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A b s t r a c t .  In this article, mixture distributions and weighted likelihoods are de- 
rived within an information-theoretic framework and shown to be closely related. 
This surprising relationship obtains in spite of the arithmetic form of the former and 
the geometric form of the latter. Mixture distributions are shown to be optima that 
minimize the entropy loss under certain constraints. The same framework implies the 
weighted likelihood when the distributions in the mixture are unknown and informa- 
tion from independent samples generated by them have to be used instead. Thus 
the likelihood weights trade bias for precision and yield inferential procedures such 
as estimates that can be more reliable than their classical counterparts. 
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1. Introduction 

To int roduce the results we present in this paper,  suppose a statist ician,  S, is required 
to  predict  y, the realized value of a random variable Y with unknown probabil i ty  densi ty 
funct ion (PDF) ,  say f .  Instead of a point  prediction,  S is allowed to  s ta te  the predict ion 
as a predictive PDF,  say g. Finally, S receives a reward, log g(y). Thus,  by selecting g, 
S expects  a re turn  of f f ( y ) logg(y)dy .  How should g by selected? 

Although it is not  the framework employed in this paper,  we now state  an approach 
taken by bo th  Frequentists  (Fs) and Bayesians (Bs) for different reasons. Suppose f -- f j  
with probabil i ty uj ,  j -- 1 , . . .  ,m,  7~j > 0, ~-] r j  = 1, where for simplicity we suppose 
m = 2. The expected re tu rn  then becomes f(~lfl (Y)+Tr2f2(y)) log g(y)dy and a familiar 
calculation then  leads to  an optimal  g, 

(1.1) g * ( Y ) = ~ l f l ( y ) + ~ 2 f 2 ( Y ) .  

The  Fs call g* a mixture  model, the Bs a model  average. In the aforementioned context  
leading to equat ion (1.1) the f l  and f2 are usually viewed as competi tors .  For example,  
f l  and f2, respectively, could represent the P D F  of a surficial geological measurement  
dis tr ibut ion given the presence or absence of specified sub-surface deposits.  

In contrast ,  in this paper 's  context ,  f l  and f2 play the roles of complementary  
models thought  to resemble each other  and the t rue density funct ion of interest. For 
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example, they could be the unknown population PDF's  for a response measured on two 
recent surveys while f represents that of the population to be measured in the near 
future. Although the population would have changed somewhat from one survey to 
the next, S would view the density functions as being quite similar. S's quest for an 
optimum g leads us in the Section 2 to formalize the notion of "similarity" in a new 
paradigm rooted in the celebrated maximum entropy criterion of Akaike. If the true 
density function f is unknown, the resulting optimum predictor is shown in that  section 
to be another mixture model 

(1.2) g* = 7rlf1 + 7r2f2, 

where rri > 0, i = 1, 2, and 7rl + 7r2 -- 1. The above mixture is obtained from quite 
a different rationale than the one in equation (1.1). Here, the 7ri's are derived from 
the assumptions made in Section 2 and they can only be determined if fi 's  and their 
relationships to the true density function f are both known. 

If, more realistically, the fi's were unknown, then little progress could be made 
without having data obtained by repeatedly measuring random variables having these 
PDF's.  Heuristically, one might then expect an estimate of g* to be found by using the 
PDFs obtained by differentiating the empirical cumulative distribution functions (CDFs) 
associated with the respective samples. In fact, that is precisely the estimate found in 
Section 3 in the non-parametric case where g* does not have a specified parametric 
form. Moreover, as we will see in Section 3, that natural estimator turns out to be 
none other than the weighted likelihood estimator of the mixture model. In that  section, 
we present our principal result, a fundamental relationship between the arithmetically 
averaged predictor in equation (1.2) and the geometrically averaged weighted likelihood 
described below. 

However, before getting into a more detailed description of our results, we would note 
that the origin of this paper lies in Stein (1956) who showed that bias could be traded 
for precision. Moreover he showed that "strengths" could be "borrowed" from data  
drawn independently from populations other than the population of inferential interest. 
Specifically, under certain reasonable conditions, if normal population means are to be 
estimated simultaneously from independent samples, then the sample averages can be 
outperformed in terms of expected combined squared-errors of estimation. Moreover, 
each of the improved mean estimators relies on the data from all populations. 

Stein's result challenged conventional paradigms which supported the use of the 
sample averages. Moreover, since the likelihood method produces the sample average 
in the first place, while failing to produce Stein's superior alternative, it casts some 
doubts on the method itself. Can the likelihood be extended to yield Stein's result, more 
specifically the estimator of James and Stein (1961)? That is the subject of this paper. 

To derive an appropriate likelihood in Section 2, we take an approach suggested by 
Hu and Zidek (2002) based on the maximum entropy approach of Akaike (1977). The 
legitimacy of Akaike's approach has been amply demonstrated through, for example, its 
generation of the celebrated AIC criterion. Akaike also used his approach to derive the 
classical likelihood function and thereby provided us with a blueprint for our construction 
of the weighted likelihood, a central contribution of this paper. 

To describe that likelihood, we suppose for simplicity that  f = f l .  Moreover, assume 
that from each of the populations associated with the fi 's, we observe independent and 
identically distributed random variables, X i l , . . .  , Xini ,  i = 1 , . . . ,  m. Each of these 
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random variables may be a vector, all having the same dimension. Each Xij, j = 
1 , . . . ,  ni, is assumed to have a density function fi, i = 1 , . . . ,  m. Moreover, we assume 
the samples from the different populations are independent of each other. Let Xi  = 
(Xi l , . . . ,X in i )  t and X = (X1,X2,. . . ,Xm). 

Suppose only 81, an unknown vector of parameters of the first population, is of 
inferential interest. Moreover, we initially limit our search for an optimal predictive 
PDF to a parametric class, g(.) -- fl(" I 01) (although we briefly consider the non- 
parametric alternative as well). Then for fixed X = x, we derive in Section 3, the 
weighted likelihood (WL) as 

(1.3) WL(x;O1) -- ~ I ~ I  fl(xij;O1) )~i, 
i = l j = l  

where ), = ( ~ 1 , . . .  ,*~m) is the "weight vector" whose values are not implied by our 
implementation of Akaike's approach and must be specified in the context of specific 
applications. 

A "maximum weighted likelihood estimator (WLE)", ~1, for 81 is defined as 

(1.4) ~1 = arg sup WL(x; 01). 
0lEO 

To find the WLE, we may compute 

(1.5) 
m n i 

logWL(x; 01) = E E )~ilogfl(xij;O1). 
i=1 j = l  

In turn, we may solve the weighted likelihood equation: 

(1.6) (0/G~01) log WL(x; 01) = 0. 

Note that the uniqueness of the WLE is not assumed. We see that  weighted likelihood 
theory closely resembles and formally includes classical likelihood theory. 

The weighted likelihood (WL) has been developed for a variety of purposes and it 
can have a variety of forms, as seen in our summary of Section 4. One example: the 
multinomial likelihood where sample-based weights (we call "adaptive") arise naturally. 
In a Bayesian framework it can arise as an integrated likelihood. In spite of the WL's 
long history, it seems to have been suggested in specific instances on an ad hoc basis. 
We are not aware of any "normative" argument like that given here (and in a special 
case by Hu and Zidek (2001, 2002)), assuring that  it is the correct choice. 

2. Basics elements 

For density functions, gl(x) and g2(x), with respect to a a - f in i t e  measure v, 
Kullback-Leibler divergence is defined as: 

(2 .1 )  KL(g l ,g2 )=g l ( logg l (X)~: / log  gl(x) g-~--(-'~] g-g~gl(X)dl](X) �9 

In this expression, log(gl(x)/g2(x)) is defined as +oc, if gl(x) > 0 and g2(x) = 0. 
Therefore the expectation could be +co. Although log(gl(x)/g2(x)) is defined as - o c  
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when gl(x) = 0 and g2(x) > 0, the integrand, log(gl(x)/g2(x))gl (x) is defined as zero in 
this case. We shall not be concerned with the information theoretic significance of the 
relative entropy; rather, we simply view it as a measure of the discrepancy between the 
two distributions. 

The properties of the entropy can be found in Csiszar (1975) and Cover and Thomas 
(1991). In particular, the relative entropy is not symmetric and therefore not a distance. 
The Kullback-Leibler divergence has also been known as the entropy loss. James and 
Stein (1961) introduced it as a performance criterion in estimating the multinormal 
variance-covariance matrix. Brown (1966) and Haft (1980) used it to index the losses 
incurred in estimating both the multinomial variance-covariance matrix and its inverse. 
Ghosh and Yang (1988) introduced this as a loss function for simultaneously estimating 
p-independent binomial and multinomial proportions. Parsian and Nematollahi (1996) 
considered the estimation of scale parameter under entropy loss function. Trottini and 
Spezzaferri (2002) showed that the criterion based on logarithmic utility function for 
estimating the density function by San Martini and Spezzaferri (1984) is equivalent to 
the generalized predictive criterion using the relative entropy. Bernardo (1979) showed 
the entropy is a loss function in a Bayesian framework. 

According to the maximum entropy principle of Akaike (1977), the goodness of a 
particular model g, as the predictive distribution of a random response, X, with true 
density f ,  is measured by the Kullback-Leibler divergence (relative entropy), 

(2.2) I ( f  ,g) = KL( f ;  g) = / l o g  

The above distance is minimized if we set g(x) = f (x )  for all x. 
It is rarely possible to assume that an underlying distribution is exactly character- 

ized by a proposed statistical model g(x; 0). It is more reasonable to assume that the 
proposed statistical model lies in a close proximity to the true underlying distribution. 
One neighborhood enveloping the model is defined by Eguchi and Copas (1998) as 

(2.3) Nj( ) = u0 e{g : * ( f , g )  _< 

where e >__ 0. 
We further assume the existence of the m population density functions that are 

unknown and they play purely conceptual roles. More specifically, assume a-finite prob- 
ability spaces (~,~-, >i), i = 1, 2 , . . . ,  ra, with probability measures /~i's that are abso- 
lutely continuous with respect to one another. The existence of a a-finite measure ~ that 
dominates the >i's then follows. We take the fi to be the Radon-Nikodym derivatives 
of #i with respect to ~ for i = 1, 2 , . . . ,  m. 

We apply this measure by taking f = f l ,  the population density of inferential 
interest. If it were known, we should set g = f l ,  the best choice available, assuming the 
problem is well-posed so that this choice satisfies the constraints. If, more realistically, 
it were not known as we now suppose, this measure of performance would play only a 
conceptual role. The other population densities, fi, i = 2 , . . . ,  m, are also assumed to be 
unknown. However, suppose we believe they "resemble" the density function of interest 
f l ,  then this knowledge should to be incorporated in selecting a predictive density. If 
f l  is considered as the primary and "closest" statistical model to the true underlying 
distribution, the incorporation of other available distributions would allow the proposed 
model g to capture some important characteristics of the true underlying distribution 
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t ha t  might be missed by the primary model f l .  We interpret this to mean tha t  any 
proposed model, g, must  not diverge excessively from each of these other densities even 
as we minimize the difference between g and f l .  

More specifically, to fit into our relative entropy framework, we require tha t  
I ( f i , 9 )  <_ ai for constants  ai, i = 2 , 3 , . . . , m .  The ai represents the magni tude of 
resemblance between the "best" model and a candidate model fi ,  i -- 2 , . . . ,  m. In fact, 
the ai 's  might not be known. Their roles like tha t  of the f i ' s  are purely conceptual and 
the assumption of their existence alone is enough to lead us to a form for the appropriate 
likelihood. 

Thus, for a given set of density functions, f l  (x) being primary, we seek a probability 

density function g which minimizes I ( f l ,  g) -- f f l  (x)log ~ d u ( x )  over all probability 

densities satisfying 

(2.4) I(f~,g)  < ai, i = 2 , . . . , m ,  

where ai, i = 2, 3 , . . . ,  m, are non-negative constants. 

3. Derivation of the mixtures and weighted likelihoods 

3.1 Derivation of the mixture distributions 
The density functions, f l , . . . ,  fm E V, are all assumed to be continuous where V is a 

reflexive Banach space. Although V can be quite arbitrary, we take V = L p = LP(~, u). 
It is known tha t  the L p spaces (1 < p < c~) are reflexive but tha t  L 1 is not (see Royden 
(1988) for example). 

For i = 2 , . . . ,  m, we define 

(3.1) C~ = {g e LP: ] lg-  fiIIp < c ,Jfi(x)log f f i ( x )du (x )  < ai, 
9(x) 

where ai _> 0 and Ci, i = 2, 3 , . . . ,  m, are non-negative constants. Furthermore,  we define 

(3.2) $ = N~=2gi. 

We remark tha t  the set g will be bounded with respect to the L p norm and non-empty 
if the constraints are not too restrictive. The latter is assumed throughout .  

To prove the existence of the optimal solution to the problem posed in the last 
section, we use the following result. Let D be a non-empty closed convex subset of L p, 
1 < p < oc. Let 9 C L p and J(g) : L p ~ ~ denote a general mapping. We are interested 
in the following minimizat ion problem: 

(3.3) inf J(9). 
gED 

To avoid trivial cases, we assume tha t  the function J(g) is proper, i.e. it does not take 
the value - c ~  and is not identically equal to +cx~. We then s ta te  the following known 
result. 
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THEOREM 3.1. Assume that J(g) is convex, lower semi-continuous and proper 
with respect to g. In addition, assume that the set 7) is bounded, so that there exists a 
constant M say, such that 

(3.4) sup J(g) < M, 
gET) 

then the minimization problem defined by equation (3.3) has at least one solution. Fur- 
thermore, the solution is unique if  the function J(g) is strictly convex on 7). 

The proof of the above theorem can be found in Ekeland and Temam (1976). 
Let J(g) = I ( f l ,  g) for a given density f l .  We minimize I ( f l ,  g) with respect to g 

on $ as defined by equation (3.2). It can be seen that I ( f l ,  g) is a bounded non-negative 
strictly convex function with respect to g. It follows that I ( f l ,  g) is continuous with 
respect to g (Lemma 2.1, Ekeland and Temam (1976)). In fact, I ( f l ,  g) is weakly lower 
semi-continous with respect to g over L p, 1 < p < cc (Theorem 1.2, Dacorogna (1989) 
for example). We conclude from Theorem 3.1 that I ( f l ,  g) attains its minimum value at 
a unique point in $ for any given density f l .  

COROLLARY 3.1. For a given set of density functions f l ,  f 2 , . . . ,  fro, the minimiza- 
tion problem defined by equation (2.4) has a unique solution. 

We now establish a necessary property of the optimal solution to the minimization 
problem defined by equation (2.4) and thereby obtains equation (1.2). 

THEOREM 3.2. For g* to be the optimal solution to the minimization problem de- 
fined by equation (2.4), it is necessary that it be a mixture distribution, i.e., that there 
exist non-negative constants 7cl,... ,7Cm such that ~-~'~i=lm 7ri = 1, and 

$rt 

(3.5) g*(x) = E 7rifi(x) > O. 
i = l  

Note that  the celebrated Shannon-Kolmogorov Information Inequality is a special 
case of this last result. To see this, consider the minimization problem defined by equa- 
tion (2.4) without any constraint. Thus we seek the optimal density function g* that  
minimizes I ( f l , g )  for any given f l .  According to Theorem 3.2, the necessary condi- 
tion for g* to be the optimal solution is g*(x) -- 7rlfl(x). Since ~rl = 1 and ~ri = 0, 
i = 2, 3 , . . . ,  m, it then follows that g*(x) = f l  (x) for all x. 

The previous theorem also states that the optimal density is actually a mixture of 
all the available densities, f l ,  f 2 , . . . ,  fro. The weight or proportion 7ri should reflect the 
importance of each density. The nature of relative entropy means that  a smaller value 
of as for a particular density corresponds to greater importance or resemblance to the 
true density. 

In our framework, the importance of each density is expressed or controlled by ai, 
although the relationship between the a's and the 7r's is neither simple nor of much 
practical value. However, the next theorem gives us some qualitative understanding of 
that  relationship. In fact, it describes the relationships between the weight and ai for 
any mixture density function which satisfies the constraints defined by equation (2.4). 
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THEOREM 3.3. Suppose there exists a ~ = (a ~ a o ~t such that there exists 
m go(x) = ~-~i=1 tifi(x) with ti chosen as a function of a ~ so that go achieves equali- 

ties in the constraints defined by equation (2.4) and ~-~.~m I t~ = 1. In addition, there 
exists 6 ~ = (52, . . . ,  5,,) t such that lai - a~ < 50,, i -- 2, ... , m, for any a. Then the ti's 
are monotone functions of ai, more precisely, 

Ot~ 
- -  ~_  0 ,  i = 2 ,  . . . , m ,  
Oa~ 

0 E t k  ~ 0, i = 2 , . . . , m .  
Oai k#i 

Furthermore, the weights ti are all between 0 and 1. 

3.2 Derivation of weighted likelihood functions 
By the Lagrange theorem, the minimization problem defined by equation (2.4) is 

equivalent to seeking the optimal density g* which minimizes the following: 

(3.6) S ( g ) =  j f l (x) log  ~ d v ( x ) + l o  ( /  g(x)d~,(x)-1) 

m 

§  l ~  ) " 

Rewrite S(g) as follows: 

(3.W) S(g) ---- - -  fl(X) logg(x)du(x) + E li fi(x) logg(x)du(x) 

lo I g(x)d (x) + 

§ 

Thus, the minimization problem considered is equivalent to maximizing the following 

/ f l ( x ) logg(x)du(x)+ ~ li f fi(x) log g(x)du(x) - lo / g(x)du(x) 
i= 2  

m 

- d _f :i(x)logg(x)d.(x) -lo ] g(x)d.(x), 
I *  

i=1  

where dl -- 1, di -- li, i = 2, 3 , . . . ,  m. Theorem 3.2 implies, in particular, that  l0 must  
have the same sign as every one of the multipliers lj 's as well as 1 implying that  all these 
multipliers are nonnegative. Since the di's are non-negative, thuse the optimum can be 
found by maximizing 

m 

(3.8) E d i /  fi (x) log g(x)dv(x). 
i = 1  
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Suppose a functional form for g can be prescribed, i.e. assume g(.) = f l  (" I 01) where 
01 E O represents a parameter vector for the population of interest. To that end, we 
make the following assumptions: 

(i) Subject to the constraints imposed on the optimization problem in equation 
(2.4), the function 01 --+ I ( f l ,  9) has a unique maximum, 0~ in O. 

(ii) The gradient of g(.) = log fl(" 101) with respect to 01 exists a.e. [u] and can be 
taken under the integral sign in I(fi ,  g), i = 2 , . . . ,  m. 

By applying the Lagrange argument (c.f. Beavis and Dobbs (1990)), we then obtain 
the following result. 

THEOREM 3.4. Assume the Ologg(xl01) k = 1,2, d, do not all lie in the hy- 
O 0 1 k  ' " ' "  ' 

perplane of functions orthogonal to some non-null element of the space spanned by the 
{f i , i  = 2 , . . . ,  m} with respect to the inner product (f, h) = f f(x)h(x)du(x). Then the 
unique optimum satisfies the foUowing: 

(3.9) 
m 

0~ = arg max ~ di f log fl(x; O)dFi(x), 

where the di's represent Lagrange multipliers. 

However, as in Akaike's theory, the distributions for the m populations are unknown 
and merely play a conceptual role. Thus, the role of the previous theorem is qualitative 
and it limits our choice of the family of acceptable parametric functions if the Lagrange 
result is to hold. We can then obtain the WL in the parametric case by heuristic rea- 
soning like Akaike employed. By replacing the distribution functions by their empirical 
counterparts, we then seek 01 which maximizes the following: 

(3.10) ~ d, f log f l  (X; 01)dFi(x), 
i = l  

where Fi denotes the empirical distribution function for population i -- 1 , . . . ,  m. This 
then gives us the parametric version of the likelihood defined earlier. The estimate of 
the parameter of the optimal distribution can then be derived from 

m n i 

(3.11) 01 = argmax H H fl(Xij;o)di/n~" 
0EO 

i=1j----1 

This implies that the estimate of parameter of the optimal density is equivalent to 
finding the WLE derived from the weighted likelihood function if the functional form of 
the optimal density function is known. Finally, g*(.) = fl(" 101) provides the required 
predictive PDF derived from all the samples. It, unlike its non-parametric counterpart 
below, is not in mixture model form. 

If there were no constraints imposed, then di = 0 for i = 2, 3 , . . . ,  m. Thus the goal 
is minimize I ( f l ,  g). It then follows that the weighted likelihood can be simplified to 

n l  

(3.12) H fl(Xlj;O)l/nl" 
j = l  
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For this special case, we then have 

nl  

(3 .13)  logWL(O) = A Elogfl(Xlj;O). 
nl  j=~ 

It follows that the WLE for 0] coincides with the classical MLE when there is no connec- 
tion among the samples. This shows that our framework could reproduce the derivation 
of MLE presented by Akaike (1973). 

Furthermore we can also obtain the WL in the non-parametric case, by heuristic 
reasoning like Akaike has employed. Observe that any unknown term in the objective 
function defined by equation (3.8) must be estimated. Now we may argue as in the 
classical case in which the non-parametric MLE is shown to be the sample empirical 
distribution. Thus, we see that the optimum density is degenerate and puts all of its 
unit mass on the sample points. In other words the optimum is obtained by maximizing 
the following quantity over gij,  i = 1 , . . . ,  m, j = 1 , . . . ,  ni with ~ ~ gij = 1 and gij ~_ 0, 

m ni 

(3.14) H ~ d,/n, 11 gij " 
i=1 j = l  

We also obtain the WL estimator of / '1  as a generalization of what Hu and Zidek 
(1993, 2001) called the relevance weighted empirical distribution, namely 

(3.15) F~ = ~ ~ F i  
1=1 

where Fi denotes the empirical distribution of the i-th sample and ~i c( di, i -- 1 , . . . ,  m 
are non-negative weights that sum to 1. Thus, by this heuristic reasoning we obtain not 
only the non-parametric WL in explicit form but the WL estimator as well. Although 
this estimate is rather "rough", it is the best that can be obtained without parametric 
restrictions. 

We remark that the weights di's, although dictated in principle by our constraints, 
are not easily specified in practice. This is because ai's which represent the relationships 
between f l  and f i ,  i = 2 , . . . ,  m are not known. Thus the likelihood weights must be 
either specified or estimated. Indeed, it may well be preferable to choose di's adaptively. 
Wang and Zidek (2004) suggested selecting them adaptively by using cross-validation. 
The adaptive weights proposed there are designed to control any possible bias. The 
asymptotic properties of WLE are shown in Wang et al. (2004). 

4. Related work and discussion 

In this section, we describe related work including some not directly connected to 
the central topic of this paper. 

4.1 James -S t e in  e s t imator  and the W L E  
Let Y~ ~ N(0i, 1), i = 1 , 2 , . . . , m ,  where m > 3. Assume Y 1 , Y 2 , . . . , Y m  are inde- 

pendent. However they might not be identically distributed as they come from normal 
distributions with possibly different means. The James -S t e in  estimator is defined as 

(4.1) 0 JS = ~ + (1 - B a S ) ( y l  - ~), 
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1 n B J S  3 m where ~) = ~ ~ i=a  Y~ and = ( m  - )/~-]k=2(Yk -- ~)2. 
The weighted likelihood function for this case is 

(4.2) 
n 1 1 n 

WL(01)  = - 2  og(27r) - ~ Z ~i(Yi - 01) 2. 
i = 1  

It then follows that 

m 

(4.3) 0 WLE = ~_, AiYi. 

i = 1  

Choosing A J8 = t - m-lBJS and /~JS = B Js i = 2,3, m makes the WLE 
m m ~ " " " 

coincide with the James-Stein estimator. So, just as the James-Stein estimator can 
be explained by the empirical Bayes paradigm (Efron and Morris (1973)) so can our 
extension to the classical likelihood paradigm. 

4.2 Weighted likelihood funct ions 
The local likelihood of Tibshirani and Hastie (1987) extended the idea of local 

fitting to likelihood-based regression models. Staniswalis (1989) generalized the theory 
of Tibshirani and Hastie (1987) through non-parametric kernel estimation of a regression 
function. In the context of non-parametric regression, she defined the weighted likelihood 
a s  n(  ) 
(4 .4 )  w ( e )  = w z0 - z ,  -~ log f(Yi; 0), 

i = 1  

where z~ are fixed and b is a single unknown parameter. Other versions of the local 
likelihood have been proposed or discussed by Copas (1995), Hjort and Jones (1996) and 
Loader (1996). Eguchi and Copas (1998) gave a general form of the local likelihood. Still 
other weighted likelihoods resembling those in this article have been studied. Markatou 
et al. (1997, 1998) proposed one for robust estimation. Hunsberger (1994) also adopted 
the term "weighted likelihood" when using kernel estimators for the parametric and 
non-parametric components of semi-parametric regression models. We should add that 
versions of the weighted likelihood can also be seen in a variety of contexts (c.f. Brillinger 
(1977), Rao (1991), Field and Smith (1994), Newton and Raftery (1994)). 

Hu (1997) proposed the relevance weighted likelihood which is closely related the 
weighted likelihood presented in this article. The properties of relevance weighted like- 
lihood can be seen in Hu and Zidek (1993, 1995, 2001, 2002). The relevance weighted 
likelihood generalizes the core of the local likelihood as the weights are not restricted 
to kernel weights. But it differs fi'om the local likelihood since it does not have a bias 
correction term. Hu and Rosenberger (2000) discussed various choices for the weights in 
the context of relevance weighted likelihood. 

4.3 Discussion and future work 
The idea of finding an optimal solution with respect to relative entropy under con- 

straints is related to the hypothesis testing for divergence outlined in Kullback ((1959), 
Chapter 3). For any given true density f ,  the practitioner seeks a probability distribution 
that is "nearest" to the true density that satisfies certain constraints. The constraint 
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is employed to force f l (x)  to satisfy some other desired characteristics. Although the 
true density function f(x) is in fact unknown, we suppose in the spirit of configural 
polysampling by Morgenthaler and Tukey (1991) and Easton (1991) that  a set of den- 
sity functions, f] ,  f 2 , . . . ,  fm "span" a reasonable range of possible true densities for the 
observations. Therefore, in order to find the optimal predictive distribution, the desired 
density function should not only be associated with only one density but  also with other 
candidate densities to a varying degree. 

The empirical likelihood, a non-parametric procedure with likelihood foundations, 
seems natural and appealing. Moreover, many desirable features of the likelihood carry 
over to its empirical counterpart (Owen (2001)). LeBlane and Crowley (1995) proposed 
the use of local empirical likelihood to estimate a "conditional functional". Ren (2001) 
used a weighted empirical likelihood ratio confidence interval for the mean with cen- 
sored data. That likelihood strongly resembled the one Hu and Zidek (1993) proposed, 
although they did not consider the impact of censoring. We will investigate this direction 
further in future work. 

Finally, we would note that the approach taken in this paper will seem unnecessary 
since Bayesian methods could well be used instead. In particular, it has long been 
known that a hierarchical empirical Bayes approach using the conventional likelihood 
also generates the James-Stein estimator. However, not all practitioners embrace the 
Bayesian approach. Moreover, the use of Bayesian approach may be impractical or even 
infeasible in applications where, not uncommonly, ten's of thousands of parameters may 
be encountered. This makes it almost impossible to eliciting genuine (as opposed to 
ad-hoc or non-Bayesian e.g. improper) prior distributions and carry out the necessary 
computations. Thus, deriving a likelihood-based alternative seems worthwhile. 
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Appendix: Proof of theorems 

PROOF OF THEOREM 3.2. For the optimal density g* whose existence is assured, 
we may without loss of generality assume that the constraints are binding, i.e. that 
I(fi,g*) = ai, i = 2, 3 , . . . , m  since by reducing the non-binding a's if necessary we 
obtain the same optimum. Thus the optimization problem with solution g* can be 
re-formulated in the context of calculus of variations as follows 

(A.1) 

where 9 C g satisfies: 

mi~ I(fl, g) : min f log fl (x) ft (x)d,(x), 
9eE j g(z) 

f l o g  ~fi(x)dv(x)  = ai, i = 2 , . . . , m ;  

f g(x)d~(x) -- 1 and 9(x) > O. 
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Define r  = f l ( x ) l , ~  f l ( J z )  m .vo ~(x) + 10s(x) + Ek=2l~fk(x)  log s~-~ Since r  is 9(~) " 
continuous with respect to g, by an elementary theorem in the calculus of variations (see, 
for example, Giaquinta and Hildebrandt (1996)) it follows that a necessary condition for 
g* to be the optimal solution is that it satisfies the Euler-Lagrange equation, i.e. 

(A.2) Vgr  - ~x (V~,r = 0, 

where Vg and Vg, are the derivative operators with respect to g and g' respectively and 
lk suitably chosen constants, the so-called "Lagrange multipliers". Notice that  r  g) 
is not a function of g'. That implies Vg,r = 0. Thus Euler-Lagrange equation becomes 
Vgr  = 0. It follows that 

m fk 
f l  + lo E l k  O. 
g g 

k = 2  

(A.3) 

We then have 

(A.4) 
m 

g*(x)=Z~kf~(x), 
k = l  

w h e r e  f f l  --- 1/lo, ~ = lk/lo, k = 2 , . . . ,  m.  
m The sum of the 7ci's must be 1 since g* E s and hence 1 = f g * ( x ) d v ( x )  = ~ k = l  7ok. 

Likewise, 

m 

(A.5) g*(x) -- ~ . k h ( x )  > o, 
k = l  

since g* must be in $ by Corollary 3.1. 
Finally, we observe that the {~i} must be nonnegative for if not we could make 

}-:~km=lrkfk(x) uniformly larger by truncating any negative weights to zero and re- 
normalizing the remaining weights so that  they sum to 1. The result would satisfy 
the constraints while reducing the objective function. Hence the original solution could 
not have been optimal, a contradiction. [] 

P R O O F  O F  T H E O R E M  3.3. 

It follows that~ 

(A.6) 

This implies that 

(A.r) 

Let r = f i ( x )  - f l ( x ) ,  i = 2 , . . .  ,m .  Then, 

m 

go(x) = f l ( x )  + E tkCk(X), 
k=2  

r  = O, i = 2 , . . . , m .  

m 

k(x )  = g0(x) + r - ~ t k r  _> 0. 
k=2  

[+ ,] - ~ ( x ) -  tkCk(x _<g0(x). 
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Since go satisfies the constraints by equation (2.4), it follows tha t ,  for 2 < i < m 

Oai 0 [ f  fi(x) du(x) ] 
Oti -- Oti fi(x) log go(x) J 

~ [/   lxl] 
- oti f~(x) log Eke1 tkA(x) 

(x~ r 
= - f f~' ' go(x) 

[ - ] r 
= - f 9o(x) + r  ~ t k e k ( X )  ~0(x) 

k=2 

�9 ] r  , , r , , , 
-----fgo(X)g-o-~au(x ) -  f r  g-~au(x) 

k=2 

] <_- r r  tkCk(x) g~-~au(x) 

< _ - f r  by (A.7) 

0. 

Therefore, it follows that ,  for i = 2 , . . . ,  m, 

(A.8) 
Oti 
Oai 

1 
< 0 .  

~a i -- 

8ti 
We then have 

(A.9) 0 E t k > _ 0  
Oai k#i 

since t l  + t2 + . . .  + t m  = 1. 
Note tha t  if we set ai = 0, then ti = 1; if ai = co, then ti = 0. Since ti is a monotone 

function ofai for any fixed aj, i ~ j ,  it follows that  0 < ti _< 1, i = 1 , 2 , . . . , m .  [] 
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