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Abstract. An estimator of the number of components of a finite mixture of k-
dimensional distributions is given on the basis of a one-dimensional independent
random sample obtained by a transformation of a k-dimensional independent random
sample. A consistency of the estimator is shown. Some simulation results are given
in a case of finite mixtures of two-dimensional normal distributions.

Key words and phrases: k-dimensional finite mixture, normal pdf, number of com-
ponents, one-dimensional finite mixture, orthogonal matrix.

1. Introduction

Let R¢ mean an /-dimensional Euclidean space. Let F = {fp(z) : @ € ©} be a family
of known k-dimensional probability density functions {(pdf’s), where the parameter space
© is a compact subset of R% for a d;.

For a positive integer m, a pdf f(x | A,,) given by

(11) f(@ ] An) =3 eifo,(2)

is called a finite mixture of fp, (z), fo,(x),- .., fa,, (x) (Titterington et al. (1985)), where
St =1,0<a <1,0, € ©(=12..,mand A, = (a1,02,...,0m;
01,0,,...,0,,). So asingle fg(x) in F is also considered a finite mixture for m = 1 as
a special case. Each fp, () is called a component of f(z | A,,) and each o; a mixing
ratio of fp.(x).

The purpose of this paper is to give an estimator i, of the number m of components
on the basis of an independent random sample (X1, Xo,... , X ) from the distribution
(1.1). The importance to estimate the number m is described in McLachlan and Basford
(1988), Titterington (1990) and others. Henna (1985), Feng and McCulloch (1994), Chen
and Kalbfleisch (1996) and Richardson and Green (1997) have treated one-dimensional
finite mixtures. Keribin (2000) has given a method which can be applied to a special
multivariate normal mixture under the assumption that a superior value } of m is known.
Some methods to determine the number of components are described in McLachlan and
Peel (2000). Chen et al. (2001) and Garel (2001) have given a test for m in a univariate
case.

In this paper, a method which can be applied to k-dimensional finite mixture dis-
tributions is considered though the analysis is based on one-dimensional samples. For
the purpose, we consider a real valued function T satisfying the following condition, that
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is, putting Yy = T(X¢) (£ = 1,2,...,n), then (Y1,Y2,...,Y,) can be regarded as an
independent random sample from a finite mixture with m components such as

where hg, (y) is a one-dimensional pdf with a parameter 8, and ¢, = (a1, a2, .., Qm;
61,65,...,6,,). In other words, by transforming (X, Xo,...,X,), we obtain an inde-
pendent random sample (Y3,Ys,...,Y,) which can be considered to have come from a
finite mixture of m one-dimensional distributions. And then we construct an estimator
of m on the basis of (Y1,Y2,...,Y,).

In Section 2, some notations and preliminary lemmas are given. In Section 3, an
estimator is given and researched its consistency when F is a family of k-dimensional
normal distributions. In Section 4, in particular, an estimator is researched when F is a
finite family of k-dimensional normal distributions with known parameters. In Section 5,
some simulation results are given.

2. Some notations and preliminary lemmas

Let X be a random vector with a pdf fg(x) € F. Let us consider a transformation
Y = MX + p with an orthogonal matrix M and a column vector p. Assume that Y
has a pdf g,(y) with a parameter w when X has fg(x). Let

(2.1) G ={gw(y):w e},

where O corresponds to 2, which is assumed to be a compact subset of R% for a dj,
through Y. Then the correspondence of F to G through Y is one-to-one because
9w(y) = fo(M ™ (y — p)) holds (Billingsley (1986)). So it can be easily seen that a
necessary and sufficient condition for f(z | A,,) to be the finite mixture (1.1) is that
g(y | B,,) to be the finite mixture

(2.2) 9(y | Bm) = Zaigwi(y),

where f(z | Am) and fy,(x) correspond to g(y | Bm) and gw,(y) (j = 1,2,...,m),
respectively, through Y with B, = (a3, a2,... ,@m;wi,wa, ... ,Wm)-
Let hs, (y;) be the marginal pdf with a parameter 6; obtained by

(2.3)  he,(y5) =f-~-/Rk‘1 gu(y)dyr - (dy;)---dyr  (G=1,2,... k),

where the multiple integral is calculated with respect to the variables (y;,y2,... ,yx)
except y;.

Let the parameter space A; = {§; : w € Q} obtained by the integration (2.3) be a
compact subset of R*/ for a k; and the component parameter w; of the mixture (2.2)
correspond to 8;; € A; (j =1,2,...,k). Then some of §;1,6;2,...,6;, may equal as
can be seen from the example of normal mixture of Henna (2001). So we denote here
the different members of 6;1,8;2,... ,6m by 1, mj2,... ,Wjm, anew. Let B3;; be the
sum of all mixing ratios {«s} of {gw,(y)} in (2.2), where g,,(y) has the same marginal
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pdf hx,,(y;). Of course, if all of §;1,8;2,... ,6;m are different, then m; = m, B;; = «;
and 7j; = 6;; hold.

Accordingly, if X has the finite mixture (1.1), then Y has the finite mixture (2.2).
Furthermore, letting ¥ = (Y1,Y>,...,Y%)’, then Y; has the finite mixture

m;
(2.4) hi(yy | €jm;) = 3 Bishwyi(ys) (G =1,2,... k),
where ¢jm; = (81, B8i2, -« - » Bjm;; i1, W2, -+ s Wjm,)-

Now we adopt T;(X) = a;X + p; for the real valued function T mentioned in
Section 1, where a; is the j-th row of M and p; the j-th coordinate of p. Then
Y;e = Tj(X¢) is the j-th coordinate of Y = MX, + p. From the above arguments,
(Y,,Ys,...,Y,) can be considered an independent random sample from the distri-
bution (2.2). Furthermore (Yj1,Yj2,...,Yj},) can be considered an independent random
sample from the distribution (2.4).

As a preliminary to give an estimator of m, we first construct an estimator of the
number m; of components of (2.4) on the basis of (Yj1,Yj2,...,Y,). For the purpose,
assume that kg, (y) is continuous in §; on A; for each y. Let us define parameter spaces
by

(25) C(]) {clf L Cp = (617/62a" . 7181;7717772"' . 7772)7

£
Y B=10<p<Lmen;i=12,. ’e}’
i=1

(G=1,2,... ,k;£=1,2,...).

Let €¢n = (Blyn,,/g\gyn, e ,Bg,n;ﬁ'l,n,?rg,n, ... ,Ten) be any ¢y on ng) which mini-
mizes
+o0
(2.6) Suled) = [ AH(] eo) - Fulw)dFaly)
—o0

1 n' £ 2

where Fy,(y), Y4 and H(y | c¢) are the empirical distribution function, the g-th order
statistic of (Yj1,Y2,...,Y}n) and

(2.7) H(y|cz)—2ﬂsz(y) Zm / e, (£)dt

respectively. The existence of ¢, is guaranteed since Céj )is a compact set and Sy (cy)

continuous in ¢g on Céj ) from the assumption.
Let us now give an estimater of m; as follows:

(2.8) M n = the minimum integer £ such that S, (S¢n) < A%(n)/n,
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where A(n) T 00, A2(n)/n — 0 as n — oo and Y {A2(n)/n}e" V'™ < o,

The existence of m; , for all n sufficiently large is guaranteed with probability one
by Lemma 4.3 of Henna (1985).

The following lemma can be obtained from Theorem 4.1 of Henna (1985) under an
identifiability condition (Teicher (1963)).

LEMMA 2.1. Assume that, for any two ﬁmte miztures h;(y; | cll)) and hj(y; |

cl? )) the relatzonsth hj(y; | cgi)) = h;(y; | c ) implies that {1 = £y and c@ ) = cf),

where c( ) = cz means for a permutation of pammeter labels. Then we have
(2.9) P(Aoi){ﬁzjm =my for all n sufficiently large} = 1.

Furthermore we can obtain the following immediately from the above lemma.

COROLLARY 2.1. Assume that the assumption of the last lemma holds for all j =
1,2,...,k. Then we have

(2.10) P&O:;){T/T\Lj’n =m; (j =1,2,...,k) for all n sufficiently large} = 1.

The estimator

11 My =
(2.11) M, lllljag(kmjn

could be a good candidate for the estimation of m, but might unfortunately under-
estimate the number of components (see the example of Henna (2001) and the following
section).

3. An estimator m,, when F is a family of norma! pdf's

Let F = {n(z | u, X) : (4, X) € O}, where n(z | 1, 3}) is a k-dimensional normal
pdf with a mean vector u and a variance-covariance matrix 3. Consider a finite normal
mixture

as a special case of (1.1). Let (X1, Xo,..., X,,) be an independent random sample from
the distribution (3.1).

In order to give an estimator of the number m, we first construct a sequence { M, }
of proper orthogonal matrices as follows:

(i) Fory=1, M, = (egl), eél), ey egcl)) is the k x k identity matrix.

(i) Fory > 2, M, = (e 9) ng), cey egﬁ) is a k x k orthogonal matrix such that
egﬂ is linearly independent of any & — 1 vectors in {eﬁ" 11 <i<k1<l<y—1},
and e§7) is linearly independent of any & — 1 vectors in {ege) 1 <i< k1 <L

—1ru{e el .. ,e§1>1} when 2 < j <k.
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Repeating the arguments of the last section by replacing M with M, then we can

see that fa(z) = n(z | p, ) corresponds to gy (y) = n(y | u™, M) through ¥ =
M.,X + p, where w = (u ZM) with u" = M. pu+pand IO = M ¥M'

(Anderson (1984)). Hence Q) = {w) : (u, ¥) € O} is a compact subset ofRz"“(’““H"c
Furthermore we have hs(” (y;) = n(y; | ,u;) (0(7 )?) with 6;7) (/1(7) (0(7)) ), where

,u,g and ( J(d)) are the j-th coordinate of u(?) and the (j,5)-th element of ¥(?), respec-
tively. Therefore AE-A') = {557) :w € QY is a compact subset of R2.

Let Y, be the j-th coordinate of Y = M, X¢ + p, then (Y., ¥,5),... Y7
can be considered an independent random sample from the dlstrlbutlon

mi

(3.2) hilys | e h))—\;ﬁ;?) i 15,0 (G=12,... k),

=1

Where B;; ™) and ( ](;y) ,(v(7))2) are the parameters obtained by considering 6§'Z)

(,u] (0] ) ) for 6;; in construction of (2.4) with u(w) and (0(7))2 being the j-th co-

ordinate of u(ﬂ M. p¢ + p and the (j, j)-th element of 2(7) M 33 M!, respec-
tively. Here all of ( J('IY),( ;1’)) ), ( J(;),( (7)) )N ¢7 ;7)(7),(11(7) 4»)?) which correspond
to 1, Mj2,. .. , Wjm, of (2.4) are different.

We give an estimator mm of my) on the basis of (Yj(f), Y(v) .. ,YJ(J)) in a similar
way to (2.8). Yakowitz and Spragms (1968) showed that the famlly of all finite mixtures
of k-dimensional normal distributions is identifiable. Hence the condition of Corollary
2.1 is satisfied. Accordingly we have the following provided that M, Mo,... , M, are

matrices constructed by the procedure (i) and (ii).
LEMMA 3.1. For any given positive integer s, we have

(3.3) PONm) =md” (1=1,2,... ,k;y=1,2,... ,5)
for all n sufficiently large} = 1.

Unfortunately, for any v and j, the number m{" is not necessarily equal to m as can

be seen from the example of normal mixture of Henna (2001). However we can obtain
the following.

THEOREM 3.1. Assume that all of uS, 13, ... , uo, are different and m(m —1)(k —
1) < 2ks holds. Then there exist v(< s) and j such that

(3.4) P(Oo){/\m =m for all n sufficiently large} = 1.

ProoF. From Theorem 3.1 of Henna (2001), there exist v and j such that

¥ vy Y} can be considered an independent random sample from a finite

1 452 >y S gn
mixture of m one-dimensional normal pdf’s with different means ,u?l’), ;j,g;), R ;zgzg,
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where ,u(”) is the j-coordinate of u = M. pu; + p. Accordingly we have the conclusion
by Lemma 2.1.0

(v

However, we cannot know which v and j satisfy m;"’ = m. So we cannot construct

(A') which satisfies (3.4) actually. Hence we need to give another estimator. As can be

seen from the construction of (3.2), y’) < m holds for any v and j. So, we give an
estimator of m as follows:

=) -
(3.5) My (s) = max, {lréljaé(k M } (s=1,2,...).

If m(m—1)(k—1) < 2ks, then at least one of {mgw i=12,...,ksy=1,2,...,s}
equals to m by Lemma 3.1 of Henna (2001). Hence the following is an immediate
consequence of Lemma 3.1 and Theorem 3.1.

THEOREM 3.2. Under the assumption of the last theorem, we have

(3.6) (Oo){mn(s) m for all n sufficiently large} = 1.

But as m is unknown, we cannot know at a given step s whether the condition
m(m — 1)(k — 1) < 2ks holds or not. So we cannot know when stopping the algorithm
to give M, (s) which satisfies (3.6) actually. Hence we need to give another estimator.
For the purpose, again by m§7) < m for any v and j, we can obtain the following from
Lemma 3.1.

LEMMA 3.2. For any given positive integer s1, we have

(3.7) (oo){mn(s) <m (s=1,2,...,81) for all n sufficiently large} = 1.

Let s, be the minimum positive integer s such as m(m — 1)(k — 1) < 2ks. Then the
following is an immediate consequence of the last theorem.

LEMMA 3.3. Assume that all of uS, ps, ... , ., are different. Then, for any given
positive integer s; such as s, < s1, we have

(3.8) (oo){mn s)=m (s =50,8 +1,...,81) for all n sufficiently large} = 1.

If we construct M, M,,... sequentially, then we can necessarily obtain
My, M,,... , M, such as m(m — 1)(k — 1) < 2ks before long. Hence, if we construct
mn(1),Mn(2),... sequentially, then we can necessarily obtain a consistent estimator
My (s) which satisfies (3.6) before long. As can be seen from the definition, for the given
(X1,X2,...,X,), the estimator m,(s) is monotone increasing with respect to s. In
addition, if all of u§,ps,...,po, are different, it can be considered that m,(s) < m
when s < s, —1 and m,(s) = m when s, < s < s; for n sufficiently large by Lemmas 3.2
and 3.3, respectively. Hence, it can be considered that the sequence mn(1), M, (2),...
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may become invariant soon for n sufficiently large. Taking into account of these, we give
an estimator as follows:

(3.9) i, = i (85),

where s? is the minimum positive integer s such as My, (s) = Mp(s+1) = -+ = Mp(s+s7)
with s} a given positive integer.

The existence of M, is guaranteed with probability one, for n sufficiently large, by
the last lemma. It can be seen that 7, is given without any knowledge about m other
than a fact that m is finite. If s} is sufficiently large, then m(m —1)(k —1) < 2k(s% + s7)
may hold. Accordingly, we can easily have the following from the last two lemmas.

THEOREM 3.3. Assume that all of pu3, ps, ... , pr, are different. Then, for s} suf-
ficiently large, we have

(3.10) PEES){ffln = m for all n sufficiently large} = 1.

The last theorem states the asymptotic behavior using #i,. No more reference to
the m(m —1)(k—1) < 2ks condition is needed. In fact, as m is finite, we are assure that
there exists an integer s7 such that m(m — 1)(k — 1) < 2k(s% + s7), so that at least one
of {m§~7) i =12,...,k;y=1,2,...,8% + s7} is equal to m by Lemma 3.1 of Henna
(2001).

When implementing the algorithm, the problem is to determine how long must be
the invariance of the sequence to decide that the optimum is reached. And here, we have
no way to do that except to consider an upper bound using applicable arguments or to
define a priori a length s7 = 5 for example (but may be are there also linear algebra
considerations that can lead to sufficient conditions?).

4. An estimator 7,, when F is a known finite family of normal pdf’s

Let F be that of the last section with a known finite set © of L elements. Then,
for any M and p, Q@ = {w : (u, %) € O} is a known finite subset of R2F(:+D)+k where
w = (v,¥*) with v = Mp + p and ¥* = MYEM’'. Furthermore A; = {§; : w € Q} is
a known finite subset of R? with §; = (v;,07), where v; and 07 are the j-th coordinate
of v and the (4, j)-th element of 3*, respectively.

Defining Clg] ) and Sn(€en) in a similar way to those of Section 2, we give an estimator
of m; as follows:

the minimum integer ¢ (< L — 1) such as S,(€¢,n) < A%(n)/n
(41) T/T\Lj,n = 4 Oor
L if Sp(€en) > A%(n)/n for all £ (< L —1),

where ) is that of (2.8). Then we have the following.

THEOREM 4.1. Assume that all of pu3, u3, ... , puy, are different. Then, for any p,
there exists an M, such that

(4.2) P&ooo){ﬁlj,n =m (j=1,2,...,k) for all n sufficiently large} = 1.
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ProOF. From the assumption, the parameters (u1,31), (p2, ¥2),... , (pr, %)
of pdf’s in F are known. So, without loss of generality, we may assume that all of
M1, to, ... , g, are different. Then, for any p, we can obtain an M such that all of
Vj1,Vj2,. .. ,v; are different for j = 1,2, ...,k from Lemma 2.1 of Henna (2001), where
vj; is the j-th coordinate of v; = Mu; + p. So, if pj, ps3,. .., puy, are different, then

91,6859, , 63, are different, where 6%, = (u$;,057) with p; and o057 being the j-th
coordinate of Mu? +p and the (4, j)-th element of M 3 M’, respectively. Hence we have
m; =mfor j =1,2,... k. Accordingly, we have the conclusion from Corollary 2.1. O

An inequality (v;1 — v;2)2 < YO (i1 — a)? holds, that is, a distance between
n(y; | vj1,0%) and n(y; | vj2,0%,) is smaller than that between n(z | p1,3¥1) and
n(x | po,¥2). So it can be considered that there is a case where the detection of
distinction between n(y; | v;1,0%,) and n(y; | vj2,0%,) becomes difficult depending on
M. Hence it can be guessed that the estimation by (4.1) tends to give underestimates.
So we give an estimator of m again as follows:

(4.3) My = lrélga%(k M-

Then the following is an immediate consequence of the last theorem.

THEOREM 4.2. Under the assumption of the last theorem, for any p, there exists
an M such that

(4.4) PE;;n){ﬁLn =m for all n sufficiently large} = 1.

5. Some simulation results

Now we give some simulation results for Theorem 4.2. The family considered here
is F={n(z | p,I):i=1,2734}, where py = (0,0), po = (0,4), pg = (4,4),
ps = (4,8)" and [ is the 2 x 2 identity matrix. In order to obtain one-dimensional
independent random samples, let us have a try with

[ 0.717106 0.696964
~ | —0.696964 0.717106

) and p=0.

Using random numbers produced by The Institute of Statistical Mathematics, 5000
two-dimensional samples of sizes n = 200, 300, 400 and 500 were generated from a single
normal pdf and from various mixtures of F, respectively.

As a criterion, A(n) = (loglogn)?/5n was used, though there was no theorecical
reason for this to be the optimum in the class of A’s satisfying the condition of (2.8).
It seems that simulation results given below show that the criterion is fairly effective
when the mixing ratios are nearly equal values. However, the questions of which is the
optimum in the class of N’s satisfying the condition of (2.8) and which is the optimum
in the class of orthogonal M'’s are worthy of further research.

Table 1 gives us, for various sample sizes, the percentages of exact estimate of m
by the estimator m, = max{Mm ,, M2y} for a single normal pdf n(z | p,I), for two
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Table 1. Percentages of iy, = m.

m=1 m=2 m=3 m=4
n = 200 94.9 100.0 99.9 30.0
n = 300 96.4 100.0 100.0 80.4
n = 400 96.7 100.0 100.0 97.6
n = 500 97.0 100.0 100.0 99.7

Table 2. Percentages of m, = m.

m=2 m=3 m=4
n = 200 100.0 98.9 9.8
n = 300 100.0 100.0 39.4
n = 400 100.0 100.0 70.7
n = 500 100.0 100.0 89.6

components 3n(z | py,I) + $n(x | p2,I), for three components 3n(x | p1,1) + 3n(z |
p2,1) + 3n(z | p3,I) and for four components in(z | py, 1)+ in(e | po, 1) + in(z |
pa, I+ %n(m | 124, I), respectively.

Table 2 gives us the same to the above for two components gn(z | p1,I) + Sn(z |
pa, I), for three components Zn(z | p1, I) + n(z | po, I)+ An(z | ps,I) and for four
components n(x | p1, I)+En(z | p2, )+ Hn(z | pa, I)+Sn(a | pa, I), respectively.
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