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Abs t r a c t .  In this paper, we study the properties of the simultaneous and compo- 
nentwise splines for the varying coefficient model with repeatedly measured (longitu- 
dinal) dependent variable and time invariant covariates. The proposed simultaneous 
smoothing spline estimators are mainly obtained from the penalized least squares 
with adjustment for the variations of covariates in the penalized terms. We do this 
mainly to avoid the penalized terms being influenced by the scales of the covariates 
and the random smoothing parameters appearing in the estimators, which compli- 
cates the derivation of the asymptotic properties of the estimators. It is shown in 
this study that our estimators have smaller variances than the componentwise ones. 
Through a Monte Carlo simulation and two empirical examples, the simultaneous 
smoothing splines are all found to be more accurate in the variances. 

Key words and phrases: Componentwise smoothing splines, longitudinal data, mean 
squared error, penalized least squares, simultaneous smoothing splines, smoothing 
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1. Introduction 

In biomedical and epidemiological studies, longitudinal da ta  with t ime invariant 
covariates and repeatedly  measured (longitudinal) dependent  variable over t ime are fre- 
quent ly  encountered.  General ly speaking, this type  of da ta  is collected from n randomly 
selected subjects.  For the i- th subject ,  let mi ,  tij ,  Y~j, and X T = ( X i 0 , . . . , X i k )  with 
Xi0 = 1, respectively denote  the number  of the repeated measurements ,  the t ime of the 
j - t h  measurement ,  the observed ou tcome at  t ime tij, and the  observed t ime invariant 

n covariate vector. Here, the total number of observations is denoted by N = ~ i = l  rni. 
To model the relationship between the dependent variable Y(t) and the time depen- 

dent  or t ime invariant covariates x T ( t )  = ( X o ( t ) , . . . ,  Xk ( t ) )  with Xo( t )  = 1, Hoover et 
al. (1998) considered a more flexible varying coefficient model  of Hastie and Tibshirani  
(1993) 

(1.1) Y ( t )  -- x W ( t ) ~ ( t )  + r  

where /3(t) = ( ~ o ( t ) , . . . , ~ k ( t ) )  T are smooth  functions of t, and e(t) is a mean zero 
stochastic process and is independent  of X (t). Th ey  also proposed a class of smoothing 
methods  to es t imate  the coefficient curves. Based on model (1.1), Hoover st al. (1998), 
and Wu st al. (1998) have developed inferences for the kernel est imators.  Under  some 
specific designs, Fan and Zhang (2000} provided a simply implemented two-step smooth-  
ing alternative.  When  the covariates are t ime dependent ,  Wu et al. (2000) proposed a 
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two-step smoothing method to avoid large biases appearing on the estimates. Using 
basis function approximations for estimating/~(t), Huang et al. (2002) further developed 
a global smoothing procedure. 

In this paper, we focus on the covariates which are invariant with respect to the 
time points. This is because the covariates of interest are often time invariant in clinical 
trials and other biomedical and epidemiological studies. Under this data setting, model 
(1.1) will be reduced to 

(1.2) Y(t )  = x T  + 

where X T = ( X o , . . . , X k )  with Xo = 1. 
Y/j, X i  and t/j, model (1.2) becomes 

Substituting Y(t), X and t with observations 

(1.3) Y/j = x T ~ ( t i j ) + c ( t i j ) ,  i - - - -1 , . . . ,n ;  j - - - -1 , . . . , rn / .  

Based on (1.3), Wu and Chiang (2000), and Chiang et al. (2001) modified the methods of 
Hoover et al. (1998) into componentwise estimation methods to significantly simplify the 
computations. They also derived the asymptotic properties of the estimators through 
the explicit expressions of their asymptotic risk representations. Meanwhile, through a 
Monte Carlo simulation, the sample variances of their estimators are found to be smaller 
than those of Fan and Zhang (2000). However, in succeeding sections, the componentwise 
smoothing spline estimators are shown not as accurate as it is expected in the variances 
under both the finite sample and the infinite sample. This is mainly caused by the 
unexpected non-negative terms, which are functions of the moments of the covariates X 
and the parameter curves/~(t), in the variances of the estimators. 

Instead of using the componentwise estimation methods, we propose the simultane- 
ous smoothing spline estimation methods based on the penalized least squares of Hoover 
et al. (1998) with adjustment for the variations of the covariates in the penalized terms, 
which avoid the penalized terms being influenced by the scales of the covariates. There 
are two features of the revised smoothing spline estimation methods: First, the proposed 
estimators are unlike the smoothing spline estimators of Hoover et al. (1998), which are 
smoothen by the random smoothing parameters and are more complicated in terms of 
deriving the properties of the estimators. Note that the asymptotic properties for the 
smoothing splines of Hoover et al. (1998) have not been developed. Second, when the 
smoothers within each estimator are set to be equal, it is shown that the mean squared 
errors of our simultaneous smoothing spline estimators are smaller than the correspond- 
ing componentwise ones. 

The contents of this paper are organized as follows. In Section 2, we introduce 
the simultaneous smoothing spline estimation methods, and summarize the component- 
wise smoothing spline estimation methods. The asymptotic mean squared errors of the 
proposed estimators with or without equal smoothers for each estimator are developed 
in Section 3. For the sake of comparison, the asymptotic mean squared errors of the 
componentwise smoothing splines are also stated in this section. In Section 4, a Monte 
Carlo simulation is implemented to examine the finite sample properties of the simul- 
taneous smoothing spline estimators. Applications of our estimation methods are also 
demonstrated in Section 5 through two empirical examples--a CD4 depletion study and 
an opioid detoxification study. Finally, the proofs of the main results are shown in the 
Appendix. 
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2. Estimation 

Assume that  the support  of the design time points {tij} is contained in a compact 
set [a,b], and flz(t), I = 0 , . . . ,  k, are twice differentiable. Also, let 7-/[a,b I be the set of 
compact supported functions such that  

7-/[a,bl = {g(') : g and g(1) are absolutely continuous, and g (2) E L2[a, b]}. 

The simultaneous smoothing spline estimators ~(s)(t;,k) = (~0(~)(t;A),.. . ,  

~k(~) (t; ,k)) r of/3(t) proposed here are obtained by minimizing the penalized least squares 
with adjustment for the variations of the covariates in the penalized terms 

n mi ( ~=0 ))2 s Lb(/~[ (2.1) Jls([~;,~):EEwi Yij- Xil'l(tij -}- /~182 2)(t)) 2dr, 
i lj 1 " =  "= /=0 

where A = (A0, . . . ,  Ak) are non-negative smoothing parameters, w = (w~, . . . ,w~)  are 
non-negative constant weights with ~i~=1 rniwi = 1, s 2 = ~=l(wirn~)X~,  and/3}P)(t) 
denotes the p-th derivative of/3z (t) with respect to t. In practice, wi's are usually assigned 
to be 1/N and 1/(nmi) which provide equal weight to each single observation and each 
single subject, respectively. However, as mentioned in Remark 8 of Chiang et al. (2001), 
there may not have the explicit risk representations for the estimators with wi = 1/(nmi) 
or more general weights. When the numbers of the repeated measurements are bounded, 
it was suggested by Lin and Carroll (2000) that  wi = 1/N leads to asymptotically optimal 
kernel smoothers for the generalized estimating equations. For the sake of comparison 
with the existing estimators in the literature, the weights are assigned to be 1/N in the 
succeeding discussions. Setting the Gateaux derivatives of J~(/3; ,k) to zero, ~(~)(t; A) 
uniquely minimize Jl~ (/3; A) if they satisfy the following normal equations 

s rni ( E ~l(s)(~iJ;~)Xill) ]gl(tij) 
i=1 j=l 11=0 

~)g}2)(t)dt, 

for l = 0 , . . . ,  k, and all gz's in a dense subset of ig[a,b]. A similar argument as in Wahba 
(1990) shows that  there is a symmetric function S~,x~ (t, s), which belongs to 7-l[a,b] when 

either t or s is fixed, so that  ~z(~)(t; A) is given by 

( ) Xiz 
(2.3) /~l(~)(t;A)= ~ Y~-~-~g~(s)(t~j; ,~)X~ h S~,,x,(t,t~j). 

ll ~s 
By substituting (2.3) into (2.2) and rearranging terms, we have the characterization of 
the S-spline function Sx~,x~ (t, t~j), 

(2.4) Sa,,x,(t, tij)g~(t)dFN,x,(t) + ),z (t, tij)g}2)(t)dt 

n m i  2 2 1 where Fx,x~(t) = ~i=1 ~ j = l ( X i t / N s t )  [t~<_tl. 
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In (2.3), we can see that  the estimator ~l(s)(t;A) is influenced not only by the 

smoothing parameter Ai but also by the other smoothers. To make ~l(~)(t; A) being 
smoothen only by l l ,  the smoothing parameters A are set equal to ~ll .  Then, the 
by-product estimators, denoted by/3z(~)(t; )h), can be expressed as 

i=1 j : l  l l ~ l  

For the smoothing spline estimation methods of Hoover et al. (1998), their estimators 
are obtained by minimizing 

( (2.6) As(D; A) = ~ i=1 j : l  l=0 l=o 

The same reasoning as in the derivation of ~l(~)(t;A) shows that  the corresponding 
Z. . minimizers, say, ~t(~)(t, A*) of J2~(D; A) are given by 

(2.7) A ,  �9 X i l ~ .  
/3z(~)(t;A ) =  ~ Yi j - -~f l t~( , ) ( t i3 ;A*)Xi l ,  SxT,x,(t,h j ,  

l l # l  

where A* = (A~,. . . ,  I~) with 17 = )h/s~. As we can see, the random smoothing pa- 
rameters A* will cause complexity in deriving the properties of ~{(s)(t; A*). However, 

the spline estimators ~l(~)(t; A) can avoid this problem, and are more common in many 
practical applications. When each fit(t) has the function form ~z(t) = ~-]jm= 1 6jzBjt(t), 
where Bj~(t)'s are basis functions , the minimizers of (2.6) can be derived to be the 
estimators of Huang et al. (2002) with B-spline bases. In the following sections, we will 
focus only on the discussion of ~l(s) (t; A). 

To avoid intensive computat ion in the estimation of the coefficient curves D(t), 
Chiang et al. (2001) proposed the componentwise smoothing spline estimation meth- 
ods for the varying coefficient model (1.2). Even though these methods are fast in 
computation, the variances of the estimators, as shown later, have a higher variabil- 
ity. Especially, computing considerations are no longer a major consideration in modern 
computer equipment. For the sake of comparison in succeeding sections, we summarize 
here their estimation methods. 

--1 Let ExxT = E [ X X  T] and assume that  the inverse of E x x  T, denoted by ExxT,  
exists. By multiplying the both sides of (1.2) by X and taking expectations, D(t) can 
be expressed as 

(2.8) D(t) : E[Z(t)], 

where Z(t) = (Zo(t) , . . . ,Zk(t))  T with Zl(t) = Erk_0ezrXrY(t) and elf the (1, r)-th 
-1 Since ExxT is unknown and is invariant with respect to time t, it ie element of ExxT.  

naturally estimated by the sample mean 

n 

(2.9) E x x = n - 1 E ( X i X ~ ) .  
i=1 



S I M U L T A N E O U S  A N D  C O M P O N E N T W I S E  S P L I N E S  641 

^ --1 Assume further that the inverse of Exx,  denoted by/~x}c, exists. Substituting Exxr  
with Ex}r, the componentwise estimator, say, ~t(c)(t; At) of/~t (t) is obtained by minimiz- 
ing the following penalized least squares 

1 n m l  [ b  
(2.10) J~(/3t; At) = ~ E E (2ij' -/3'(tiJ))2 + At ja (/3}2)(t))2dt, 

i=1 j = l  

where Z~jl = }-~-~=0 "gt,-X~zY~j is the estimated observed value of Z~jz with e~ being the 
^ - 1  (l, r)-th element of EXXT. The minimizer ~t(c)(t; Az) of or~(/31; At) can be expressed as 

1 n mi 

(2.11) ~t(c)(t; At )=  ~ E E ZijtS:~,(t, tij), 
i=1 j=l  

where S~, (t, s) = S~,Xo (t, s) is in ~[a,b]. 
As derived in that paper, the asymptotic variance of the estimator/3t(c) (t; Az) con- 

tains the unexpected non-negative terms, which are functions of the moments of the 
covariates and the parameter curves. In Section 3, we will show that both /~l(,)(t; Az) 

and ~t(c)(t; At) have the same asymptotic bias, but the asymptotic variance of/3~(~)(t; At) 
is smaller. Through a Monte Carlo simulation in Section 4 and two empirical, examples 
in Section 5, it appears that the variance of/~z(s)(t; At) is smaller than that of j3t(c)(t; At). 
Except the evidence from the finite and the infinite sample properties of the estimators, 
the unexpected terms in the variances of ~t(c)(t; At) can also be explained by the following 
reasoning: From (1.2) and the definition of Z(t), Z(t) can be reexpressed as 

(2.12) Z(t) = ExlxT XY( t )  

= ExlxT(XXT)/3(t) + EX*xTXe(t ) 
= + 

where 
- 1  -1 ( X X  T Exxr)~( t  ) + E x x r  E*(t) = Exxr  

It is observed that the new error process ~*(t) consists of two components: the variabil- 
ities of the covariates and the original stochastic error process c(t). Thus, the variances 
of/3t(c)(t; At)'s are enlarged by the extra non-negative terms. 

3. Asymptotic properties 

The asymptotic mean squared errors of the simultaneous smoothing spline estima- 
tors/3t(~) (t; ,X), 1 = 0 , . . . ,  k, will be derived in this section. Without loss of generality, we 
focus on the interval [0, 1]. Extension to the general interval [a, b] can be carried out by 
the affine transformation u = ( t - a ) / (b -a )  for t E [a, b]. For the succeeding discussions, 
we make the following assumptions: 

(A1) The time design points {tij} are nonrandom and satisfy 

D N  = s u p  I F N ( t )  - -  F ( t ) l  - +  0 ,  a s  n - +  o o ,  
tC[0,1] 
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for some distribution function F with strictly positive density f on [0, 1], where FN(t) = 
N_ 1 n rni ~-~i=1 ~ j = x  1 [t~j_<t], and f is three times differentiable and uniformly continuous on 

[0, 1] with f( ' ) (0)  = f ( ' ) (1)  -- 0 for v = 1,2. 
(A2) The coefficient curve f~z (t) is four times differentiable and satisfies the bound- 

ary conditions j3~)(0) = ft[')(1) = 0 for v = 2,3. The fourth derivative /3~4)(t) is 

Lipschitz continuous in the sense that  1/314)(sl) -/3~4)(s2)1 < clllSl - s21TM for all 
sl ,  s2 E [0, 1] and some positive constants Cll and c21. 

(A3) The fourth moment  E[X 4] exists. 

(A4) Define DN,i = supte[0,1 ] IFN,x~(t) -- F(t)l. Al ---- 0()~o) ~ O, NA~/4 --+ oc, and 

~lh/4DN,l ~" 0 as n -~ co. 
(Ah) Define a2(t) = E[s2(t)] and p(t) = limt,_.t E[e(t)~(t~)]. Both a2(t) and p(t) 

are continuous at t. 
Under the validity of assumption A3, it is straightforward to show by the law of 

large numbers that  suptc[0,1] IFN,xz(t) --FN(t)[ converges to zero almost surely. With  
assumption A1 and the property DN,I <_ DN +supte[0,1] IFN,x~ (t) -- FN(t)I , we can show 
that  DN,I in assumption A4 converges to zero almost surely. In general, a2(t) need not 
be equal to p(t). As discussed in Zeger and Diggle (1994), the strict inequality appears 
when c(t) consists of a stationary process of t and an independent measurement error. 
Since the spline function S~ z,X~ (t, s) in (2.4) does not have an explicit expression, it may 
be approximated by the Green function G~ (t, s) of the 4th order differential equation 

(3.1) )~zg~4)(t) + f(t)gl(t) = f(t)~z(t), t r [0, 1], 

with (') gl (0) = g~)(1) for y = 2,3. By substituting the smoothing spline function 
S~,x~(t,s) with the Green function G~z(t ,s) and using the exponential bound of 
IS~,x~ (t, s) - G~ (t, s)l , the asymptotic properties of ~z(~)(t; A) can be conveniently de- 
rived. It was also shown by nbramovich and Grinshtein (1999) and Chiang et al. (2001) 
that  the Green function G~ (t, s) can be approximated by 

(4 (/~1/"/4)--1/4 ) (3.2) H ~ ( t , s ) -  (Al/~/a)-l /4F(1)(s)(f(s))- lsin + [ F ( t ) - F ( s ) l  
2 

X e x p (  (~//~4)--1/4 ) 
v ~  T ( t )  - r ( s ) l  , 

where ~ = f3(f(s))X/4ds and r ( t )  = ~-~ fo(f(s))~/4ds. Some important properties 
of the functions S~,x ,  (t, s), G~ (t, s) and H~  (t, s), which will be used in the main 
results, can be derived along the same lines as the proof in Lemma 3.1 of Chiang et 
al. (2001). Let B(~(~)(t; )~)) -- (B(/~o(~)(t; A) ) , . . . ,  B(~k(~)(t; A))) and V(~(s)(t  ;)~)) = 

[(cov(~tl(~)(t; A),/~t=(~)(t; A)))] be the bias and the variance of ~(~)(t; A). By the decom- 
position principle of the mean squared error, we can separately evaluate the bias and 
the variance of f~(s) (t; A). 

THEOREM 3.1. Suppose that assumptions (A1)-(Ah) are satisfied and t ~ (0, 1). 
Then, for sufficiently large n, the bias and the variance of ~(s) (t; A) are given by 

(3.3) B(~(~)(t; A)) = -( f( t))-I[(Ex~xTAExxr)/3(4)(t)]T(1 + o(1)), 

and 
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(3 .4)  v ( ~ ( , ) ( t ; , ~ ) )  - 1 - 3 / 4  2 - 1  - 1  
2v/~ N (f(t)) a (t)(ExxTAxxTExxT)(1 + 0(1)) 

i=1 ~'--N] p(t , t)  Exx~.(l +o(1) )  , 

where A = diag(Ao,...,Aa), /3(4)(t) = (/3(04)(t),...,/3~4)(t)) T, and AXXT = 
( k l / 4  [(Aht=E[XtlXl2])] with Ahz ~ = k"li -Ji- A~/4) -1- 

PROOF. See Appendix. [] 

Following the arguments in Hoover et al. (1998), the variance of ~z(,)(t; A) asymp- 
totically converges to zero if and only if maxl<i<n(mi/N) -+ O. When the smoothing 
parameters )~ in ~t(s)(t;A) are set to be equal to At1, the asymptotic properties of 

/3t(s)(t; At) in (2.5) can be derived straightforward from Theorem 3.1. 

LEMMA 3.1. Suppose that assumptions (A1)-(A5) are satisfied and t c (0, 1). 
Then, for sufficiently large n, the bias and the variance of ~l(,)(t; Az), 1 = 0 , . . . ,  k are 
given by 

(a.5) 
and 

(3.6) 

B(~l(s)(t; Az)) = -(f(t))-l~}4)(t)Az(1 + o(1)), 

1 
V(~t(~)(t; Az)) = -4-/~(f(t))-3/4(NA~/4)-leua2(t)(1 + o(1)) 

n 

+ E ( ~ )  2eup(t't)(1 + o(1)). 
i=1 

When the regularity conditions are satisfied, Chiang et al. (2001) derived that the 
asymptotic bias and the variance of ~z(c)(t; At), l = 0 , . . . ,  k, are 

(3.7) 

and 

(3.8) 

B(~l(c)(t; At)) = -(f(t))-l/~}4)(t)Az(1 + Op(1)) + Op(n-1/2), 

V(~z(c)(t; At)) = 4~(f(t))-3/n(N)Q/4)-l(Ml(t)  + ellcr2(t))(1 + Op(1)) 

+ ~ (--~)2 (M/( t )+eup(t , t ) ) (1  + Op(1))+ Op(n-1), 
i=1 

where Mt (t) -- ~t~ ~ 2  (t311 (t)/3t2 (t)E[XhXz2 (Y~a:0 eltaXt3)2])- (/31(t)) 2" It follows from 
Lemma 3.1 and (3.7)-(3.8) that both the dominating terms in the biases of ~z(~)(t; Al) 
and/3t(c)(t; Al) are same. However, the dominating term in the variance of ~z(~)(t; Az) is 
smaller than that of ~l(c)(t; At) since Mr(t) is nonnegative. 
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4. Monte Carlo simulation 

Consider the varying coefficient model (1.2) with coefficient curves 

j3o(t) -- 3.5 + 6-5 sin (t~0) , 

-0 .2  - 1.6 cos ( ( t -  30)7r~ /31(t) ) '  
\ 

/32(t) = 0.25 - 0.0074 \ - - i -0 - - )  

and covariate vector X = (X0, X1,X2)  T, where XI and )22 are independent Bernoulli 
and Gaussian random variables with joint density 

1 ( _ 4 )  
f ( x l , x 2 )  - 8(2~)1/2 exp \ 32]  l{~ 

In this simulation, 400 subjects are scheduled to appear at equally spaced time 
points 0, 1 , . . . ,  30 with a 60% probability of missing for each of the 31 "appointments". 
The covariates of each subject are independently generated from the above distribution. 
Under the given time points {tij}, the errors e(tij), which are independent of the covari- 
ates Xi,  are generated from the mean zero Gaussian process with covariance function 

{ 0.0625exp(-[tiljl  - ti2j2[), if il = i2, 
c~ = 0, if il ~ i2. 

Finally, the dependent variables Y/j are automatically obtained by substituting Xi ,  tij 
and e(tij) into (1.3). 

Based on the above design~ the longitudinal data are repeatedly generated 500 times. 
In each set of simulated data, ~l(~)(t; Az) and r A~) are computed by (2.5) and (2.11) 
with appropriate smoothing parameters. As mentioned in Chiang et al. (2001), the "leave 
one subject out" cross-validation procedure of Rice and Silverman (1991) may sometimes 
select inadequate smoothing parameters. It is usually preferable to have a set of smooth- 
ing parameters which has the corresponding cross validation score close to the minimum 
and gives better estimators. For the purpose of comparison, the smoothing parame- 
ters (A0, AI, A2) = (1, 1, 1) from their simulation are used to both estimators. Table 1 
through Table 3 show the true curves, the 500 averages of the estimated curves and 
the standard errors of the 500 simulation estimates at nine selected time points. As 
shown in these tables, the variances of the componentwise smoothing spline estimators 
are enlarged by the values of Ml(t)s, and thus are larger than those of the simultaneous 
smoothing splines. The results are consistent with the asymptotic properties discussed 
in Section 3. Moreover, based on (3.5)-(3.6), the asymptotic bias and standard devi- 
ation of (~0(s)(t; 1),/31(~)(t; 1),~2(s)(t; 1)) are computed to be (-0.0015,0.0004,0) and 
(0.0193, 0.0273, 0.0034). Tables 1-3 show that  the asymptotic variances are slight larger 
than the actual variances. It also impractical to directly estimate the unknown quanti- 
ties in the moments of the estimators. Thus, in applications, the bootstrapping methods 
will be used to construct the confidence intervals of the discussed smoothing estimators. 
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Table 1. The  real curve/30(t},  the  averages of 500 es t imated  curves fi0(c)(t; 1) and ~o(s)(t;  1), 
and  the  s t anda rd  errors of 500 simulat ion es t imates  at  nine t ime points.  

645 

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 

30(t) 4.517 5.509 6.451 7.321 8.096 8.759 9.292 9.682 9.920 

m(30(c) (t; 1)) 4.513 5.499 6.448 7.323 8.103 8.766 9.291 9.660 9.901 

(s.d.) 0.0955 0.1111 0.1270 0.1395 0.1560 0.1771 0.1866 0.1877 0.2010 

re(rio(s) (t; 1)) 4.525 5.509 6.449 7.317 8.091 8.747 9.270 9.652 9.913 

(s.d.) 0.0137 0.0110 0.0104 0.0106 0.0101 0.0098 0.0098 0.0101 0.0120 

Table 2. The  real curve ~ l ( t ) ,  the  averages of 500 es t imated curves fil(c)(t; 1) and ~Al(s)(t; 1), 
and  the  s t anda rd  errors of 500 s imulat ion es t imates  at  nine t ime points.  

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 

31(t)  - 0 . 4 5 0  - 0 . 6 9 4  -0 .926  -1 .140  -1 .331 - 1 . 4 9 4  - 1 . 6 2 6  -1 .722  -1 .780  

rn(31(c)(t;1)) -0 .438  - 0 . 6 7 8  -0 .921  - 1 . 1 4 4  -1 .344  -1 .513  1.639 -1 .714  -1 .769  

(s.d.) 0.1761 0.2040 0.2328 0.2552 0.2831 0.3187 0.3354 0.3376 0.3638 

m(~l (~) ( t ;1 ) )  -0 .461  - 0 . 6 9 6  -0 .924  - 1 . 1 4 0  -1 .323  - 1 . 4 7 7  - 1 . 5 9 8  -1 .694  -1 .785  

(s.d.) 0.0172 0.0154 0.0150 0.0152 0.0150 0.0141 0.0144 0.0153 0.0169 

Table 3. The  real curve 132(t), the  averages of 500 es t imated curves ~2(c)(t; 1) and ~2(s)(t; 1), 
and  the  s t anda rd  errors of 500 s imulat ion es t imates  at  nine t ime points.  

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 

32(t)  0.104 0.148 0.181 0.207 0.225 0.237 0.245 0.248 0:250 

m(fl2(c) (t; 1)) 0.103 0.146 0.181 0.207 0.225 0 . 2 3 5  0.243 0.248 0.251 

(s.d.) 0.02178 0.0266 0.0298 0.0314 0.0329 0.0366 0.0410 0.0421 0.0474 

m(32(s) (t; 1)) 0.103 0.146 0.181 0.207 0.225 0.237 0.245 0.248 0.250 

(s.d.) 0.0021 0.0021 0.0021 0.0020 0.0020 0.0020 0.0019 0.0020 0.0021 

5. Application 

In this section, the proposed simultaneous smoothing spline estimation methods and 
the componentwise ones are applied to two empirical examples. These longitudinal data 
sets arise from a CD4 depletion study and an opioid detoxification study. 

5.1 A CD~ depletion study 
The first data set is from the Multicenter AIDS Cohort Study (MACS), which 

includes 283 homosexual men who were infected by HIV-1 virus. Measurements taken 
include CD4 percentage, the cigarette smoking status, pre-HIV infection CD4 percentage, 
and age at HIV infection. Individuals were repeatedly measured at scheduled semi-annual 
visits between 1984 and 1991. During the study period, many individuals missed some 
of their scheduled visits. Thus, the numbers of repeated measurements may differ among 
subjects. Details of the design and the methods of this study are described in Kaslow et 
al. (1987). 

In this study, the objective is to evaluate the effects of cigarette smoking, pre- 
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Fig. 1. The simultaneous smoothing splines fl/(s)(t;A/) (solid curve) and the componentwise 

smoothing splines ~(c)(t;  At) (dashed curve) with the corresponding 95% bootstrap confidence 
intervals labeled o and +. 

HIV infection CD4 percentage, and age at HIV infection on the mean post-HIV CD4 
percentage at any given time since the infection among seroconverters. Based on model 
(1.2), the simultaneous smoothing spline estimation methods and the componentwise 
smoothing spline estimation methods are used to estimate the effects of the concerned 
covariates. Estimators/~(s) (t; ~z) and ~(c)(t; Az) are separately computed from (2.5) and 
(2.11) with the smoothing parameters (A0, A1, )~2, A3) = (0.1, 0.01, 1, 0.1), which have the 
corresponding cross-validation score close to the minimum. 

Figures ( l a ) - ( ld )  show the estimated curves and their 95% pointwise bootstrap 
confidence intervals. From these graphs, we can see that  flz(c)(t; ~L) and fll(s)(t; ~z) have 

similar physical explanations. However, the confidence bands of/~(c)(t; )~l) are wider 

than/~l(~) (t; ,kl). As mentioned in Section 3 and Section 4, the simultaneous smoothing 
spline estimation methods are more reliable. From Fig. (la), the mean CD4 percentage 
for the non-smoking group with average pre-infection C D4 percentage and average age 
at HIV infection appears depleting rather quickly at the beginning of HIV infection, but 
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Fig. 2. The simultaneous smoothing splines ~(s)( t ;Al)  (solid curve) and the componentwise 

smoothing splines ~(c)(t;  Al) (dashed curve) with the corresponding 95% bootstrap confidence 
intervals labeled o and +. 
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the rate of depletion seems to be slowing down for the later period of the study after 
infection. No significant effects are detected in Figs. (lb) and (ld) for cigarette smoking 
and age at HIV infection. However, it appears in Fig. (lc) that  the pre-HIV infection 
CD4 percentage associated positively with higher CD4 percentage after the infection. 

5.2 An opioid detoxification study 
The second data set is from the National Institute on Drug Abuse (NIDA) opioid 

detoxification study, which includes 60 opioid dependent (DSM-IV) heroin users seeking 
detoxification treatment. In the study design, 32 patients are randomly assigned to the 
naltrexone-buprenorphine group and 28 to the placebo-buprenorphine group. Measure- 
ments were taken at 9 scheduled times per day by a trained nurse for a total 72 (8 x 9) 
measurements. During an 8 day inpatient clinical trial, each patient was subjected to 
the observer-rated opioid withdrawal scale (OOW) measurement, a scale to rate opioid 
withdrawal symptoms. Since some patients randomly missed some scheduled measure- 
ments or quit the treatment altogether, the number of measurements may be different 
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for each patient. Details of this design and its medical implications can be found in 
Umbricht-Schneiter et al. (1999). 

The objective here is to detect the effects of treatment status and the centered 
baseline OOW score on the OOW scores over the trials. Similar to the process of analysis 
in Subsection 5.1, two estimation methods are used to detect the effects of the interesting 
covariates. Here, estimators ~z(c)(t; ~l) and ~L(s)(t; )~l) are computed with the smoothing 
parameters (A0, A1, )~2) = (0.001, 0.001, 0.1). 

Figures (2a)-(2c) show the estimated curves and their 95% pointwise bootstrap 
confidence intervals. From these graphs, two estimation methods provide similar expla- 
nations. Also, the confidence bands for some of the componentwise smoothing spline 
estimators are close to the corresponding simultaneous ones. This can be explained by 
the small effect of Mz(t) to the variance of ~l(c)(t;Al) in (3.8) for some I. It is shown 
that the placebo mean stays very close to a constant throughout the trials, while the 
naltrexone treatment is generally associated with lower OOW scores roughly after the 
later half of the trial. The peak at the beginning of the trial for the naltrexone treatment 
is mainly caused by the patient's initial negative reaction to the treatment. As expected, 
the baseline OOW score has a positive association with the OOW scores. 
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Appendix A 

Before conducting the proof of Theorem 3.1, a technical lemma is stated first. 

LEMMA A.1. Suppose assumptions A1 and A4 are satisfied, and let function M(t)  
be continuous for all t E [0, 1]. Then, for sufficiently small )q, 

(A.1) 

and 

/o 1 GAq (t, s)GA,: (t, s )M(s) f (s)ds  = (f(t))-3/aM(t))~ll~2 (1 + o(1)), 

~0 
1 

(A.2) GA,(t ,s)M(s)f(s)ds = M(t)(1 + o(1)) 

for all t C IT, 1 - r] with some r > O. 

PROOF. It is easy to see that  the quantity f~ GA,I (t, s)GA,2 (t, s)M(s) f(s)ds  can 
be expressed as 

(A.3) o~o 1 GAI 1 i t, S)GAI 2 (t, s ) M ( s ) f ( s ) d s  

= ( a <  (t, s) - HA,  (t, s))aA,  (t, s )M(s ) f ( s )a s  

+ H <  (t, s)(aA,  (t, s) 
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- Hx,= ( t , , ) )M(s)f (s )as  + H~,I (t, s)H~,~ (t, s)M(s)f( ,)a~.  

From (3.2), Lemma 3.1 of Chiang et al. (2001), and the properties of double exponential 
distributions, there exists a positive constant cl so that, as All ~ 0, Az2 ~ 0, and 
Az~ = O(Az=), 

( A . 4 )  O~ I(Ga,~ (t, S) -- H~,~ (t, s))Gx~= (t, s)M(s)f(s)ds 

/o 1 <_ tGxq (t,s) - Hxq (t,s)llGAt2(t,s)llM(s)]f(s)ds 

Z 1 (t~1)2.~ 1/4 exp(--(Ctla~ 1/4 + (~2~1/4)it -- sl)]M(s)lf(s)ds 

= Cl[M(t)lf(t)(1 + 0(1)). 

Similarly, 

o~o I (t, s))M(s)f(s)ds (A.5) H~q (t, s)(Gaz2 (t, s) - Hat= <_ c21M(t)lf(t)(1 + o(1)) 

for a positive constant c2. Let u = F(t) and v = F(s). Again, using the properties of 
double exponential distributions, it can be shown that 

/o 1 (A.6) HAq (t, s)HA,= (t, s)M(s)f(s)ds 

fo 1 (4 ) ( 4  ~'2]U--V]) ('r~(')'~')"=)-~/4) sin + A,~l,~-vl sin + ~  
= 4 7 v/~ ~,~ 

�9 (_ .r  A/'~= lu - 
exp -~/-2- v]/ M(F-l(v))7-1(f(F-l(v)))-3/adv 

- -  2~/~(f(t))-3/4M(t)Az,z=(1 + o(1)), 

where A'U= = A-1/nh + A-1/nt= . By substituting (A.4), (A.5) and (A.6) into (A.3), (A.1) is 
then obtained. Similar arguments can be used to show that (A.2) also holds. 

PROOF OF (3.3). From (1.3) and (2.3), we can derive the equations 

) (A.7) /~z(,)(t;)~)- E ~ t3z(tij)Xi,- EBh(* )  (tij;A)xih S~,,x,(t, tij) 
i=1 j = l  ll#Z 

-~s~e(tij)&,~,x~(t,t~j), l = 0,. k, 
i=1 j = l  

where Bz~ (~) (tij; A) = (~l~ (~) (tij; A) - ~l~ (tij)). By the law of large numbers and assump- 
tions A1, A3, it can be shown that 

k m, XitXiz~ ~.~. {" E[XtXt~I ~ F(t). 
(A.S) ~ Ns~ l[t,5_<t]--+ \ ~ ] 

i=1 j = l  
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Using the properties in Lemma 3.1 of Chiang et al. (2001), (A.8), assumption A4, and 
taking expectation of the left hand side of (A.7), 

(A.9) jSz(tij)Xit- E Bh(~)(tij;J~)Xih S~,,x,(t, tij) 
i=1 j = l  l~#l 

= Bt + BH, 

where 

and 
f0 

1 
BI = E[/31(s)(t; ,k)] - tSt(s)G~, (t, s)f(s)ds(1 + o(1)), 

E[XzXz,] fo 1 B H = E  E[X 2] (E[~l*(*)(s;)Q]--/3h(s))G~,(t's)f(s)ds(l +~ 
ll#l 

Let gz(t) = f~ Gx, (t, s)~l(s)f(s)ds. It follows by the definition of the Green function 
in (3.1) and Lemma 6.1 of Nychka (1995) that 

(A.10) g,(t) -/3z(t) = -A' "(4)(t)(1 + o(1)) 
f(t) "z 

Thus, from (A.10) and Lemma A.1, we can get 

(A.11) 

and 

(1.12) 

--Al j5(4) gt~{1 + o(1)). 
= f(t) ~ ' "  

BI = E[~l(,)(t; 1~)]- (/3z(t) - A1 /3(4)rt~ f(t) t , ,  +~ (1+o(1)) 

= ( E [ ~ l ( s ) ( t ; ~ ) ] - - / ~ l ( t ) +  f~t)/3}n)(t))(1 + o(1)) 

E[XzXI1] E[~q(s)(t;)~)]- ~l,(t)-  f(t) t~ (t)+ B.. : Z E[x~] 
l l :fll 

�9 (1 + o(1)) 

= E E[XzXhlE[x~ l (U[~q(,)(t;A)]-/3h(t ) + f(t)At/3(4)(t))h (1 + o(1)) 
ll#l 

E[XtXh] ( At /3(4)rt~) (1 + o(1)). 
= E  E[X 2] B(~h(*)(t;A))+ f(t) l, , , j  

By substituting (A.11) and (A.12) into (A.9), 

(A.13) E a,( .)(t;a)-  Z ~ ~,(t~j)x.- Z B,l(.)(t~.;~)X., &,,x,(t,t~,) 
{<j} zlr 

= ~k E[X, Xh B(~ll(*)(t;A))+ f(t) h (t) (1+o(1)). 
/1=0 
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Since si(t) is a mean zero stochastic process and is independent of the covariates X, it 
implies that 

(A.14) E ~s~e(tij)Sxz,x,(t, tij) = O. 

Finally, from (A.13) and (A.14), the bias of ~(s)(t;,k) in (3.3) is obtained. 

PROOF OF (3.4). Following (A.7), we can get the following equations 

(A.15) YI 
{l=ll,12} 

- ~_. ~ /31(tij)Xiz- ~Bl~(~)(tij;.~)Xil~ S~,x,(t, tij) 
{i,j} ~a#l 

-~ YI E -~s~ e(tij)S)'t(t'tij) ' Vll,12 r {0,. . . ,k}. 
(l=Ii,12} i = l  j = l  

From Lemma 3.1 of Chiang et al. (2001), (A.8), (A.10), assumptions A1-A4, and Lemma 
A.1, the expectation of the left hand side of (A.15) is derived as 

(A.16) E l-I 

- ~ ~ ~z(ti j)X.-  ~Bl~(~)(tij;.~)X.~ Sa~,x~(t, tij) 
{~,j} 13r 

( Z 1 = E H ~z(~)(t; A) - /~z(s)G~,(t,s)f(s)ds(1 +%(1)) 
{l=l1,12} 

= E  

= E  

II 
{l=ll,12} 

II 
{l=ll,12} 

k 

--E: 
{/3,/4} 

(~E[XzXl3]  (Bl3(s)(t;A) + Al fl(4)(t))(l+op(1) ) 
ta=o E[X2] f(t) l~ 

( ~ E [ X t X z 3 ] , ~ ,  t. 
z~=o ~ kPl~(~)k ,,k) -- E[~13(,)(t;A)])(1 +%(1)) 

( E [ ~ I ~ I ~ I ~ ] )  Cov(~(~) (t; ~), ~(~) (t; ~))(1 + o(1)). 
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Taking expectation of the right hand side of (A.15), 

(A.17) E H 
{/=/1,t2} 

where 

gI = E ~2(tij)S)~ll 
\ ll 12 

] 
,x,~ (t, t~j)s~,~,x,, (t, t~j)i , 

,,,i 

VII = E _ _  ~ I ~  e(tijl)e(tij2)S~,h,x,l(t, tijl)S~2,x~ ~(t,tij~) , 
i----1 {jl=flj2} \ 11 12 

and 

VIII = E Z Z I N2s 2 s 2 e(ti~j~)e(ti~3~)S),~,x h (t,t~jl)S~,~,x~ (t, ti~j~) 
i1r {Jl , j2}  \ 11 12 

From assumption A4, Lemma 3.1 of Chiang et al. (2001), and Lemma A.1, it can be 
derived that  

E[XllXl2]  ~o 1 
(A.18) Vx = NE[X~]E[X~2] a2(t)Gxh (t, s)G~,2 (t, s) f (s )ds( l  + o(1)) 

E[X?~IE[X221 ] (t)(1 + o(1)), 

and 

(A.19) 

/ p(t,t)(1 + o(1)). 

Since si(t) is a mean zero stochastic process and is independent of the covariates X,  it 
implies that  VIII -- 0. Substituting (A.18), (A.19), and VHI = 0 into (A.17), we can get 

[l=lx,12} i=1  j = l  l 

)~1112 - 3 / 4  2 n 

From (A.16) and (A.20), the variance of ~(s)(t;A ) in (3.4)is then obtained. 
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