n > 2 be a natural number. A (n-dimensional)
copula (briefly n-copula) is the restriction to [0,1]” of a continuous multivariate dis-
tribution function whose margins are uniform on [0,1]. The importance of copulas in
statistics is described in the following resuli: Let X1, X5, ..., X, be n random variables
with joint distribution function H and respective one-dimensional marginal distribution
functions F}, Fy, ..., F,. Then there exists an n-copula C such that H(x1,z2,...,2n) =
C(Fi(x1), Fa(xa), ..., Fu(zy)) for all (z1,z2,...,2,) in [—oo0,00]™. Let u = (uy, us,. ..,
un) be in [0,1]", and let II™ denote the n-copula of independent continuous random
variables, i.e., II"(u) = ujus - - u,. Any n-copula C satisfies the following inequalities:
W™(u) = max(d_;., u; — n+1,0) < C(u) < min(uy,ug,...,u,) = M™(u). M™ is an
n-copula for all n > 2, but not W (except if n = 2). Let X = (X1, X>,...,Xn) and
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z = (x1,Z2,...,%n), and let X > & denote the component-wise inequality X; > z;,
i=1,2,...,n. If U is a vector of uniform [0, 1] random variables with n-copula C, C
denotes the survival function, C(u) = Pr[U > u}; and C denotes the survival copula,
C(u) = Pr[1 - U < u]. C is always an n-copula; however C never is. Let ¢ denote the
diagonal section of an n-copula C, i.e., 6¢(t) = C(t,¢,...,t), t € [0,1]; and é(cfl) denotes
the cadlag inverse of ¢, i.e., 6&71)(15) = sup{u € [0,1] | bc(u) < ¢}, ¢t € [0,1].

2. Concordance and measures of association

Two observations (z1,¥y1) and (zz,y2) from a pair of continuous random variables
are concordant if z1 < x2 and y1 < ys, or 1 > 2 and y; > yo; and they are discordant
if 21 < z2 and y; > ya, or &1 > z2 and y; < yo. Let (X1,Y7) and (X5,Y5) be two in-
dependent vectors of continuous random variables with common margins and respective
2-copulas Cy and C3. Let Q2 denote the difference between the probabilities of concor-
dance and discordance of (X;,Y;) and (X3,Y2), ie, Q2 = Pr[(X; — X2)(Y1 — Y2) >
0] — Pr[(X; — X2)(Y1 - Y2) <0]. Then Q2 = Q2(C1,C2) =4 f; 12 Ca(u, v)dCi (u,v) — 1
(see Nelsen (1999) for details).

Observe that Blomqvist proposed the measure using a random vector and the pop-
ulation medians rather than two random vectors in the expression for Q2. Moreover, if
C denotes the copula of the pair (X,Y), then 8x,y = B¢ = 4C(1/2,1/2) — 1. Note also
that the population version of Spearman’s footrule—denoted by ¢x y or gc—is given
by px,y =wc =13 fjy 112 [z = yldC(z,y) = (3Q2(C, M?) —1)/2: see Nelsen (1999).

In higher dimensions, two observations & and y from a vector X of continuous ran-
dom variables are concordant if for all s # j, (x;, ;) and (y;, y;) are concordant; however,
discordance does not generalize. Nelsen (2002) presents the probability of concordance
in terms of n-copulas: Let X; and X, be independent vectors of continuous random
variables with common univariate margins and n-copulas C; and Cs, respectively, and
let @), denote the probability of concordance between X; and Xs, i.e., @, = Pr[X; >
X2]+PI'[X1 < XQ] Then Q;L = Q’n(C’l, 02) = f[O,l]" Cz(u)dCI(u)ﬂ-f[OYl]n Cl(u)ng(u)

Q. is defined as a linear function of @, in the following manner:

2" 1@ (C1,Cr) — 1
=11

(2.1) Qn(C1,Cs) =

so that Qp,(M", M™) =1 and Q,(II",II") = 0.

In the literature we can find measures of multivariate association which are based
upon the probability of concordance expressed in terms of the n-copula C associated with
a continuous random vector: For example, T, ¢ = Qn(C,C) and p,c = (n+1)(2""! -
1)Q,(C,II™)/[2"™ — (n+ 1)] (see Nelsen (1996, 2002) for more details}. 7,,,c and p, ¢ are
generalizations of the well-known Kendall’s tau and Spearman’s rho, respectively: see
Nelsen (1999).

We finish this section with some notation. If €2 is a measure of multivariate associ-
ation, let {,, ¢ denote the average of the (}) pairwise bivariate measures.

3. A multivariate version of Blomqvist's beta

Let H be a continuous n-variate distribution and let X have distribution H. If we
define a multivariate version of Blomqvist’s beta, denoted by 3, g, such that 3, 4 =0
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when H is the distribution of independent random variables, and 8, g = 1 for perfect
positive dependence, as in the bivariate case, and based on the probability of concordance
using the population medians, i.e., Pr[X < Z or X > ], where £ = (Z1,Z2,...,%n)
denotes the respective medians, then we have

2" IPr X <Z or X >7Z| -1
9711 '

(3.1) Bn,o =

In the following result, we express the multivariate version of the medial correlation
coefficient given in (3.1) in terms of n-copulas.

THEOREM 3.1. Let U be a vector of uniform [0, 1] random variables with n-copula
C. Then the measure defined by (3.1) is given by

_ 2 le@/2) +C(/2) -1
- 2n-1 1 '

ﬁn,C

PROOF. Since C(1/2) = Pr[U > 1/2] = Pr[1 — U < 1/2] = C(1/2), we have the
following chain of equalities:

2 1Pr{U <1/2 or U>1/2]—1 _ 2" '(Pr[U <1/2]+Pr[U > 1/2]) ~ 1

,Bn,C = on—1 _ 1 on—-1 _1
v le(1/2)+ C(1/2)) -1 2*0(1/2) + C(1/2)] - 1
= gn—-1__1 - on—1 _ 1 »

which completes the proof.

Note that the upper bound for 3, ¢ is 1 (which, for instance, can be attained when
C = M™). In the following theorem we show that the lower bound —1/(2"~! — 1)—in
the case that Pr[X < & or X > Z] = 0—is best-possible.

THEOREM 3.2. Let U = (Uy,Us,...,U,) be a vector of uniform [0,1] random
variables with n-copula C. If at least one of the 2-margins of C is W2 then Bhc =
—1/(2n"1 —1).

PrROOF. Let 4,5 € {1,2,...,n} such that ¢ # j, and suppose that the 2-copula
associated with the pair of random variables (U;, U;) is W2. Then U; = 1 — Uj; so that
if U; > 1/2 then U; < 1/2 or else if U; < 1/2 then U; > 1/2, and hence Pr[U < 1/2 or
U > 1/2] = 0. Therefore B, c = —1/(2"~! — 1), which completes the proof.

Let (X,Y,Z} be a random vector with 3-copula C, and let Bx )y, 8x,z and By z
denote the Blomqvist’s beta of the three bivariate margins of C. The following result
shows that 3 ¢ coincides with the average pairwise Blomqvist’s beta.

THEOREM 3.3. Let (X,Y,Z) be a vector of uniform [0,1] random variables with
3-copula C. Then B3¢ = (Bx,y + Bx.z + Pr,z)/3.

PROOF. Since we have C(1/2,1/2,1/2) = 3/2—2+C(1,1/2,1/2)+C(1/2,1,1/2)+
C(1/2,1/2,1) — C(1/2,1/2,1/2), then B3 c = (4]C(1/2,1/2,1/2) + C(1/2,1/2,1/2)] —



784 MANUEL UBEDA-FLORES

1)/3=(4/3)IC(1,1/2,1/2)+C(1/2,1,1/2)+C(1/2,1/2,1)] -1 = (Bx,y + Bx,z+Bv,2)/3,
as required.

Example 1. Let C be the n-copula given by
(3.2) C(u) = W2(uy,ug)uz -+ upn, u=(u,uz,...,u,) € [0, 1"

C is an n-copula such that only one bivariate margin is W2 and the rest II12. From
Theorem 3.2, we have that 8, c = —1/(2"~! — 1); however, B4v,c = —2/[n(n— 1)], and,
by induction, it is easy to prove that B¢ < Bn,c for all n > 4.

In some sense, the version 8, ¢ ‘can improve’ to that of §,, c, as the following
example shows.

Ezample 2. Let Cy be the n-copula given by

(3.3) Ci(u)= (H ui>

with A in [0,1]. C) belongs to the Farlie-Gumbel-Morgenstern family of n-copulas (see
Nelsen (1999) for more details). Since Cx(u) = ([T, wa)[l + (—1)"ATr, (1 — us)),
u € [0,1], then Byc, = A1 + (-1)™)/[2"(2"~! — 1)], and Bau,c, = 0. Observe that
all the bivariate margins of C are II1?, however Bn,c, > 0 for all even natural number
n > 4. Note also that 7, ¢, = A1 + (=1)")/[3"(2""! - 1)] and pn,c, = Mn+ 1)(1 +
(=)™ /(2-3"[2" — (n + 1)), while that 74, ¢, = pav,cy, =0.

n
1+)\H(1_u1)]1 UZ(U1,U2,...,Un)€[O,1]n,
i=1

Nelsen (2002) defines a multivariate version of the medial correlation coefficient in
the following manner: 8, » = (2"C(1/2) — 1)/(2"~! — 1) for any n-copula C. We note
that ﬁvlLC is a ‘particular case’ of (B, . For instance, suppose that the distribution
function of a random vector X is radially symmetric, i.e., for any vector U of uniform
[0,1] random variables, we have that Pr[U < u| = Pr[U > 1 — u], u € [0,1]" (see
Nelsen (1993) for details), or C(u) = C(u) where C is the n-copula associated with U’;
whence 8], o = Bn.c-

Recenicly, it has been proved that the pointwise best-possible bounds on the set of
2-copulas and a given value of Blomqvist’s beta are 2-copulas (see Nelsen and Ubeda-
Flores (2004) for more details). It has been also shown that the best-possible bounds
on the set of n-copulas C such that C(1/2) = 6 (for appropriate 6 in [0, 1]) are not n-
copulas: see Rodriguez-Lallena and Ubeda-Flores (2004). This suggests that we can not
generalize in a same manner the study of the best-possible bounds on sets of n-copulas
when the value of the multivariate version of Blomqvist’s beta is known, as can be done
in the bivariate case.

4. A multivariate version of Spearman’s footrule

We now define a multivariate analog population version of the Spearman’s footrule
based on the probability of concordance. This multivariate version will be denoted as
wx (or ¢, ¢, where C is the n-copula associated with a vector X). If we require that
this version should be of the form ¢, ¢ = aQ,(C,M™) + b, with a,b € IR, and such
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that ¢, n~ = 0 and ¢, y»» = 1, as in the bivariate case, then we have to define ¢, ¢ as

follows:

(n+1)(20 1 -1)
2n-in-1)

2" — (mn+1)
P n=1)

(41) $X = Pn,Cc = Qn(C, Mn) -

We provide the expression for the measure defined by (4.1) in terms of the diagonal
sections of C and C, but first we need a preliminary lemma.

LeEmMA 4.1. Let C be an n-copula. Then f[o 1 M"(u)dC(u) = fol 8a(t)dt and
Joo.y» Cw)dM™(u) = [ Sc(t)dt.

Proor. Let X and Y be two vectors of uniform {0, 1} random variables with
respective n-copulas C and M™. Then

/[ol]n M”(U)dC(U) = E[]\/["(‘X)]z\/0 thl‘[Mn(X) St](t)
= 1‘/0 Pr[M™(X) < t]dt

1 1 1
:/0 Pr[X>t]dt=/(; 5é(l—t)dt=A 5é(t)dt.

On the other hand, and using a similar argument, we have
1 1
/ Clu)dM™(u) = 1 — / Pr{C(Y) < f)di = 1 - / Prl6c(Y:) < fdt
o1} 0 0

1 1 1
=1- / Pr(y; <65V (t))dt=1- / SV @)t = / bc(t)dt,
0 0 0

which completes the proof.

THEOREM 4.1. Let C be an n-copula and let p, c be the Spearman’s footrule co-
efficient defined by (4.1). Then

! 2
| o)+ onat - .

n-—-1

n+1

(4.2) $n,C = n_1

PrOOF. From expressions (2.1) and (4.1), and using Lemma 4.1, we have the
following chain of equalities:

_(tnEt-1) (2n-1cz;<c, ZUED GRS

P T Toni(n—1) n—1 1 27~1(n — 1)
_ n+1 n—1 e n _
- T {2 ( /[0,1]" ClwpdM )+ [ (u)dC(u)) 1]
2" —(n+1)
b =Te
1
= 250 [ o) + setiae - 2,
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as claimed.

Observe that for a pair of continuous random variables with 2-copula C' we have
po,c = 6f01 6c(t)dt — 2, since 65(t) = 2t — 1+ 6¢(1 —t) for each ¢ in [0, 1].

The upper bound for ¢, ¢ is 1 (which is attained only in the case C' = M™). In the
next result we provide a lower bound for ¢, ¢.

THEOREM 4.2. Let C be an n-copula. Then ¢ c > —1/n.

PROOF. Since W™ < C for any n-copula C, we have that 6c(t) > dwn(t) =
max(nt —n + 1,0) for all ¢ in [0,1]. Since C is also an n-copula, from (4.2) we obtain

that

2 1

2 1) /!
—(M/ max(nt —n+1,0)dt — —— = ——,
0 n—1

>
Cn,C 2 n—1
which completes the proof.

Whereas the lower bound in Theorem 4.2 is best-possible when n = 2 (for instance,
when C = W?2), the bound may well fail to be best possible for n > 3 since the Fréchet
lower bound is not a distribution function for these cases.

We now show that the coefficient @3 ¢ for a vector (X, Y, Z) of continuous random
variables with 3-copula C can be written as the arithmetic mean of the Spearman’s
footrule of the three bivariate margins (pxy, wxz and pyz) of C.

THEOREM 4.3. Let (X,Y,Z) be a vector of uniform [0,1] random variables with
3-copula C. Then p3.c = (pxy +pxz + pyz)/3.

PROOF. Since 84(t) = 3t—2+C(1—t,1—,1)+C(1~t,1,1—t)+ C(1, 1=, 1— 1) —
b¢c(t), from (4.2) it is easy to obtain that o3 ¢ = 2 fol [C(t,t,1)+CE, 1, 6)+C(1, ¢, t)]dt - 2.
On the other hand, pxy = 6 f C(t,t,1)dt — 2, pxz = 6 f, C(t,1,t)dt — 2 and gy 7 =
6 fol C(1,t,t)dt — 2, whence the result follows.

Ezample 3. Consider the n-copula C given by (3.2). Then, we have that ¢, c =
—1/[n(n — 1)]. On the other hand, since §4(t) = 8¢ (t) = max(2t — 1,0)t""2, ¢ € [0,1],
from (4.2) we obtain that ¢, ¢ = (n+1—2")/(2" ?n(n — 1)?). By induction, it is easy
to prove that ¢, c < ¢n,c for all n > 4.

Ezample 4. Let Cy be the n-copula given by (3.3). Then, after some calculations,
we have that , o, = [(1 + (=1)")A(n + 1)(n)?]/[(n — 1)(2n + 1)!]. Observe also that
Pav,C5 = 0.

Let m > 2 be a natural number. If X; = (X;1,Xi2,..., Xim), 1= 1,2,...,n,is 8
random sample of size n from a continuous distribution function, then
m -+ 1 E'?:l Ri
m—1 n?2-1

fm,SZl_

is the sample version of (4.2), where R; is the range (maximum minus minimum) of the
ranks of the variables in the i-th observation. Note that, unlike the population version, if,
for example, the rankings are identical for all variables except reversed for one variable,
then fm s will be near —.5 while the pairwise average will be near zero.
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5. A comparison of lower bounds among measures of multivariate association

Nelsen (1996) shows that a lower bound for 7, ¢ is —1/(2"~! — 1). The next result
proves that this bound is also best-possible for 7, ¢.

THEOREM 5.1. Let U = (U1,Us,...,Uy) be a vector of uniform [0,1] random
variables with n-copula C. If at least one of the 2-margins of C is W? then 7, ¢ =
-1/(2" 1 -1).

PrOOF. Let (u1,uz,...,u,) and (ul,us,...,u,,) be two observations of U. Let
i,j € {1,2,...,n} such that ¢ # j, and suppose that the 2-copula associated with the
pair of random variables (U;, U;) is W2. Then the pairs (u;, u;) and (ul, u;) satisfy that
u; < uj and u; > uj, or u; > uj and u; < uf; so that 2f[0’1]n C(u)dC(u) =Pr[X <Y
or X > Y| =0, where X and Y are two independent random vectors each with
distribution function H; and hence 7, ¢ = —1/(2""! —1).

As Nelsen (1996) points out, a lower bound for p,, ¢ is (2" —(n+1)!)/(n![2" —(n+1)]),
but this bound may well fail to be best-possible. We have a similar situation with
the lower bound for ¢, c—recall Theorem 4.2. The following example shows that we
probably do not have a similar result for p, ¢ and ¢, ¢ to those of Theorems 3.2 and
5.1 for B, ¢ and T, ¢, respectively.

Ezample 5. Consider the n-copula C given by (3.2). Then, after some algebra, we
have that p, ¢ = —(n+1)/[3(2" —n—1)]. Note that this value is greater than the bound
given by Nelsen for all n > 4. We have a similar situation with the value for ¢, ¢ (given
in Example 3) and the bound given in Theorem 4.2.

It is still an open problem to know the best-possible lower bounds for p, ¢ and ¢, ¢.
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