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Abs t r a c t .  Barycentres of a discrete probability measure on a dually flat statistical 
manifold are introduced. They are shown to be unique and to behave as barycentres 
in Euclidean space. The estimation of these barycentres is studied. Potential ap- 
plicative usefulness of informative barycentres include the problem of interpolating 
a statistical manifold valued map and the problem of model merging, which consists 
in merging several statistical models into a unique one. The results are illustrated 
on the exponential family, for which a projection theorem is proved. 
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1. Introduction 

Since the work of Rao (1945), who tu rned  a statist ical  s t ruc ture  into a Riemannian 
manifold when endowed with the Fisher informat ion taken as a Riemannian metric, a 
great  amount  of work has been done to define geometrical  objects  of statistical rele- 
vance. Distances and divergences between two probabil i ty measures have been intro- 
duced (Csiszar (1975), a e n y i  (1961), Murray  and Rice (1993), Kass and Vox (1997)), 
together  with the concepts,  originating from differential geometry,  of statistical cur- 
va ture  (Efrom (1975)), of dualistic s t ructures  and non-metr ic  dual  affine connections 
(Amari  (1985), Amari  and Nagaoka (2000), Amar i  et al. (1987)), yielding the preferred- 
point  geometry  (Critchley et al. (1994)) and, finally, the infinite-dimensional statistical 
manifold (Pistone and Sempi (1995)). This  geometrical  set t ing is especially useful for 
problems of statist ical  inference (Skovgaard (1984)), quan tum es t imat ion (Fujiwara and 
Nagaoka (1995)), and has led to intrinsic inference procedures used in hypothesis  test ing 
or es t imat ion for example (Barndorff-Nielsen (1988), Oller and Corcuera  (1995)). 

With in  the framework of differential geomet ry  in probabil i ty  and statistics, the 
purpose  of the present work is to introduce informative barycentres  on a dually fiat 
stat ist ical  manifold, and has been mot iva ted  by the geophysical problem known as the 
ocean color problem. The  ocean color problem consists in es t imat ing the  concentrat ions 
of several oceanic products ,  such as the phy top lank ton  for example,  from a vector x of 
remotely-sensed measurements .  Those measurements  depend on a vector  t of three an- 
gular variables tha t  are used to characterize the positions of the Sun and of the satellite, 
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relatively to the observed point of the Earth'  surface. In Pelletier (2002), a statistical 
estimation method of the phytoplankton concentration has been proposed. In this study, 
the measurements x have been considered as realizations of a family {Xt}  of random 
vectors, indexed by the vector t, with the assumption, relying on the physics of the prob- 
lem, that  for each to, limLt-tol--,0 Pt = Pro, where Pt is the probability law of Xt.  Given 
an estimate of the probability density function of X t, a nonlinear regression estimator of 
the phytoplankton concentration has been derived. This procedure has been repeated for 
several values t l , . . . ,  tn of t, yielding a set {15t~, �9 .. ,trite} of estimates of the probability 
density functions of X t~,..., X t~, respectively. Then given the estimates/~t~,. . . , /5~ 
the problem was to infer an estimate/5t of the probability density function of Xt .  Next 
from the estimate/~,, a regression estimator of the phytoplankton concentration may 
be derived. A solution has been proposed in Pelletier (2002) which consists in building 
an interpolating map valued in a manifold of statistical models (i.e. probability density 
functions). More precisely, let A/I be a manifold of statistical models, let T be a set and 
let F be the map defined by: 

F : T- - - *M 
t ~ F ( t )  = ~,. 

Given n samples (tk, F(tk) = Ptk), the problem is to build a continuous map F : T -~ ]t4 
such that  F( tk)  = F(tk) for all k, i.e., which interpolates F at the tk. In this context 
of interpolation, barycentres, also called centers of mass, arise naturally. 

The definition of a barycentre on a Riemannian manifold is based on the squared 
geodesic distance which, by definition, 
Riemannian barycentre does not reflect 
and this motivated the introduction of 

The paper is organized as follows. 

is symmetric in its arguments. For this fact, a 
the asymmetry that arises naturally in statistics, 
another kind of barycentres. 
In Section 2, basic notions related to dually flat 

statistical manifolds are briefly reviewed. In Section 3, we introduce two barycentres 
in a dually flat space, called informative barycentres in connection with the setting of 
information geometry, and show that they behave as barycentres in Euclidean space. 
We then study the estimation of the barycentres of M statistical models from M i.i.d. 
samples drawn from them. In the last paragraph of this section, two applications of the 
dual barycentres are presented, namely the interpolation problem, and the problem of 
model merging, which consists in merging, or aggregating, M models P l , . . - ,PM into a 
unique model ~. Section 4 is devoted to informative barycentres in exponential families. 
For this particular manifold a projection theorem is proved. Finally, conclusions are 
given. 

2. Background 

Let M be a Riemannian manifold with Riemannian metric g. Let V and V* be two 
affine connections on M .  The connections V and V* are said to be dual with respect to 
the Riemannian metric g if for all vector fields X,  Y and Z on M the following relation 
is satisfied: 

Xg( Y,  Z) = g(Vx Y,  Z) + g( Y, V*x Z). 

Furthermore, if the connections V and V* are symmetric, or equivalently torsion-free, 
and if the curvature tensors with respect to V and V* vanish, then .M is said to be flat 
with respect to V and V* and the triple (Ad, V, V*) is called a dually flat space. 
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In such a case, the Riemannian manifold admits V-affine coordinates and V*-affine 
coordinates. Thus there exist two coordinates neighborhoods (U, ~) and (U*, v*) of some 
point p0 E A4 such that the V-geodesic and V*-geodesic are given respectively by the 
curves 7 and 7* defined by equations (2.1) and (2.2). 

(2.1) 7 : I c R ~ . A 4  
t ~ //--l[(Y(p2) -- M(pl))~-~ //(Pl)] 

(2.2) (u*)-l[(u*(p2) - u*(pl))t + ~*(pl)]. 

Let us denote by 0 the V-affine coordinates, i.e. 0 = v(p); p E U, and by 7 the 
V*-affine coordinates, i.e. 7 = v*(p); p E U*. Further, let {0i = 8-Y~ } ~  and {OJ = ~_~v~ } o  be 

two basis of Tp(.A4). Then it has been shown, see Amari (1985) for example, that, first, 
parameters 0 and 7 can be chosen in such a way that the following relation holds: 

g(o,,x) = q ,  

and second, that there exist two potential functions ~ and ~ such that the following 
relations are satisfied: 

0i = 0 i~(7) ,  

7~ = 0~r 

r  + ~(7)  - ~ 0'7, = 0. 
i 

The potential functions r and ~ are respectively V-convex and V*-convex, i.e. r 
is a convex function with respect to O and ~ is a convex function with respect to 7. 
Moreover, r and ~ are related by the Legendre transformation defined as follows: 

Using those potential functions, the V-divergence from Pl E .M to/92 C .M is defined 
as follows: 

~)(PI II P2) = r  -{- ~(71) -- E 0~71,i - 
i 

The V*-divergence 79"(pl II p2) from pl ~ M to p2 e M may be defined in a similar 
way, which yields: 

:D*(pl II P2) ---- ~)(P2 II Pl).  

At last, the V-divergence (V*-divergence) satisfy to: 

(2.3) 

where 

(2.4) 

:D(*)(Pl II p2) ~ 0, 

D(*)(pa II P2) = 0 iff Pl ---- P2- 
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3. Barycentres in a dually flat space 

3.1 Definition and properties 
In the framework of differential geometry, a Riemannian barycentre p of a probability 

measure # on a Riemannian manifold M may be defined as being a minimizer of the 
energy functional C defined by: 

C(P)=f.Md2(q,p)d#(q), 

where d(., .) is the Riemannian distance on A/L 
In the particular case where # is a discrete measure concentrated on Pl,.  �9 �9 ,PM, the 

energy functional C(p) may be rewritten as: 

M 

E(p) = Z cqd2(p'Pi)' 
i-----1 

where {ai} are strictly positive scalars satisfying ~"~./M~ 10L i : 1. Hence a minimizer i5 of 
C(p) defined above is a barycentre of M points {Pi} with weights {ai}. 

It is to be noted that  a Riemannian barycentre may not be unique, as it is the 
case in the presence of cut-locus for example. For questions regarding uniqueness of 
Riemannian barycentres and their relations to geodesic convexity, we refer to Kobayashi 
and Nomizu (1969), Emery and Meyer (1989), and Corcuera and Kendall (1999). 

Consider a finite-dimensional manifold ,~4 of probability measures which are abso- 
lutely continuous with respect to a measure P. Such a manifold may be turned into 
a Riemannian manifold when endowed with a Riemannian metric tensor taken as the 
Fisher information. Therefore, a Riemannian barycentre of M points of ~4 could be 
defined as above. However its definition, based on the squared Riemannian geodesic 
distance, which is symmetric by definition, does not reflect the asymmetry arising nat- 
urally in statistics. Moreover from a practical point of view, the computation of the 
Riemannian distance between two points of a Riemannian manifold ~d, irrespective to 
definition issues, is generally a complex procedure. These facts motivate the introduc- 
tion of barycentres in statistical manifolds that  first may be interpreted statistically, and 
second that may be computed rather simply. 

Let (AA, V, V*) be a dually flat space. From now on, we shall assume that: 

ASSUMPTION 3.1. M may be covered by a single chart, and that, 

ASSUMPTION 3.2. A/l is V-convex (resp. V*-convex), i.e., for all points Pl and P2 
in A/t, there exists a unique V-geodesic (resp. a unique V*-geodesic), connecting Pl and 
P2, and lying entirely in j~4. 

Let u and u* be the coordinates mappings that  yield respectively the V-affine and 
the V*-affine coordinates. Note that under Assumption 3.1, the domain of the charts u 
and u* is the whole J~4, and that Assumption 3.2 is equivalent to the assumption that 
u(A~) and u*(M) are convex subsets of a Euclidean space. 

Let P l , . . . , P M  be M points of Ad and let a l , . . . , a M  be a sequence of strictly 
M 

positive scalars such that  ~]-i=1 ai -- 1. Define a V-barycentre of {(Pi, ai), i = 1 , . . . ,  M} 
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as being a minimizer of 
M 

E(p) = ~ ~,~(p II p~), 
i=1  

where :D(p II P~) is the V-divergence from p to p~. Similarly, define a V*-barycentre of 
{(Pi, ai) ,  i = 1 , . . . ,  M }  as being a minimizer of 

M 

E*(p) = ~ a~V*(p II Pi), 
i=1  

where D*(p ]1 P~) is the  V*-divergence from p to pi. The following theorem shows that  
those barycentres are unique. 

THEOREM 3.1. Assume that Assumptions 3.1 and 3.2 hold. With the above nota- 
tions, there exists a unique ~ E A/t such that p = argminpC(p)  and a unique p* such 
that p* -- argminC*(p) .  Moreover: 

~(~) = ~ ~(pi) ,  
i 

.*(~*) = ~ ~i~*(p~) 
i 

PROOF. Let Oi = t~(pi), ~i -- ~*(Pi), 0 = y(p) and 7/= ~*(p). Then  

i = l  k 

= Z ~r + ~(~) - ~ ~o  v~. 
i=1  k 

Let 0 = ~--~i aiOi. Then 

= ~ ( p  II ~) + c, 

where C = ~--:~i a i r  (0i) - r (0). Letting p = , -  1 (~) and using the proper ty  of a divergence 
given by equations (2.3) and (2.4), it comes: 

= u -1 (0) = arg min ~(p). 
p 

The  proof of the unicity and characterization formula of ~* may be obta ined similarly. [] 

The V-barycentre  and V*-barycentre obey  to the composi t ion rule of barycentres  
in Euclidean space, as shown by the following proposition. 

PROPOSITION 3.1. L e t p l , . . .  ,PM+N be M + N  points of A~ and l e t a l , . . .  ,OLM+N 
~-~M q-N be M + N strictly positive scalars such that z_~i=l ai = 1. Let AM = ~-~M 1 a~ and 
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AN = EN=M+I ai. Let PM be the V-barycentre of {(Pi, ~-~M)'i = 1 , . . . ,  M} and let PN 
be the V-barycentre of {(Pi, ~--~N),i = M + 1, . . .  , M  + N}.  Then the V-barycentre of 
{(Pi, ai), i = 1 , . . . ,  M + N }  is the V-barycentre of (PM, AM) and (PN, AN).  

PROOF. The proof is immediate. Let ~ be the V-barycentre of {(pi ,ai) , i  = 
1 , . . . , M  + N}. Then 

M+N 

i:l  
= AMU(PM) A- ANU(PN). [] 

The same result holds for V*-barycentres and may be proved in a similar way. 

3.2 Estimation of V and V* barycentres 
We address now the estimation of the V and V*-barycentres of ( p l , a l ) , . . . ,  

(PM, aM) based on M independent i.i.d, samples Xk,1 , . . . ,  Xk,nk of size nk drawn from 
the Pk, respectively. Let 01,.. .  ,0M and ~71,... ,~/M be the V-affine and V*-affine co- 
ordinates of P l , . . . , PM,  respectively, and let 0 and 7" be the V-affine and V*-affine 
coordinates of the V and V*-barycentre, respectively, i.e., 

M 

k = l  

M 

7" = E O~kv/k" 
k----1 

Let Oa,nk be an estimator of Ok, for all k -- 1 , . . . ,  M. We consider the estimation of O by 

M 

~n = E OlkOk,nk' 
k=l 

where we have let n = nl + .. .  + riM, i.e., the total number of observations. First, if 

the 0k,n~ are unbiased, then ~n is also unbiased. Second if for all k, 0k,nk converges 

in probability to Ok, then (01,nl,. . . ,  OM,nM) converges in probability to (01,. . . ,  0M), 

and so  0 n converges in probability to 0 by the continuous mapping theorem. Third, we 

show in the next proposition that if the t~k,nk are asymptotically normal, t h e n  ~n is also 
asymptotically normal. 

PROPOSITION 3.2. Let Xk,1, . . . ,  Xk,nk be i.i.d, samples of size nk drawn from the 
Pk for k = 1 , . . . , M .  Assume that: 

- The M samples are independent; 
- For all k = 1 , . . . , M ,  there exists an estimator ~k,nk of Ok, constructed on 

Xk,1,. . .  , Xk,nk such that v/-~(~n,nk -Ok) converges in distribution to a centered normal 
random vector with covariance matrix Ek. 
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Let n = nl + . . .  + nM, and let 

M 

~n ~ E OLkOk,nk" 
k = l  

Then x/n(Sn --8) converges in distribution to a centered normal random vector with 

covariance matrix E = ~-]M=~ ~ Ek, when all the nk tend towards infinity in such a way 
nk tends towards a number )~k, with 0 < Ak < 1. that T 

PROOF. By assumption,  fi-k(On,nk -- ~k) converges in distr ibution to a centered 

normal random vector with covariance matr ix  Ek. Hence for all k = 1 , . . . ,  M, v/n(Sk,~k -- 

Ok) = V~n~V/-~(Sk,nk --8k) converges in distr ibution to a centered normal random vector 

wi th  covariance matr ix  ~ E k ,  when the nk ~ ~ with ~ ~ Ak. Since the samples for 

k = 1 , . . . ,  M are independent  by assumption, t h e  ~k,nk are also independent,  and the 

characteristic function of v/-n(0~ - 8 )  writes as 

�9 = E[exp(i<t, v~(~n - 8)>)] 

M 

M 

: H E[exp(i<t, v/-nak(Sk,nk -- 8k)>)] 
k : l  

M 

---= kl~=lE[exp(i<akt, v ~ k V r ~ ( O k , ~ k - - O k ) } ) ] ,  

from which the s ta tement  follows. [] 

The est imation of the ~'*-barycentre can be addressed similarly in the V*-afiSne 
coordinate system. If we assume tha t  there exists estimators #k,~k of the Uk such tha t  
V/~(flk,nk -- ~/k) ~'~ A/'(0, E~), then the V*-affine coordinate ~ of the V*-barycentre can 
be est imated by ~n = ~k=lm ~k,nk and, when nk --+ oo with n_,_n --~ Ak, V~(~n - 7) ~'~ 

0 M 2 
Ak k]" 

3.3 Applications 
3.3.1 Interpolation 

Let (A/I, V, V*) be a finite-dimensional dually flat manifold covered by a single chart. 
Let F be a map defined, for simplicity but  without  loss of generality, on a real interval 
T and valued in ~4: 

F : T-~ A4 

t p(t).  

Let be given N samples of F:  {(tk,p(tk)) ,k = 1 , . . . , N } ,  with tl < . . .  < tN. The 
problem is to build a piecewise linear, in some sense, map F interpolating F at {tk}, 
i.e. such that  -F(tk) = p(t~)Vk. This may be achieved in a Riemannian manifold by 
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connecting any two points p(tk) and p(tk+l) by a geodesic, provided they belong to a 
geodesically convex subset of j~4. If so, F is defined by N - 1 maps Fk : [tk; tk+l] ~ All 
such that Fk(tk) = p(tk), F(tk+x) = p(tk+l) and Fk is a geodesic on M .  Thus Vt G [0; 1], 
-~k(t) is the point which minimizes with respect to p the quantity tk+l--tu~tk+l--t ~/2(_,p,p(tk)) + 

t-t~ d2(p,p(tk+l)), that  is, Fk(t) is the Riemannian barycentre of p(tk) and p(tk+l) tk+t --tk 
with respective weights (tk+l - t ) / ( tk+l - tk) and (t - tk) /( tk+t -- tk). 

Returning to a dually fiat manifold A4, it is possible to define the straightness of 
a curve on 31t with respect to the connections V or V*. This yields two interpolating 
maps defined respectively by N - 1 maps Fk and F~ such that Vt E [tk; tk+~], Fk(t) and 
F~(t) are respectively the V-barycentre and V*-barycentre of p(tk) and p(tk+~) with 
respective weights (tk+l -- t ) / ( tk+l -- tk) and (t - tk)/(tk+l -- tk). 

Remark 1. In dimension d > 1, the above results may be extended as follows. 
Assume T is a &dimensional hypercube included in a Euclidean space E, with its 
usual metric, and that the sample points {tk} are positioned on a regular grid of T. 
This leads to the map Fk (resp. F~) defined on the interior of a &dimensional cube 
C ( t k l , . . . ,  tk2~) with corners t k l , . . . ,  tk2~ where Fk(t)  (resp. F~(t))  is the V-barycentre 
(resp. V*-barycentre) of {(p(tk~), al  ( t ) ) , . . . ,  (p(tk2d), a2d (t))}. In this case, the coef- 
ficients a l ( t ) , . . . ,  a2~(t) are the coefficients of the standard multilinear interpolation 
scheme (linear when d = 1, bilinear when d = 2 and so on). They are defined as follows. 
Assume without loss of generality that C ( t k l , . . . ,  tk2d) is [0; 1] d. The coefficient a~(t) 

is defined by a i ( t )  I-I~=1(1 It j J = - - tk~l). Multilinear interpolation involves the pro- 

cessing of 2 d data points, which becomes computationaly extensive as d increases. One 
alternative to multilinear interpolation is interpolation on simplicial complexes, where 
the interpolated value is expressed as an appropriate convex combination of d + 1 values. 

We consider now the situation where the p(tk) are estimated by i~(tk) constructed on 
i.i.d, samples Xk,1 , . . . ,  Xk,nk, as in Subsection 3.2, and where the interpolating map F is 

such that F(tk)  ----/~(tk), for all k. Then Fk (t) and F~ (t) are estimators of respectively the 
V-barycentre and V*-barycentre of p(tk) and p(tk+l), with associated weights (tk+] -- 
t ) / ( tk+l -- tk) and (t - tk) / ( tk+l -- tk). In fact, there are two problems in this context 
of interpolation. The first one concerns the statistical properties of the map Fk and F~ 
which, as estimators of the V and V*-barycentres, are given above. The second one is 
related to the choice of the connection to perform the interpolation. This question is 
difficult and does not seem to admit a general answer. For instance, the choice could be 
based on a comparison of the regularity of Fk and F~, but which in turn would depend 
on how regularity is defined. In effect, Fk which is straight w.r.t, the V connection is, 
in this sense, the most regular curve joining p(tk) and p(tk+l), and the same holds for 
F~ w.r.t, the V* connection. This question is discussed in Section 4 in the case of the 
gaussian family. 
3.3.2 Model merging 

The problem addressed herein is the one which consists in merging or aggregating 
together M models P l , . . . ,  PM in a unique model ~, which occurs for instance in model- 
ing with finite mixtures (Mclachlan and Peel (2000)). Consider the problem of fitting a 
gaussian mixture model, i.e., a convex combination of N gaussians. One approach is to 
compute the maximum likelihood estimator (MLE) of the mixture parameters (e.g. by 
using the expectation maximization (EM) algorithm (Dempster et al. (1977))) for several 
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values of N, and next to select the more appropriate number of components according to 
some model selection criterion. This approach, which requires multiple MLE computa- 
tions, becomes intractable as the dimension of the data increases. One alternative is the 
iterative pairwise replacement algorithm (Scott and Szewczyk (2001)), which consists in 
starting with a nonparametric kernel density estimator, and next in iteratively reducing 
the number of components by merging the two most similar kernels (in the sense of a 
similarity measure, e.g. Hellinger distance) into a single one. This algorithm yields a 
sequence of mixture models indexed by N, among which one of them may be selected 
according to a goodness-of-fit measure, or a model selection criterion as above. Also, it 
provides a simple yet powerful method for estimating the number of components, prior 
to computation of the MLE, thus reducing the burden of several MLE computations 
for different N. We focus here on the merging operation, which is performed in Scott 
and Szewczyk (2001) according to the method of moments (Everitt and Hand (1981), 
Furman and Lindsay (1994)). Let Pl and P2 be two gaussian densities with means 
#1 and #2, variances ~rl 2 and ~r22, and associated weights Wl and w2, respectively. Let 

= w2/(Wl + w2). By the method of moments, Pl and P2 are merged into the gaussian 
p* with mean (1 - a )# l  + a#2 and variance (1 - c~)a 2 + c~a 2 + c~(1 - c~) (]z I -- /Z2) 2, which 
receives the weight wl + w2 in the new mixture model. As shown in the next section, 
p* is in fact the V*-barycentre of (pl, (1 - a))  and (P2, a). Assume that the sequence 
of merging operations that  led to p* involves M initial gaussians Pl, �9 �9 �9 PM centered on 
M data points. Then by the composition rule of barycentres, p* is the V*-barycentre of 

1 
P l , . . . , P M  with all associated weights equal to ~ .  

4. Informative barycentres in full exponential families 

4.1 Preliminaries: Dual geometry of full  exponential families 
In this section, the focus is on informative barycentres in full exponential families. 

A full exponential family 3,t is composed of the probability density functions p(x;  O) on 
a set ~t, depending on a parameter vector 0 C 0 C R d, whose log-likelihood l(x; O) is of 
the following type: 

d 

l ( x , o )  = c ( x )  + OiF (x) - r 
i=1 

where 

= logfexp c(x) 
/=1 

Under some regularity conditions, Ad may be endowed with the Fisher information 
metric. The components g/j of the Fisher information metric tensor are defined by the 
following equation: 

9ij = Ep(.;o)[Oi logp(.; O)Oj logp(.; 0)], 

where Ep(.;0)['] is the expectation operator with respect to p(.;O). It has been shown, 
first, that a full exponential family is flat with respect to the exponential connection V 
and the mixture connection V* defined by the sets of Christoffel symbols given by: 

- 1 Z 
(4.1) Fijk = rijk -- ~ iyk, 

- 1 T .  " (4.2) Fi*3-k = ['ijk + 2 ~k. 
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In those equations, l)ijk are the Christoffel symbols of the Levi-Civita connection associ- 
a ted with the Fisher information metric and {Tijk } are the skewness tensor components,  
defined by: 

It has been shown, second, tha t  the V-divergence is none other than  the  Kullback-Leibler 
(KL) divergence Z)(pl II p2) from pl E 34 to p2 E 34 defined by: 

~)(Pl II P2) = ~ P l ( ~ )  log 
p l ( x )  

In fact, Amari  defined a one-parameter  class of statistical connections, the 
Christoffel symbols of which are given by: 

F(~) f ' i j k -  C~T 
i j k  ~ -2 ~3 k" 

Those connections are the  only statistical connections derived from a divergence of the 
type  Ep[F(~q)], where F is a convex function such that  F(1) = 0 and F"(1)  = 1 (Amari 
(1985), p. 99). This divergence is invariant, by construction, with respect to an invert- 
ible differentiable t ransformat ion of the sample space. The mixture  and exponential 
connections correspond respectively to a = - 1  and c~ = +1. The  exponential family is 
therefore said to be + l f la t .  

4.2 Barycentres in full exponential families 
The following theorem relates the V*-barycentre  of (p~, c~i); i = 1 , . . . ,  M with the 

mixture  distribution 15 = ~ i = l k  o~kpk. 

THEOREM 4.1. Let 34 be a full exponential family. Let P l , . . .  ,PM be M points 
of 34 and let Ok = ~'(Pk) and ~k = L'*(pk). Let {c~k}k be a sequence of strictly positive 
scalars such that ~M=I c~k = 1. Then the V*-barycentre ~* of {(Pk, C~k)}k is the unique 
point which minimizes with respect to p E 34 the KL-divergence from ~ = y~M=I c~kpk to 
p. 

PROOF. Let :D* (p II 15) = Z)(15 II P), i.e., the KL-divergence from 15 to p. We have: 

:D*(p [I 15) = E~[log15] - E~[logp] 

---- E~[log15]- E~[C(x)] - Z OiE~[Fi(x)] + r 
i 

= E [log15]- Z + r 
i k 

O~ i = E~[log15] - E~[C(x)] - ~ O i ~  k~k + ~b(O). 
i k 

Let 7" = u*(p*). Then: 

--* i--* 7P*(p 11 15) = E~[log15] - E~[C(x)] - ~_,(0 ) r h + r  
i 

-*  i - ,  

i i 
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= ~*(p* II/5/+ ~ ( 0  ) 7, r + r 
i i 

= D*(p ][ ~*) + :D*(p* II i5). 

7 7 7  

[] 

This theorem states that  the ~7*-barycentre of M points Pl, . . . ,PM of M with 
associated weights a l , . . . , a M  is the unique closest point of ~4, in the sense of the 

M KL-divergence, to the mixture/5 = ~-~k=l akpk. Therefore the V*-barycentre p* is the 
projection, in the sense of minimum KL-divergence, of the mixture/5 onto .~4. It may 
be noted that the mixture/5 does not belong to J~4, but that the KL-divergence from 
/5 to p E Jk4 is well defined, contrary to the V*-divergence from p to/5 which makes 
sense only on Ad where it coincides with the KL-divergence from/5 to p. Hence M 
is implicitely considered as a submanifold of a larger manifold containing/5. To make 
geometricaly precise the notion of projection, one can define an enlarged model of J~4 
containing ]5, at least in a neighborhood of ~*, by using the mixture connection, in 
directions orthogonal to jr4, and this would lead to projection in the sense of the V*- 
divergence. This construction is introduced by Komaki (1996) to improve an estimative 
distribution to a predictive distribution, by shifting it in a direction orthogonM to the 
model. 

There do not exists such a natural projection theorem for the V-barycentre in full 
exponential families. In fact, the V-barycentre p of (Pi, ai)i may be expressed as follows: 

i 

where C is a normalizing constant. This is immediate from the definition of a full 
exponential family. In the next section, these results are illustrated on the gaussian 
family on R. 

4.3 Barycentres in the gaussian family 
Let M be the gaussian family on R parameterized by the mean # and the variance 

a 2. So M is a two-dimensional manifold, and is flat with respect to the V and V* 
connections defined by equations (4.1) and (4.2). Let 0 and ~ be respectively the V- 
affine and V*-affine coordinates. They are related to (it, a) by 

, 2 ~  , 

= ( ~ , - ( ~  + ~ ) ) .  

Let pl and P2 be two points of AJ of parameters (#1, al)  and (#2, a2). Let a E [0; 1]. 
Let 0 and 7" be the coordinates of respectively the V-barycentre and V*-barycentre of 
(Pl, (1 - a)) and (P2, a). They are given by 

= ( 1 -  a ) ~  + + , 

7" = ((1 -- a )#  1 7 t- a#2; --[(1 -- a ) (# l  2 + a 2) + a (#  2 + a2)]). 

Returning to the coordinates # and a, the mean ~ and the variance K2 of the V- 
barycentre may be expressed as 

= a ~ + ( 1 - a ) o ~  ' 
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2 2 
~-2 ~ 0"1 G2 

(1 - c~)a~ + a(7~" 

Similarly, the mean ~* and the variance (~,)2 of the V*-barycentre may be expressed 
38 

( 4 . 3 )  = (1 - a ) t t l  + a 2, 

(4.4) (~,)2 = (1 -- (~)a~ + aar 2 + a(1 - a)(#l  -- #2) 2. 

From the expression of g2, it results that  for all c~ E [0; 1], 

(4.5) min(a~, a~) _< ~2 _< max(a12,322). 

In the case where #1 # #2, (~,)2 does not satisfy to a similar relation. Indeed, the 
expression of (~,)2 is a parabola in a, with extremal values a~ 2 and a~, and attains its 

1 2 2 
31-~= [0; 1] of maximal value at a = ~ [1 - (u1-~2) 2 ]" Therefore, there exists an interval I C 

values of a such that  (p.)2 is greater than max(a~, a~). Consequently the first inequality 
in (4.5) holds for ~* but the second one does not. 

Consider again the problem of model merging in the context of fitting a finite 
gaussian mixture. Let X l , . . . ,  Xn be a realization of an i.i.d, sample X I , . . . ,  Xn drawn 
from an unknown density f .  Let ]~,K be the kernel density estimator of f with kernel 
K ( x )  = ~ 1  e-1/2x2 and smoothing parameter h, i.e., 

n 

1 ~ le_l/2((~_x~)/h)2 
f n , K ( x )  = z. . . ,  

i=1 

The iterative pairwise replacement algorithm mentioned above merges two selected ker- 
nels into a unique one. If the V-barycentre is used to merge two initial kernels, then 
the resulting kernel will have variance h 2. By recurrence, such an approach leads to a 
sequence of finite mixture of gaussians with all variances equal to h 2. So clearly the 
V-barycentre is not appropriate for this purpose contrary to the V*-barycentre which 
yields the same sequence of finite mixtures as the one obtained by using the method of 
moments, as may be seen by comparing equations (4.3) and (4.4) with the ones given in 
Subsection 3.3.2. 

Consider the problem of interpolating a continuous map defined on a real interval 
[a;b]. Let a = to < tl < " "  < tn = b be n +  1 interpolating points. Let p ( t o ) , . . . , p ( t n )  
and/5(t0) , . . . ,  ~(tn) be respectively the true and estimated models (constructed indepen- 
dently from i.i.d, samples drawn from the p(tk) ,  eventually of different sizes) at to,.  �9 t , .  
For each t in [tk, tk+~], we can take as an approximation to p(t) either the V or the V*- 

tk+~-t a n d .  t - t ~  . To choose barycentre of/5(tk) and/3(tk+l), with associated weights ~ ~k+l--~k 
between these barycentres, one needs a criterion or principle, as it is the case for instance 
in the regularization of an inverse ill-posed problem. One principle can be to select the 
barycentre such that  the estimated variability of the underlying phenomenon at t is nor 
lower nor greater than the variabilities that  have been observed at tk and tk+l, and this 
one leads to choosing the V-barycentre. 

5. Conclusion 

Dual informative barycentres on a dually flat statistical manifold (Ad, V, V*) have 
been introduced. The major concern of this research has been to provide a solution to 
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the problem of in terpolat ing a statistical manifold valued map, which originates from 
the  ocean color problem described in the introduct ion.  One close problem is the one 
of model  merging, which occurs for instance in modeling with finite mixtures.  The  
impor tan t  question tha t  arises when using informative barycentres  for these problems 
concerns the choice of the connection and its associated divergence. A piece of answer has 
been given above for the  two examples and when A/I is the manifold of normal  densities 
on R .  However it seems t ha t  the choice depends bo th  on the family of statistical models 
and on the application for which they are used. So the quest ion is especialy difficult, 
and also arises in another  statistical context,  namely the es t imat ion by minimum C- 
divergence. As discussed in Pardo  et al. (2002), choosing the "best" function r for 
this purpose depends on the family of models under  consideration, and this impor tan t  
quest ion remains open. 

I t  has been shown in the case where the manifold of statist ical  models is an expo- 
nential  family A/i tha t  the V*-barycentre  of {Pi, ai} is the unique closest point of the 
manifold to the mixture /5  = ~--]i aiPi,  in the sense of the KL-divergence. As mentioned 
above, the  mixture /5  does not  belong to M but  the KL-divergence from the mixture /5  
to a point  p C A4 is well defined. Hence A/t has been implicitly considered as a subset of 
the  set of all probabil i ty densi ty  functions. It  would be interesting to pursue the work by 
s tudying  the quest ion of whether  similar results may  be obta ined for o ther  families and 
stat is t ical  connections and,  more generally, for submanifolds of the  infinite-dimensional 
s tat is t ical  manifold. 
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