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Abstract .  We consider the problem of parametric inference from continuous sam- 
ple paths of the diffusion processes {x(t)} generated by the system of possibly non- 
stationary and/or nonlinear Ito stochastic differential equations. We propose a new 
instrumental variable estimator of the parameter whose pivotal statistic has a Gaus- 
sian distribution for all possible values of parameter. The new estimator enables 
us to construct exact level-a confidence intervals and tests for the parameter in the 
possibly non-stationary and/or nonlinear diffusion processes. Applications to several 
non-stationary and/or nonlinear diffusion processes are considered as examples. 
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1. Introduction 

We consider the vector-valued continuous-time stochastic process {x(t)} in a state 
space S C R k, generated by the following system of possibly non-stationary and/or 
nonlinear Ito stochastic differential equations; 

(1.1) dx(t) = a ( t , x ( t ) )d t+b( t , x ( t ) )Odt+a( t , x ( t ) )dW( t ) ,  0 < t < T, 

where x(t) = (Xl ( t ) , . . . ,  Xk(t))', a(t, x), b(t, x), a(t, x) are k x 1, k x 1, k x p, k x k matrix- 
valued functions respectively, 0 = (01, . . . ,  Op)' is an unknown vector of p parameters of 
interest with p <_ k, W(t)  = (Wl ( t ) , . . . ,  Wk(t))'  is a vector of k independent standard 
Brownian motion processes. 

Recently, the use of continuous-time processes described by Ito type stochastic dif- 
ferential equations has become very popular in financial economics. For example, in 
capital asset pricing models, many of the financial time series such as stock prices, ex- 
change rates, and interest rates are usually assumed to satisfy stochastic differential 
equations of the type (1.1). See Karlin and Taylor (1981) for a large number of applica- 
tions of diffusion processes for various stochastic modelling and Hull (1999) and James 
and Webber (2000) for more specific applications in various capital asset pricing models. 

In this paper, we consider the problem of statistical inference on the parameter 
0 of the model (1.1) from the continuous sample path {x(t);t  c [0, T]} of the process 
up to time T. Statistical inference for continuous-time diffusion type processes is, of 
course, not new and has been the subject of extensive research effort in the mathematics 
and statistics literatures. See Basawa and Prakasa Rao ((1980), Chapter 9), Prakasa 
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Rao ((1999), Chapter 2) and Kutoyants (2003) for a recent survey and the extensive 
bibliography of this vast and still growing literature. 

However, most of these works are focused on the asymptotic properties of the clas- 
sical estimators such as least squares estimator (LSE) or maximum likelihood estimator 
(MLE) as T -~ c~. For the special model of the type (1.1) with a(t, x) --- Ika for a > 0, 
both conditional MLE and LSE of the unknown parameter 0 are the same and is given 
by 

~o = b'b(t, x(t))dt b'(t, x(t))[dx(t) - a(t, x(t))dt]. 

In spite of the asymptotic optimality theory developed for this estimator as in Prakasa 
Rao ((1999), Chapter 2), standard inference procedures based on LSE or MLE have 
several drawbacks from the applications point of view. 

First, most of standard asymptotic theory depends heavily on the stringent as- 
sumption of the stationarity of the underlying process {x(t)} which severely limits the 
domain of the permissible parameters. This restriction excludes from consideration many 
interesting non-stationary models, such as random walk and cointegration, commonly 
encountered in the current economics and finance literatures. 

Secondly, even for the stationary model, most of the optimality results are based on 
the asymptotic distribution of the MLE as T --* ce. Thus the finite sample properties 
of the MLF~based procedures are largely unknown especially for non-stationary and/or 
nonlinear processes and there is no simple explicit guideline on the value T for the validity 
of the asymptotic results. Both of these features may diminish the practical utility of 
the LSE-based methods in analyzing real data. Therefore we need alternative methods 
which can overcome these problems of the LSE-based methods and enable us to make a 
simple and flexible inference on the parameter 0 which is valid not only for stationary 
processes with a large sample size but  also for possibly non-stationary and/or nonlinear 
processes with a small sample size. 

In this paper, we propose a new estimator of ~ based on the special instrumental 
variables and establish important finite sample properties of the estimator such as the 
median-unbiasedness and the normality of the corresponding pivotal quantity for possibly 
non-stationary and/or nonlinear diffusion processes. Then we develop exact level-a 
confidence intervals and tests of the hypotheses on ~ in non-stationary and/or nonlinear 
diffusion models. 

In the sequel, in order to simplify the notation, we will assume that a(t,  x) = Ika 
for fixed a > 0 without loss of generality unless otherwise stated. See Section 4 for the 
extensions to the heteroscedastic models. 

Our new estimator is motivated by the following moment condition 

(1.2) E K ( t , x ( t ) ) d W ( t  --- O, T > 0 

for any Ft-measurable p x k matrix-valued function K(t ,  x) = [k l , . . . ,  kp]' of p instru- 
mental variables vectors where Ft is the a-field generated by {x(s); s E [0, t]} for t > 0. 

Now the sample analog of (1.2) is given by 

fo T K( t ,  x(t) )[dx(t) - a(t, x(t) )dt - b(t, x(t) )Odt] = 0 
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which in turn motivates the definition of the following estimator. 

DEFINITION 1.1. (Instrumental variables estimator) For the matrix of instrumen- 
tal variables K(t ,  x(t)) ,  the estimator defined by [/; ]1; 
(1.3) 0~ = K(t ,  x(t))b(t,  x( t))dt  K( t ,  x(t))[dx(t) - a(t, x(t))dt] 

is called the instrumental variables estimator (IVE) of 0. 

By the appropriate choice of the matrix K( t , x ( t ) ) ,  we can generate a variety of 

IVEs of 0. For example LSE 0o corresponds to the choice of the instrumental variables 
K(t ,  x(t)) = b'(t, x(t)).  

As an alternative to LSE, we will consider the special type of IVE 0~ based on the p- 
orthonormal instrumental variables K*(t ,  x(t))  = b*'(t, x(t))  where b*(t, x) = [b~, �9 �9 bp] 

�9 p R k is the matrix of the p-orthonormal vectors {br}T= 1 in constructed from the p-column 
vectors P {br}r=l of the matrix b(t, x) of rank p by the Gram-Schmidt orthogonalization 
process: 

b~ = bl/lbll, 

b~ = (b2 - (b2, b~)b~)/Ib2 - (b2, b~)b~l, 
�9 . . 

�9  (bp * * * * bp = bp - , b i )b  i / - bp, , 

i=1 i=1 

where (a, b) k = ~i=1 aibi is an inner product of the vectors a, b in R k and Ixl 2 = (x, x) = 

k 2 is the square of the Euclidean norm of the vector x. E i = I  Xi  
In view of formal similarity to the sign-based IVE first proposed by Catchy (1836) 

in the context of linear regression model, we will call the new IVE Catchy estimator�9 

DEFINITION 1.2. (Catchy estimator) The IVE based on the matrix of orthonor- 
mal instrumental variables b*(t, x(t)) is called a Catchy estimator�9 

See also So and Shin (1999) for the similar definition of the Catchy estimator of the 
discrete-time stochastic processes. 

Prom the definition of the estimator t~e, the vector of pivotal quantities Tc based on 
~)e is given by 

(1.4) re(0) = b*'b(t, x(t))dt  (0~ - O) /aT 1/2 = b*'(t, x ( t ) ) d W ( t ) / T  ~/~. 

In the next section, we will establish the distribution of the pivotal quantity re. 
Following this introduction, in Section 2, we prove a key Lemma for deriving the dis- 

tribution of the proposed pivotal statistic and then we construct exact tevel-a confidence 
regions and tests of the hypotheses on the parameter 0. In Section 3, applications to sev- 
eral non-stationary and/or  non-linear diffusion type processes are considered with some 
encouraging simulation results. Section 4 concludes with some discussions on extensions 
to other models. 
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2. Finite sample properties of the estimator 

In the sequel, A ~ B denotes that A and B have the same distribution, lal 2 -- tr(a 'a) 
denotes the square of the Euclidean norm of the matrix a, Nk (#, a 2) denotes the k-variate 
normal distribution with a mean vector # and a covariance matrix a 2. 

In order to ensure the existence and uniqueness of a solution to the system of 
stochastic differential equations (1.1), we require 

A: There exists some constant K > 0 such that the matrix-valued functions a(t, x), 
b(t ,x) ,  and a( t , x )  satisfy the following conditions for all x , y  �9 S c R k and s , t  �9 [0, T]: 

a) la(t ,x) - a(t ,y) l  + Ib(t,x) - b(t,y)l + la(t ,x)  - a( t ,y) l  <__ K [ x -  Yl, 

b) la(s,x) - a( t ,x) l  + Ib(s,x) - b(t ,x)  I + la(s ,x)  - a ( t , x ) l  <_ K I s -  t I, 

c) la(t,x)l 2 + Ib(t,x)l 2 + la(t ,x)l  2 <_ K 2 ( 1 +  Ix12). 

Now we are ready to prove the following lemma which will be useful in establishing 
finite sample properties of the new estimator. 

LEMMA 2.1. Let v(t) = [vl(t), . . . ,Vp(t)] be a k • p-matrix of non-anticipating 
stochastic processes adapted to the a-fields Ft satisfying the following orthogonality con- 
dition: 

B: v(t) 'v(t)  = Ip for any t �9 [0, T]. 
I f  we let 

f t_>O, 

then 

a) {M,, Ft}t=o is a martingale, 
b) T {Mt} t :o  ~ {(Wl( t ) , . . . ,  Wp(t))}T=o, 

c) M T ~  NB(O, TIp). 

PROOF. By the definition of stochastic integral with respect to Wiener Process 
and the orthogonality of v(t),  Mt is a continuous local martingale with (Mr, M~I = Ipt. 
Then Levy characterization theorem of Revuz and Yor ((1999), p. 150) completes the 
proof. 

Note that Lemma 2.l-a), b) imply that the process {Mt}t~o is a Brownian motion 
in R p. Lemma 2.l-c) enables us to establish the distribution of the pivotal quantity ~-c(0) 
of (1.4) for any fixed parameter 0 and for any possibly non-stationary and/or nonlinear 
diffusion models of the type (1.1) as is to be shown in Theorem 2.1. 

THEOREM 2.1. (Normality of the pivot To) Consider model (1.1) satisfying condi- 
tions A with a(t,  x) = Ika for a > O. Let b(t, x(t)) be a k • p-matrix of rank p. Then, 
for  any 0, we have 

To(o) ~ Np(O, 4 ) ,  
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and in particular 

where b~ = bp - E~2__)(bp, b~)b~ and 

iO T = b~'(t, x ( t ) ) d W ( t ) / T  1/2 ~ N(O, 1), 

PROOF. First part follows immediately from Lemma 2.1 with the choice v(t) = 
b*(t,x(t)).  As for the second part, we note that  (b*,bj) = 0, for i > j and (b*,br) -- 
[br-  ~ - l ( b r ,  b*)b~[ , r = 1 , . . . ,  p imply that  the normalizing matrix in Tc (0)is the upper 

K-~r--lih b*~b*llp triangular matrix of order p with positive diagonal elements {Ibr - z..~i=l [ur, i /  i lit=l" 
This completes the proof. 

Using the results of Theorem 2.1, we can construct the exact level-a simultaneous 
confidence region for 0 E R p and the confidence intervals for the individual parameters 
0r, r = 1, . . .  ,p by the appropriate change of order of Or. 

Exact level-c~ simultaneous confidence region for O: 

Rc : (0 - Oc)'U~U~.(O - 0~) <_ ~ ( p ) ,  

where UT = [ ~  b* 'b( t ,x( t ) )dt l /aT 1/2, and X2~(p) is the upper a- th quantile of the X 2- 
distribution with the degrees freedom p. 

Exact level-a confidence interval for Or: 

[So ]1 Ic : O~,r 4- [b~(t,x(t))]dt aTa/2z~/2, 

where b~ = br - [b'_rb-r]-l(b%br) with b-r = [bl , . . . ,  b~-l, b r+ l , . . . ,  bp], 

[/; ] ' ;  O~,r = Ib~(t,x(t))ldt b~*'(t ,x(t))[dx(t) - a(t ,x(t))dt],  

b~* • • = br/Ibr ] and z~ is the upper a- th quantile of the standard normal distribution. 

We also note that  the corresponding LSE-based approximate confidence intervals 
are given by 

Approximate level-a confidence interval for Or: 

n l / 2  Io : Oo,r • LJrr az~/2 

737 

[s0 ]1; Oc,p = Ib~ (t, x(t))Idt b~'(t, x(t))[dx(t) - a(t, x(t))dt]. 
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for the stationary process where D ~  is the r-th diagonal element of the matrix D = 

[fJ b'b(t, x(t))dt] -1 of order p. This follows directly from the asymptotic distribution of 
the pivotal statistics 

[J0" ]1,. ]"' J0" b'b(x(t))dt (~o - 8) = b'b(t, x(t))dt a b'(t, x(t))dW(t) 

Np(O, 2) 

as T ~ co which follows from the martingale central limit theorem for stochastic integrals 
due to Kutoyants (1975). 

Remark 1. (Median-unbiasedness of ~c,~) We note that Theorem 2.1 implies 

p0(  ,r <_ 6r) = 1 / 2  = >_ 

for any 0~ in R. However this is not true for MLE ~o which has a non-negligible bias 
typically. See Theorem 17.2 of Liptser and Shiryayev ((1999), p. 225) for the charac- 
terization of the bias and the mean squared error of the MLE in the special class of 
univariate Ito processes of the type (1.1). This bias is responsible for the possible power 
loss of the MLE-based test and the corresponding distortion of the coverage probabil- 
ity of the MLE-based confidence intervals for the near non-stationary model. See the 
simulation results of Tables 1, 2 and 3 below for the possible distortion of the empirical 
coverage probabilities of the 90-% confidence intervals based on LSE. 

Remark 2. (Asymptotic relative efficiency of ~r and ~o) Let {x(t)} be a stationary 
process in R k with a(x), b(x) independent of t. Then for a real-valued parameter 0, 
asymptotic relative efficiency (ARE) of the Cauchy estimator ~ with respect to the 
MLE ~o as T ~ c~ is given by 

ARE(~c; ~o) -- [EIb(x(t))l]2/E[Ib(x(t))l 2] 

from the ergodic theorem for the stationary process {b(x(t))}. For example, k-variate 
stationary Ornstein-Uhlenbeck process is defined by 

dx(t) = Ox(t)dt + adW(t),  

where 0 < 0 and x(0) ~ Nk(0, Ika2/2lOI). Then we have 

ARE(Oc; ~o) = [EIx(t)l]2/E[Ix(t)121 = 2F2(( k + 1)/2)/kV2(k/2) k 2/~ = 0.637 

for any 0 < 0 which is tabulated for selected values of k in Table 0. 
We note that this result is partially supported by the simulation results for mad 

(mean absolute deviation) ratio A R E  = (.59/.67) 2 = .775 of Table 3 for k = 2 with 

Tab le  0. dx(t) = Ox(t)dt + crdW(t), 0 < O, x(O) ~ Nk(O , Ika2 /2[OI). 

k 1 2 3 4 8 

A R E  2 / r  = .637 ~ / 4  = .785 8 / 3 ~  = .849 9 ~ / 3 2  = .884 .940 1.0 
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T ---- 9, 0 = - 5 .  However for non-s ta t ionary  processes near 0 ---- 0 wi th  a small sample 
size T, ARE is not relevant and the Cauchy est imator  actual ly  outperforms the LSE 
in terms of smaller mad  as is shown in the  simulation results of Tables 1 and 3 for 
k = 1, 2 below. We also note tha t  a l though the confidence intervals I~ based on the  
Cauehy es t imator  0~ have the exact coverage probabil i ty  1 - a for any finite T,  those 
based on LSE 0o may suffer from considerable distort ion of the  coverage probabil i ty for 
non-s ta t ionary  process as shown in Tables 1 and 2. 

Now it is s t ra ightforward to construct  the  level-a critical regions of the tests of hy- 
potheses on 0 by invert ing the pivotal quant i ty  of the corresponding confidence regions. 

Exact level-a tests for  0~: We reject the  null hypothesis  Ho : O~ = 0~o in favor of 
the  al ternative hypothesis  HI  : Or ~ OrO if 

I~c,r(0~o)l _> z~/2. 

Similarly critical region for the exact  level-c~ test  of the null hypothesis  Ho : O~ = Oro 
against the one-sided al ternat ive HI  : 0~ < 0ro is given by 

~c,~(0~o) _< - z . ,  

w h e r e  ~ ,~(0~)  = [fo T Ibm(t, x(t))[dt](O~,~ - O~)/~rT 1/2 ~ N(O, 1). 

Remark 3. (Alternat ive IVE 0~) If we choose the ins t rumental  variables 
K**( t , x ( t ) )  [b~*,. •  • • • = . . ,bp  ] where b r = b r/Ib~ I, r = 1 , . . . , p ,  then  we have an al- 
te rnat ive  IVE [/: ]1/: 

0~,, = Ib~( t ,x( t ) ) ld t  b~* ' ( t ,x ( t ) )[dx( t )  - a( t ,x( t ) )d t]  

of 0r and the corresponding pivotal quant i ty  

] rc,~(Or) -- Ib~l(t ,  x( t ) ) ld t  (O~,r - O r ) / ~ r  ~/2 ~ N(O, 1) 

with the Gaussian marginal  distr ibution for each r = 1 , . . .  ,p. However the joint  nor- 
mal i ty  of 0~ E R p does not  hold for this est imator .  

Next we consider applications of our results to the stat is t ical  inference for some 
non-s ta t ionary  a n d / o r  nonlinear diffusion processes. 

3. Applications 

In the Monte-Carlo simulations of Section 3, we use the simple Euler  approximat ion 
based on the discrete- t ime stochastic difference equation; 

(3.1) A x t  = a ( x t ) A t  + b(xt)OAt + ~r(At)l/2et, t = 0 , . . . ,  N,  

where At  = T / N ,  xt  = x ( t A t ) ,  A x t  = Xt+l --Xt,  and et is a sequence of the independent  
s tandard  normal r andom variables. This  procedure  seems sensible because the sample 
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paths of the discrete approximation (3.1) and the corresponding estimators based on the 
approximations 

T N T N--1 

t=l t=0 

converge to those of the continuous-time diffusion process x(t) as At --, 0. See Kloeden et 

al. (1994) for an extensive discussion on numerical approximation methods of simulation 
of the solution of a stochastic differential equation. 

Example 1. (Ornstein-Uhlenbeck process in R k) We consider the k-dimensional 
vector Gaussian process x(t) driven by the linear stochastic differential equations; 

dx(t) = Ox(t)dt + adW(t) ,  0 G R, t �9 [0, T] 

which has an unique solution 

f x(t )  = x0e ~ + ~, e~  t __ 0. 

For the stationary case 0 < 0, it is well known that MLE 

// f Oo = (x(t), d~(t))/ Iz(t)12dt 

has an asymptotic normal distribution as T ~ e~. See Basawa and Prakasa Rao ((1980), 
Chapter 9), Liptser and Shiryayev ((1999), Chapter 17) and Kutoyants (2003) for details. 
However, for the important non-stationary process with 0 = 0, asymptotic distribution 
of the MLE is not normal and is given by 

To ---- ~7 - 1  Ix(t)[2dt (0o - 0) ~ W' ( t )dW(t ) /  ]W(t)i2dt 

One of the undesirable consequences of the non-normality of the asymptotic distribution 
of MLE for 0 near zero is the distortion of the coverage probability of the naive confidence 
intervals based on MLE as is shown in the simulation results for the empirical coverage 
probabilities of the LSE-based 90-% confidence intervals of Tables 1 and 3 with k = 1, 2 
respectively. 

Another difficulty of the MLE-based procedure is apparent in testing for the random 
walk hypothesis H0 : O -- 0 against the stationary alternative H1 : 0 < 0. We need a 
separate table for the lower a- th  quantile of the asymptotic distribution of 7o for each k 
as is given by Dickey et al. (1984) for selected values of k in the discrete-time processes. 
On the other hand, the pivotal quantity based on the Cauchy estimator has a Gaussian 
distribution for any finite T and k regardless of the value of 0. This result greatly 
facilitates the solution of the difficult problem of construction of the valid confidence 
intervals and the corresponding tests of the parameter 0 in the non-stationary process. 
Incidentally, we note that  alternative form of the Cauchy estimator is given by Ito formula 

// // 0c -- (z*(t) ,  dx(t))/ Iz(t)ldt 

[ ; 1; -- I x ( r ) l - I x ( 0 ) l -  ( 1 / 2 ) ~  ~ Alx(t)ldt / Iz(t)Ldt, 
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where x* = x/]x[, A[x[ = (k - 1)/Ix [ for k > 1 and for k = 1 it is formally defined as the 

Dirac delta function 2~(x) and (1/2) f J  A[x[(t)dt = L(O, T) is the  local t ime at x = 0 of 
the univariate Ornstein-Uhlenbeck process x(t) from t = 0 to t = T. 

Example 2. (Nonlinear diffusion process) As an example of simple nonlinear and 
possibly non-s ta t ionary  diffusion process, we consider the diffusion process 

(3.2) dx(t) = Ox(t)dt/[1 + sign(x(t))/2] + dW(t). 

Even for this simple process, the na ture  of the asymptot ic  dis t r ibut ion of the MLE of 
as T --* oc is largely unknown especially for non-s ta t ionary  case. But  the  inference based 
on the Cauchy es t imator  is greatly simplified by the normali ty of the  corresponding pivot 
rc(0) even for non-s ta t ionary  processes with a small t ime span T.  

In order to investigate finite sample propert ies  of the Cauchy est imator ,  we consider 
the univariate Ornstein-Uhlenbeck process and the nonlinear process (3.2). Tables 1, 
2 summarize the simulat ion results for the bias, s tandard deviat ion (s.d.), and mean 
absolute deviat ion (mad) of the LSE and the  Cauchy es t imator  respectively with the 
configuration At  = 0.01 and the number  of replications -- 10,000. In general, Cauchy 
es t imator  seems to have a smaller bias but  a larger variance than  LSE and has a smaller 
mad  than  LSE for non-s ta t ionary  models near 0 - 0. As for the empirical coverage 

T ab l e  1. T = 1, k = 1, x(0)  = 0, dx(t) Ox(t)dt + dW(t).  

L S E  C a u c h y  

0 E(0~o) s.d.  m a d  Pr .  E(Oc) s.d.  m a d  Pr .  

1.0 - . 5 8  2.90 1.97 .865 - . 0 9 8  3.07 1.83 .900 

0.1 - 1 . 6 3  3.07 2.21 .882 - 1 . 0 1  3.28 2.11 .899 

0.0 - 1 . 7 5  3.15 2.25 .879 - 1 . 1 4  3.34 2.18 .902 

- 0 . 1  - 1 . 9 3  3.19 2.32 .881 - 1 . 3 2  3.47 2.26 .898 

- 1 . 0  - 2 . 8 6  3.38 2.47 .890 - 2 . 1 4  3.75 2.53 .898 

- 5 . 0  - 6 . 8 6  4.25 3.21 .899 - 6 . 1 2  4.99 3.69 .900 

Note: n u m b e r  of  r ep l i ca t i on  = 10,000; dt = 0.01; a = 1; n o m i n a l  c o v e r a g e  p r o b a b i l i t y  = 0.90. 

Tab le  2. T = 4, k = 1, x(0)  = 0, dx(t) = Ox(t)dt/[1 + sign(x(t))/2] + dW(t). 

L S E  C a u c h y  

0 E(0~o ) s .d.  m a d  Pr .  E(Oc) s.d.  m a d  Pr .  

2.0 1.99 .15 .02 .898 1.98 .15 .03 .899 

1.0 0.90 .40 .13 .869 .93 .37 .13 .898 

0.1 - . 2 7  .69 .46 .868 - . 1 2  .71 .45 .899 

0.0 - . 3 8  .70 .49 .879 - . 2 2  .73 .47 .903 

- 0 . 1  - . 5 1  .75 .52 .883 - . 3 3  .79 .51 .907 

- 1 . 0  - 1 . 4 3  .94 .71 .897 - 1 . 2 5  1.12 .82 .896 

- 5 . 0  - 5 . 3 8  1.57 1.23 .899 - 5 . 1 9  1.98 1.56 .898 

Note: n u m b e r  o f  r ep l i ca t i on  = 10,000; d t =  0.01; a = 1; n o m i n a l  cove rage  p r o b a b i l i t y  = 0.90. 
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probability (Pr.) of the confidence intervals with a 90-% nominal coverage probability, 
LSE-based intervals suffer from considerable distortion of the coverage probability for 
non-stationary models near 0 = 0 in contrast to the stable behavior of the corresponding 
intervals based on Cauchy estimator. 

Example  3. (Complex-valued Ito process i n  R 2) As an interesting example of 
model (1.1), we consider the complex-valued process x ( t )  = x l ( t )  + ix2( t )  in R 2 de- 
fined by 

dx ( t )  = a(t ,  x )d t  + Ob(t, x ( t ) ) d t  + d W ( t ) ,  

where i 2 = - 1 ,  a ( t , x ) , b ( t , x )  are fixed complex-valued functions of t E R,  x E R 2, 
0 = 01 + i02 is a complex parameter and W ( t )  = W l ( t )  + i W 2 ( t )  is a Brownian motion 
in the complex plane. We can verify that the Cauchy estimator of 0 is given by 

Oe = Ib(t, x ( t ) ) Id t  sign(b(t, x ( t ) ) ) [dx ( t )  - a(t ,  x( t ) )dt] ,  

where lxl 2 = x 2 + x22, sign(x) = x / I x  I, 5c = x l  - ix2 is the complex conjugate of x. 
Moreover the pivotal statistics Tc(0) of the Cauchy estimator has the bivariate normal 
distribution for any T > 0; 

re(O) = [b(t, x( t ) ) ldt(Oc - O ) / T  1/2 ~ N2(O, h ) .  

As a specific application to geophysical problem, Arato et al. (1962) employed the simple 
linear model; 

dx( t )  = Ox( t )dt  + d W ( t ) ,  x(O) = Xo 

in order to model the random oscillation of the instantaneous axis of the rotation of 
the earth. They used MLE for the estimation of the complex parameter 0 under the 
stationarity assumption 01 < 0 and studied asymptotic properties of the estimator as 
T --, c~. See Liptser and Shiryayev ((1999), Section 17.4) for more details. However 
their results are not applicable to small T or to non-stationary case 01 >_ 0. On the 
other hand, our procedures based on the Cauchy estimator are valid not only for small 
T but  also for non-stationary models. Table 3 summarizes the simulation results for 
performance of the two estimators of the complex parameter 0 = 01 + i02, with 02 = 0. 

Table  3. T = 9, k = 2, x(0) = 0, dx( t )  = Ox(t)dt + dW(t). 

LSE Cauchy  

0 E(0~o) s.d. m a d  Pr .  E(0~c) s.d. m a d  Pr .  

0.1 .02 .17 .11 .856 .05 .17 .11 .896 

0.0 - . 0 9  .19 .14 .880 - . 0 6  .20 .13 .898 

- 0 . 1  - . 2 0  .22 .16 .890 - . 1 6  .23 .16 .899 

- 1 . 0  - 1 . 1 1  .38 .29 .905 - 1 . 0 6  .42 .32 .901 

- 5 . 0  - 5 . 1 0  .75 .59 .902 - 5 . 0 5  .85 .67 .903 

Note: n u m b e r  of  rep l ica t ion  = 10,000; dt = 0.01; a = 1; nomina l  coverage  probab i l i ty  = 0.90. 
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T ab l e  4. k = 1, x(0)  ---- 0, d x ( t )  = Ox( t )d t  + d W ( t ) .  

T = I  T = 4  

0 To Tc To Tc 

0.0 .050 .050 .051 .050 

- 0 . 1  .050 .051 .056 .062 

- 0 . 5  .057 .065 .119 .114 

- 1 . 0  .073 .079 .236 .200 

- 1 . 5  .094 .092 .399 .313 

- 2 . 0  .115 .107 .588 .426 

- 5 . 0  .320 .261 .998 .908 

Note:  n o m i n a l  level = 0.05; n u m b e r  of  r ep l i ca t ion  = 10,000; dt = 0.01; a -- 1. 
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It is clear that  Cauchy estimator outperforms LSE in the neighborhood of 0 = 0 in terms 
of the smaller mad and the more stable coverage probability. 

Example 4. (Test for random walk in R k) For the important special case a(t, x)  = 
0 with p = 1, we may consider the general problem of test of random walk hypothesis 
H0 : 8 -- 0 against possibly nonlinear stationary alternative hypotheses H1 : 0 < 0 of the 
type (1.1). It is straightforward to construct the one-sided normal test from the pivotal 
quantity (1.4) of the Cauchy estimator. However, for the MLE-based test, we need a 
separate table for the quantiles of the finite sample or asymptotic null distribution of 
the quantity 

which can be obtained through Monte-Carlo experiments on a ease-by-case basis. Fur- 
thermore, we point out the intrinsic difficulty in constructing reliable MLE-based confi- 
dence interval of the parameter 0 near zero due to the inevitable non-normality of the 
corresponding t-statistic. 

Table 4 summarizes limited simulation results for the powers of the level-0.05 random 
walk test H0 : 0 = 0 against the stationary alternative H1 : 0 < 0 of the univariate 
Ornstein-Uhlenbeck process with b(xt) = xt .  It shows the local power advantage of the 
normal test % based on the Cauchy estimator over that % based on the LSE for small 
samples T = 1, 4 respectively. 

4. Summary and further extensions 

In this paper, we proposed a new IVE of the parameter of the Ito type diffusion pro- 
cesses and developed exact level-c~ confidence intervals and tests for the parameters which 
are valid not only for stationary but also for possibly nonlinear and/or  non-stationary 
processes. 

Our approach to the parameter estimation is based on the special orthogonal instru- 
mental variables of unit length and has a good efficiency for non-stationary model as well 
as a modest relative efficiency with respect to MLE for the stationary model. Further- 
more it has several desirable small sample properties such as median-unbiasedness even 
for the possibly nonlinear and non-stationary processes. This is especially important for 
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applications in which the total time span T of the data set is small, since it is precisely 
in such cases that  the inferences must depend critically upon finite sample properties of 
the estimator. 

We note that the desirable finite sample properties of the tests and confidence in- 
tervals based on the new IVE can be extended to other class of possibly non-stationary 
and/or  nonlinear continuous-time diffusion type processes. We may consider extension 
to heteroscedastic diffusion processes of the type 

dx(t) = a(t, x(t))dt  + b(t, x(t))Odt + a(t, x ( t ) )dW(t ) ,  t >_ 0, 

where a(t, x(t)) is a known nonsingular matrix of order k. It is straightforward to extend 
main results of this paper to this case if we modify the definition of the new estimator 
0c and the corresponding pivotal quantity Tc in (1.3) and (1.4) according to the scheme 

a-Xdx( t )  = a - la ( t ,  x(t))dt  + a- lb ( t ,  x(t))Odt + dW(t ) .  

As an interesting class of stochastic processes, we mention the process generated by the 
stochastic differential equations with time delay 

dx(t) -- a(x(t  - r))dt + b(x(t - r))Odt + a(x( t  - r ) )dW(t ) ,  t >_ 0 

for some r > 0. For example, for the special linear model with time delay, Gushchin and 
Kiichler (1999) develop a sophisticated asymptotic likelihood theory for MLE with 11 
different limit distributions depending on the value of the parameters. Meanwhile our 
result provides a simple alternative Gaussian finite sample procedure with possible loss 
of efficiency but without any stationarity and/or  linearity conditions. 

In view of the nice finite sample properties and the possible applications in non- 
stationary processes, a potentially fruitful direction for further investigation will be the 
extension of the finite sample results to general multi-parameter diffusion processes with 
p > k and possibly for a discretely observed data. 
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