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Abs t r a c t .  An estimator of the number of components of a finite mixture of k- 
dimensional distributions is given on the basis of a one-dimensional independent 
random sample obtained by a transformation of a k-dimensional independent random 
sample. A consistency of the estimator is shown. Some simulation results are given 
in a case of finite mixtures of two-dimensional normal distributions. 
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i .  Introduction 

Let 7~ e mean  an t-dimensional  Euclidean space. Let  9 r = { f0 (x )  : 0 E O} be a family 
of known k-dimensional probabil i ty density functions (pdf 's) ,  where the parameter  space 
O is a compact  subset of  74 dl for a dl. 

For a positive integer m, a pd f  f ( x  I .Am) given by 

m 

(1.1) f ( x  I-Am) = E aifo~(x) 
i=1 

is called a finite mix ture  of fal  (x) ,  fo~ ( x ) , . . .  , fore (x)  (Ti t te r ing ton  et al. (1985)), where 
m Ei=lOLi = 1, 0 < a i  _< 1, 8i C O (i = 1 , 2 , . . .  ,m)  and Am = (OZl,O~2,... ,OZm; 

{71,02,. . .  , 0m). SO a single f a (x )  in .7" is also considered a finite mixture  for m = 1 as 
a special case. Each fa~ (x)  is called a component  of f ( x  I Am) and each ai  a mixing 
rat io  of f0~ (x) .  

The  purpose of this paper  is to give an es t imator  ~tn of the  number  m of components  
on the basis of an independent  random sample (X1,  X 2 , . . .  , X n )  from the distr ibution 
(1.1). The  impor tance  to  est imate the number  m is described in McLachlan and Basford 
(1988), Witterington (1990) and others. Henna  (1985), Feng and McCulloch (1994), Chen 
and Kalbfleisch (1996) and Richardson and Green (1997) have t rea ted  one-dimensional 
finite mixtures. Keribin (2000) has given a me thod  which can be applied to a special 
mult ivariate  normal  mixture  under the assumption tha t  a superior  value Q of m is known. 
Some methods  to de termine  the number  of components  are described in McLaehlan and 
Peel (2000). Chen et al. (2001) and Garel  (2001) have given a test  for m in a univariate 
case. 

In this paper,  a me thod  which can be applied to k-dimensional finite mixture  dis- 
t r ibut ions  is considered though the analysis is based on one-dimensional  samples. For 
the purpose, we consider a real valued function T satisfying the following condition, tha t  
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is, put t ing Y~ = T(X~)  (~ = 1, 2 , . . . ,  n), then (Y1, Y 2 , . . . ,  Y~) can be regarded as an 
independent random sample from a finite mixture with m components  such as 

m 

(1.2) h(y I 
i = 1  

where h6~(y) is a one-dimensional pdf  with a parameter  $i and cm = (al, a2, . . .  , am; 
51, ~2, . . -  , 6m). In other words, by transforming (X1, X 2 , . . .  , X~) ,  we obtain an inde- 
pendent  random sample (Y1,Y2,.. �9 , Y~) which can be considered to have come from a 
finite mixture of m one-dimensional distributions. And then  we construct an est imator 
o f r n  on the basis of (Y1,Y2,. �9 �9 ,Y~). 

In Section 2, some notations and preliminary lemmas are given. In Section 3, an 
est imator is given and researched its consistency when ~r is a family of k-dimensional 
normal distributions. In Section 4, in particular, an est imator is researched when ~- is a 
finite family of k-dimensional normal distributions with known parameters.  In Section 5, 
some simulation results are given. 

2. Some notations and preliminary lemmas 

Let X be a random vector with a pdf  fo(x)  C 3 z. Let us consider a t ransformation 
Y = M X  + p with an orthogonal matr ix  M and a column vector p. Assume tha t  Y 
has a pdf  9,,,(Y) with a parameter  w when X has fo(x). Let 

(2.1) G = {goJ(Y) : w �9 a},  

where O corresponds to ~, which is assumed to be a compact  subset of 7~ d2 for a d2, 
through Y. Then the correspondence of ~ to ~ through Y is one-to-one because 
go(Y) = f 0 ( M - l ( y  - p)) holds (Billingsley (1986)). So it can be easily seen tha t  a 
necessary and sufficient condition for f ( x  [ Am) to be the finite mixture (1.1) is tha t  
g(Y [Bm) to be the finite mixture 

m 

(2.2) g(Y I Z m) = 
i = 1  

where f ( x  [ Am) and fo~(x) correspond to g(y I Bin) and g,o~(Y) (j = 1 , 2 , . . . , m ) ,  
respectively, through Y with B m =  (a l ,  a 2 , . . .  , am; Wl, w 2 , . . .  , Win). 

Let hsj (yj) be the marginal pdf  with a parameter  6j obtained by 

(2.3) h6~(yj) = f ""  f g ,o (y )ey l . . . (dy j ) . . .dyk  ( j =  1 , 2 , . . .  ,k),  
J o t  Rk-~ 

where the multiple integral is calculated with respect to the variables (yl ,Y2, . . .  ,Yk) 
except yj. 

Let the parameter  space Aj = {~j : w �9 f~} obtained by the integration (2.3) be a 
compact subset of 7~ kj for a kj and the component parameter  wi of the mixture (2.2) 
correspond to ~ji �9 Aj  (j = 1, 2 , . . .  , k). Then some of ~5jl, ~j2, . . .  , tSjm may equal as 
can be seen from the example of normal mixture of Henna (2001). So we denote here 
the different members of ~ j l , S j 2 , . . .  , ~jm by 7rjl,Trj2,... , 7rjrn i anew. Let ~ji  be the 
sum of all mixing ratios {as} of {9~8 (Y)} in (2.2), where g,0~ (Y) has the same marginal 
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pdf  h~j,(yj). Of course, if all of ~ j l ,  ~ j 2 , . . .  , 5jm are different, then mj = m, ~j4 = a4 
and rrj4 = ~j i  hold. 

Accordingly, if X has the finite mixture (1.1), then Y has the finite mixture (2.2). 
Furthermore, letting Y = (Y1, I /2, . . .  , Yk) ~, then Yj has the finite mixture 

m j  

(2.4) hj(yj ] ejmj) = E~j4h,rj ,(yj)  (j = 1 , 2 , . . .  ,k),  
4=1 

where Cjmj = ( ~ j l ,  ]~j2, �9 . �9 , ~jrnj ; T r j l ,  7 r j2 ,  �9 �9 �9 , 7rjmj ). 
Now we adopt Tj(X)  = a j X  + pj for the real valued function T mentioned in 

Section 1, where a j  is the j - th  row of M and pj the j - t h  coordinate of p. Then 
Yj~ = Tj(X~) is the j - t h  coordinate of Y~ = MX~ + p. From the above arguments,  
(Y1,  Y 2 , . . . ,  Yn) can be considered an independent random sample from the distri- 
but ion (2.2). Fur thermore (Yjl, ~ 2 , . . .  , Yjn) can be considered an independent random 
sample from the distr ibution (2.4). 

As a preliminary to give an est imator of m, we first construct  an estimator of the 
number mj of components  of (2.4) on the basis of (Yjl, Yj2,. �9 �9 , Yjn). For the purpose, 
assume tha t  h6j (y) is continuous in 5j on Aj  for each y. Let us define parameter  spaces 
by 

(2.5) cgJ)= { e e  : ee  = ( ~ 1 , ~ 2 , . . .  , /~ / ;  7 r l , T r 2 , . . .  , 7 re ) ,  

4=1 

/ 
= 1,0 < ~4 < 1,~ri E Aj , i  = 1 , 2 , . . .  ,g~ ,  

( j = l , 2 , . . . , k ; / = l , 2 , . . . ) .  

Let ce,~ 
mizes 

(2.6) 

= ( ] ~ l , n , ~ 2 , n , '  ' '  ,~g ,n; ' f f l ,n , ' f f2 ,n ,  . . .  ,'fff.,n) be any ce on C~ j) which mini- 

Sn(Cg.) = /+_~{H(y l c~ ) -Fn(y)}2dFn(y) 

= n fliH, f , (r(q))-  n ' 
= i = 1  

where Fn(y), Y(q) and H(y I ee) are the empirical distr ibution function, the q-th order 
statistic of (Yjl, Yj2, . . .  , Yjn) and 

g f y  
(2.7) H(y I c~) = E ~iHni (Y) --- E / 3 i  [ h,i (t)dt, 

i=1  i = 1  d - - ~  

respectively. The existence of Cg,n is guaranteed since C~ j) is a compact set and S n ( C ~ )  

continuous in ce on C~ j) from the assumption. 
Let us now give an estimater of mj as follows: 

(2.8) Nj,n = the minimum integer ~ such tha t  Sn(Cg,n) < A2(n)/n, 
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where A(n) T 0% A2(n ) /n  ---+ 0 as n ---+ oo and y~{A2(n) /n}e  -2~2(n) < oo. 
The existence of ffZj,n for all n sufficiently large is guaranteed with probability one 

by Lemma 4.3 of Henna (1985). 
The following lemma can be obtained from Theorem 4.1 of Henna (1985) under an 

identifiability condition (Teicher (1963)). 

LEMMA 2.1. Assume  that, for  any two finite mixtures h j (y j  I _(1)~ and hj (y j  I cg 1 } 

c (2)5 the relationship h j (y j  [ ^(1)., _(2)., 
c Q  ) = cg2 } gl g2 ' 

ge /, h j (y j  ] implies that g.1 = ~2 and c (1) = c (2) 

where c (1) = c (2) means for  a permutat ion of parameter labels. Then we have 
gl g2 

(2.9) p(~)  
Am {~tj,n = m j  for  all n sufficiently large} = 1. 

Furthermore we can obtain the following immediately from the above lemma. 

COROLLARY 2.1. Assume that the assumption of the last lemma holds for  all j = 
1, 2 , . . .  , k. Then we have 

(2.10) P(~)  Am {~ j , n  = mj  (j = 1, 2 , . . .  , k) for  all n sufficiently large} = 1. 

The est imator 

( 2 . 1 1 )  ~ , ~  = m a x  m j , n  
l_<j_<k 

could be a good candidate for the est imation of m, but might unfortunately under- 
est imate the number of components (see the example of Henna (2001) and the following 
section). 

3. An estimator ?~t n when ~- is a family of normal pdf's 

Let .T = { n ( x  I ~,  ~ )  : (tt, ~ )  �9 O}, where n (x  I #,  ~ )  is a k-dimensional normal 
pdf  with a mean vector t t  and a variance-covariance matr ix  N. Consider a finite normal 
mixture 

flz 

(3.1) f ( z  t = f 
i = 1  

as a special case of (1.1). Let ( X l ,  X 2 , . . .  , X n )  be an independent  random sample from 
the distribution (3.1). 

In order to give an estimator of the number m, we first construct  a sequence { M r }  
of proper orthogonal matrices as follows: 

(i) For 7 =  1, U l  = (e~l) ,e~l ) , . . .  , e  (1)) is the k • k identi ty matrix. 

(ii) For 7 -> 2, M r = (e~V), e~V),... , e  (v)) is a k z k orthogonal matr ix such tha t  

e~ v) is linearly independent of any k - 1 vectors in {e~ t) : 1 < i < k, 1 < g < V - 1}, 
. (e) 

and ej-(v) is linearly independent of any k -  1 vectors in l e i  : 1 . . . .  < i < k, 1 < g < 

7 -  1} U {e~'r), e~'r), . . .  , eJ~-}l} when 2 _<j _< k. 
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Repeat ing  the a rguments  of the last section by replacing M with M ~ ,  then  we can 
see tha t  f o ( x )  -- n ( x  I At, ~ )  corresponds to g~( , ) (y)  = n ( y  I tt(~), :~(~)) th rough Y(~) = 

! 
M ~ X  + p, where w (~) = (tt(~),:~(~)) wi th  tt(~) = M ~ t t  + p and ~(~) -- M ~ M ~  

(Anderson (1984)). Hence ~(~) = {w (~) : (At, ~ )  ~ O} is a compac t  subset  o f~ �89  a(~+~)+a. 

Fur thermore  we have h$~(,)(yj) = n(y j  I #3 (~),(aj  ~ (~)'u'))with 6j(z) = ~#3' (~), (a~))~),  where 

(~)~2 �9 (~) and ( a j )  are the  j - t h  coordinate  of tt(~) and the ( j , j ) - t h  e lement  of :~(~) respec- ttj 
tively. Therefore A~ ~)- -  { 6 ~ ) :  w (~) ~ ~(~)} is a compact  subset  of 7~ 2. 

Let Y~!~) be the  j - t h  coordinate  of Y ~ )  = M ~ X ~  + p, t hen  (~(~), ~ (~ ) , . . .  ,Yj(n ~)) 
can be considered an independent  r andom sample  from the d is t r ibut ion  

(-y) 
m j  

( 3 . 2 )  ' = ~ji n(yj  ] ( j  = 1 2, k), uji ,~vj~ ) ) , . . . ,  
i = 1  

where f157 ) and  (y5:),(vS:)) 2) are the parameters  obta ined  by considering 6~7 ) - 
(~),, (~),2, (~) a n d "  ('~),2 #ji  [aji ) ) for 6di in const ruct ion of (2.4) with #j~ L, adi ) being the j - t h  co- 

ordinate  of ~ )  = M , t t  ~o + p and the ( j , j ) - t h  element of ~ i  ]E(') = M,.ri~~ respec- 

, (~) , (~)~2, , (~) (v(~)~2~, ~ (~) (v(~) )2) which correspond tively. Here all o f ( u j l  , W j l  ) ),~vj2 ,~ j2 J J . . .  , ~  (~), �9 (~) 
2 m j  a m j  

t o  71"jl , 71"j2, . . �9 , 7 ~ j m j  o f  (2.4) a r e  d i f f e r e n t .  

-~(~) ~ (~) (Y(~),Yj(2 v) ,Y(n ~)) in as imi la r  We give an es t imator  "l l t j ,  n O I  my on the  basis of , . . .  
way to (2.8). Yakowitz and Spragins (1968) showed tha t  the  family of all finite mixtures  
of k-dimensional  normal  dis tr ibut ions is identifiable. Hence the  condi t ion of Corollary 
2.1 is satisfied. Accordingly we have the following provided tha t  M 1 ,  M 2 , . . .  , M~  are 
matr ices  cons t ruc ted  by the  procedure  (i) and  (ii). 

LEMMA 3.1. For any given positive integer s, we have 

(3.3) p ( ~ ) r ^ ( ~ )  --(~) (j  = 1,2, k ;7  = 1,2, ,s)  AOm ~ m j ,  n : ' H t j  . . .  , . . .  

for  all n sufficiently large} = 1. 

(~) is not  necessarily equal to m as can Unfortunately,  for any ~ and j ,  the  number  mj  
be seen from the example  of normal  mix ture  of Henna  (2001). However we can obta in  
the  following. 

THEOREM 3.1. Assume  that all of tt~, t t ~ , . . . ,  tt~n are different and m ( r n - 1 ) ( k -  
1) < 2ks holds. Then there exist "7(<_ s) and j such that 

(3.4) P(~){m(~)A~ j,n = m for  all n sufficiently large} = 1. 

PROOF. From Theorem 3.1 of Henna  (2001), there exist ~/ and j such tha t  
(Y(~), YjY~),.. . ,  Y(~)) can be considered an independent  r andom sample  from a finite 

mix ture  of m one-dimensional  normal  pdf ' s  with  different means  >j l  , t~j2 .-- , #j,~, 
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(~) is the j -coordinate  of t~ ~) = M~t t~  + p. Accordingly we have the conclusion where #j~ 
by Lemma 2.1. [] 

(~) 
However, we cannot  know which ~ and j satisfy m j  -= m. So we cannot construct 

j,n which satisfies (3.4) actually. Hence we need to give another  estimator. As can be 

seen from the construction of (3.2), --(~) < m holds for any 7 and j .  So, we give an 'll~j 
estimator of m as follows: 

( 
(3.5) ~nn( 8) = max { max ( s =  1,2, .). 

l ~ ' ~ s  [ l~_j~k 'lf~J'n ; " " 

If r e ( m -  1 ) ( k -  1) < 2ks, then at least one of t m  (~) j : j = 1 , 2 , . . . , k ; ? = 1 , 2 , . . . , s }  
equals to m by Lemma 3.1 of Henna (2001). Hence the following is an immediate  
consequence of Lemma 3.1 and Theorem 3.1. 

THEOREM 3.2. Under the assumption of the last theorem, we have 

(3.6) P(~o){an(s) = m for  all n sufficiently large} = 1. 

But as m is unknown, we cannot know at a given step s whether the condition 
m ( m  - 1)(k - 1) < 2ks holds or not. So we cannot know when stopping the algorithm 
to give a ~ ( s )  which satisfies (3.6) actually. Hence we need to give another estimator.  

(~) < m for any ~/and j ,  we can obtain the following from For the purpose, again by mj  _ 
Lemma 3.1. 

LEMMA 3.2. For any given positive integer sl ,  we have 

(3.7) P ( ~ ) { a n ( S )  < m (s = 1, 2 , . . .  , s l )  for all n sufficiently large} = 1. 

Let so be the minimum positive integer s such as m ( m -  1 ) ( k -  1) < 2ks. Then the 
following is an immediate  consequence of the last theorem. 

LEMMA 3.3. Assume that all of ta~, t t ~ , . . .  , t t~  are different. Then, for  any given 
positive integer sl such as so ~_ sl ,  we have 

(3.8) P ( ~ ) { a n ( S )  = m (s = So, So + 1 , . . .  , s l )  for all n sufficiently large} = 1. 

If we construct  M 1 , M 2 , . . .  sequentially, then we can necessarily obtain 
M1,  M 2 , . . .  , M s  such as m ( r n -  1 ) ( k -  1) < 2ks before long. Hence, if we construct 
~ n ( 1 ) , a , ( 2 ) , . . .  sequentially, then  we can necessarily obtain a consistent est imator 
an (S )  which satisfies (3.6) before long. As can be seen from the definition, for the given 
(X1, X 2 , . . .  , Xn) ,  the est imator Ftn(s) is monotone increasing with respect to s. In 
addition, if all of tt~, t t ~ , . . . ,  t t ~  are different, it can be considered tha t  a ~ ( s )  <__ m 
when s < so - 1 and an (S)  = m when so < s < sl for n sufficiently large by Lemmas 3.2 
and 3.3, respectively. Hence, it can be considered tha t  the sequence a , ( 1 ) , a n ( 2 ) , . . .  
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may become invariant soon for n sufficiently large. Taking into account of these, we give 
an estimator as follows: 

(3.9) ?~t n =?~tn(8~) , 

whe re  So* is t he  m i n i m u m  posi t ive integer s such a s / ~ n  (8) ~- ~t n (8 ~-1) . . . . .  ~t n (8 Jr 8~) 
with s~ a given positive integer. 

The existence of ~t n is guaranteed with probability one, for n sufficiently large, by 
the last lemma. It can be seen tha t  ?~t n is given without  any knowledge about m other 
than  a fact tha t  m is finite. If s~ is sufficiently large, then m ( m  - 1)(k - 1) < 2k(s~ +s~) 
may hold. Accordingly, we can easily have the following from the last two lemmas. 

THEOREM 3.3. Assume that all of t t~ , t t~ , . . .  ,I t  ~ are different. Then, for  s~ suf- 
ficiently large, we have 

(3.10) P(~o){~n = m for all n sufficiently large} = 1. 

The last theorem states the asymptot ic  behavior using fftn. No more reference to 
the m ( m -  1 ) ( k -  1) < 2ks condition is needed. In fact, as m is finite, we are assure tha t  
there exists an integer s~ such tha t  m ( m  - 1)(k - 1) < 2k(s* + s~), so tha t  at least one 

of {m~ ~) : j = 1, 2 , . . .  , k ; 7  = 1 ,2 , . . .  ,s* + s~} is equal to m by Lemma 3.1 of Henna 
(2001). 

When implementing the algorithm, the problem is to determine how long must be 
the invariance of the sequence to decide tha t  the opt imum is reached. And here, we have 
no way to do tha t  except to consider an upper bound using applicable arguments or to 
define a priori a length s~ = 5 for example (but may be are there also linear algebra 
considerations tha t  can lead to sufficient conditions?). 

4. An estimator ~%n when ~" is a known finite family of normal pdf's 

Let 5 v be tha t  of the last section with a known finite set O of L elements. Then, 
for any M and p, f~ = {w : (it, ~ )  C O} is a known finite subset of T4�89 k(k+l)+k, where 
w = (v, ~*) with v = M t t  + p and ~* = M ~ M ' .  Furthermore Aj _ {6j : w C f~} is 
a known finite subset of/-42 with $j = (vj, a2), where vj and a y are the j - t h  coordinate 
of v and the (j, j ) - t h  element of :~*, respectively. 

Defining C~ j) and Sn (c~,n) in a similar way to those of Section 2, we give an est imator 
of mj  as follows: 

(4.1) 

the minimum integer ~ (_< L - 1) such as Sn('C~,n) "( /~2(n)/n 
A 

m j , n  z / 0  r 

L if Sn(~d~ n) > )~2(n)/n for all e (< L - 1), 

where A is tha t  of (2.8). Then we have the following. 

THEOREM 4.1. Assume that all of tt~, t t~ , . . .  , tt ~ are different. Then, for  any p, 
there exists an M ,  such that 

(4.2) P(C~o){~tj,n -=-- m (j -- 1 , 2 , . . .  ,k)  for all n sufficiently large} = 1. 
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PROOF. From the assumption,  the parameters  (it1, N1), ( t t2 , :~2) , . . .  , (ttL,:~L) 
of pdf ' s  in 9 c are known. So, wi thout  loss of generality, we may assume tha t  all of 
t t l , t t 2 , . . .  , t tL are different. Then, for any p, we can obtain  an M such tha t  all of 
ujl, uj2,. . .  , UjL are different for j = 1, 2 , . . .  , k from Lemma 2.1 of Henna (2001), where 
vii is the j - t h  coordinate of vi = Mpti + p. So, if ~1~ ] t t 2 o ,  . . . , ~L~mO are different, then 

o o o o 02 ~ and 02 ~jl ,  ~ j2 , . . -  , 5jm are different, where ~ i  = (#ji,  crji ) with # j i  crji being the j - t h  
coordinate of M t t  ~ + p  and the (j, j ) - t h  element of M N ~  r, respectively. Hence we have 
rnj = m for j = 1, 2 , . . .  , k. Accordingly, we have the conclusion from Corollary 2.1. [] 

k An inequality (vjl  - v j2)  2 ~ E i = I ( ~ i l  - ~i2)  2 holds, tha t  is, a distance between 
n(yj I nil ,a21) and n(yj I ~j2, a22) is smaller than that  between n (x  I t t l , ~ 1 )  and 
n(m I t t2 ,~2) .  So it can be considered that  there is a case where the detect ion of 
distinction between n(yj I uj l ,a~])  and n(yj I uj2,a22) becomes difficult depending on 
M .  Hence it can be guessed that  the est imation by (4.1) tends to give underest imates.  
So we give an est imator  of m again as follows: 

(4.3) ~ = max ~j ,~ .  
l<_j~_k 

Then the following is an immediate  consequence of the  last theorem. 

THEOREM 4.2. 
an M such that 

(4.4) 

Under the assumption of the last theorem, for any p, there exists 

P(~)A~ {~nn = m for all n sufficiently large} = 1. 

5. Some simulation results 

Now we give some simulation results for Theorem 4.2. The family considered here 
is ~" = {n(x  I tti, I)  : i = 1 ,2 ,3 ,4},  where ttl  = (0,0) ' ,  it2 = (0,4) ' ,  it3 = (4,4) ' ,  
tt4 = (4, 8) ~ and I is the 2 • 2 identi ty matrix. In order to obta in  one-dimensional 
independent  random samples, let us have a t ry with 

( 0.717106 0.696964~ 

M = \ - 0 . 6 9 6 9 6 4  0.717106] 
and p = 0. 

Using random numbers  produced by The Inst i tute  of Statist ical  Mathematics ,  5000 
two-dimensional samples of sizes n = 200, 300, 400 and 500 were generated from a single 
normal pdf  and from various mixtures of f ,  respectively. 

As a criterion, ~(n) = (log logn)2/bn was used, though there was no theorecical 
reason for this to be the opt imum in the class of )~'s satisfying the condition of (2.8). 
It seems that  simulation results given below show that  the criterion is fairly effective 
when the mixing ratios are nearly equal values. However, the questions of which is the 
opt imum in the class of ~'s satisfying the condition of (2.8) and which is the op t imum 
in the class of orthogonal M ' s  are wor thy of further research. 

Table 1 gives us, for various sample sizes, the percentages of exact est imate of m 
by the est imator  ~tn = max{~l ,n ,  m2,n} for a single normal pdf  n(~  ] it1, I),  for two 
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Table 1. Percentages of r = m. 

m = l  r n = 2  m = 3  m = 4  

n = 200 94.9 100.0 99.9 30.0 

n = 300 96.4 100.0 100.0 80.4 

n = 400 96.7 100.0 100.0 97.6 

n = 500 97.0 100.0 100.0 99.7 

Table 2. Percentages of r = m. 

m = 2  m = 3  m = 4  

n -- 200 100.0 98.9 9.8 

n = 300 100.0 100.0 39.4 

n = 400 100.0 100.0 70.7 

n = 500 100.0 100.0 89.6 
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c o m p o n e n t s  l n ( x  I ~ l , Z )  + l ~ ( x  I ~2 ,Z ) ,  for th ree  c o m p o n e n t s  �89 I t t l , I )  + �89 I 

it2, I) + �89 l i t 3 ,  I )  a n d  for four c o m p o n e n t s  �88 ] tt~, I) + ~n(x ] it2, I) + ~n(x [ 

Ira, I) + �88 t it4, I), respect ively.  

Table  2 gives us the  s a m e  to the  above  for two c o m p o n e n t s  ~on(X I t t l ,  I ) +  6 n ( x  [ 

it2, I ) ,  for th ree  c o m p o n e n t s  3 n ( x  I t t l , I ) +  3 n ( x  [ t t 2 , I ) +  4 n ( x  [ t t3 ,  I )  a n d  for four 

c o m p o n e n t s  ~ n ( x  [ t t l , I ) +  l~n(x [ tt2, I ) + ~ n ( x  [ tt3, I )+ 3 n ( x  [ tt4, I ) ,  respect ively.  
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