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Abstract. In this paper, we study the properties of the simultaneous and compo-
nentwise splines for the varying coefficient model with repeatedly measured (longitu-
dinal) dependent variable and time invariant covariates. The proposed simultaneous
smoothing spline estimators are mainly obtained from the penalized least squares
with adjustment for the variations of covariates in the penalized terms. We do this
mainly to avoid the penalized terms being influenced by the scales of the covariates
and the random smoothing parameters appearing in the estimators, which compli-
cates the derivation of the asymptotic properties of the estimators. It is shown in
this study that our estimators have smaller variances than the componentwise ones.
Through a Monte Carlo simulation and two empirical examples, the simultaneous
smoothing splines are all found to be more accurate in the variances.
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1. Introduction

In biomedical and epidemiological studies, longitudinal data with time invariant
covariates and repeatedly measured (longitudinal) dependent variable over time are fre-
quently encountered. Generally speaking, this type of data is collected from n randomly
selected subjects. For the i-th subject, let m;, t;;, Y35, and X,-T = (Xio, ..., Xix) with
X0 = 1, respectively denote the number of the repeated measurements, the time of the
j-th measurement, the observed outcome at time ¢;;, and the observed time invariant
covariate vector. Here, the total number of observations is denoted by N =Y """ | m,.

To model the relationship between the dependent variable Y (¢) and the time depen-
dent or time invariant covariates X7 (t) = (Xo(t), ..., Xi(t)) with Xo(t) = 1, Hoover et
al. (1998) considered a more flexible varying coefficient model of Hastie and Tibshirani
(1993)

(1.1) Y(t) = XT(t)B(t) +«(t),

where B(t) = (Bo(t),...,Bk(t))T are smooth functions of ¢, and &(t) is a mean zero
stochastic process and is independent of X (¢). They also proposed a class of smoothing
methods to estimate the coeflicient curves. Based on model (1.1), Hoover et al. (1998),
and Wu et al. (1998) have developed inferences for the kernel estimators. Under some
specific designs, Fan and Zhang (2000) provided a simply implemented two-step smooth-
ing alternative. When the covariates are time dependent, Wu et al. (2000) proposed a
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two-step smoothing method to avoid large biases appearing on the estimates. Using
basis function approximations for estimating 3(¢), Huang et al. (2002) further developed
a global smoothing procedure.

In this paper, we focus on the covariates which are invariant with respect to the
time points. This is because the covariates of interest are often time invariant in clinical
trials and other biomedical and epidemiological studies. Under this data setting, model
(1.1) will be reduced to

(1.2) Y() = XTB() +<(t),

where X7 = (Xq, ..., Xy) with Xo = 1. Substituting Y (¢), X and ¢ with observations
Yi;, X, and ¢;;, model (1.2) becomes

(13) Y{j:X;Trﬁ(tij)—l-E(tij)a t=1,...,n; j=1,...,m,.

Based on (1.3), Wu and Chiang (2000), and Chiang et al. (2001) modified the methods of
Hoover et al. (1998) into componentwise estimation methods to significantly simplify the
computations. They also derived the asymptotic properties of the estimators through
the explicit expressions of their asymptotic risk representations. Meanwhile, through a
Monte Carlo simulation, the sample variances of their estimators are found to be smaller
than those of Fan and Zhang (2000). However, in succeeding sections, the componentwise
smoothing spline estimators are shown not as accurate as it is expected in the variances
under both the finite sample and the infinite sample. This is mainly caused by the
unexpected non-negative terms, which are functions of the moments of the covariates X
and the parameter curves (3(t), in the variances of the estimators.

Instead of using the componentwise estimation methods, we propose the simultane-
ous smoothing spline estimation methods based on the penalized least squares of Hoover
et al. (1998) with adjustment for the variations of the covariates in the penalized terms,
which avoid the penalized terms being influenced by the scales of the covariates. There
are two features of the revised smoothing spline estimation methods: First, the proposed
estimators are unlike the smoothing spline estimators of Hoover et al. (1998), which are
smoothen by the random smoothing parameters and are more complicated in terms of
deriving the properties of the estimators. Note that the asymptotic properties for the
smoothing splines of Hoover et al. (1998) have not been developed. Second, when the
smoothers within each estimator are set to be equal, it is shown that the mean squared
errors of our simultaneous smoothing spline estimators are smaller than the correspond-
ing componentwise ones.

The contents of this paper are organized as follows. In Section 2, we introduce
the simultaneous smoothing spline estimation methods, and summarize the component-
wise smoothing spline estimation methods. The asymptotic mean squared errors of the
proposed estimators with or without equal smoothers for each estimator are developed
in Section 3. For the sake of comparison, the asymptotic mean squared errors of the
componentwise smoothing splines are also stated in this section. In Section 4, a Monte
Carlo simulation is implemented to examine the finite sample properties of the simul-
taneous smoothing spline estimators. Applications of our estimation methods are also
demonstrated in Section 5 through two empirical examples—a CD4 depletion study and
an opioid detoxification study. Finally, the proofs of the main results are shown in the
Appendix.
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2. Estimation

Assume that the support of the design time points {¢;;} is contained in a compact
set [a,b], and Bi(t), | = 0,...,k, are twice differentiable. Also, let H, 5 be the set of
compact supported functions such that

Hap) = {9(-) : g and gV are absolutely continuous, and ¢¥ € L?[a, b]}.

The simultaneous smoothing spline estimators [A‘](s)(t; A = (EO(S)(t;)\),...,

Ek(s) (t; A))T of B(t) proposed here are obtained by minimizing the penalized least squares
with adjustment for the variations of the covariates in the penalized terms

(21)  Ji(B;A) = ZZwl (yn - Zxdﬁg(%)) + Zkgsl / (B2 ()2,
i=1 j=1
where XA = (g, ..., \;) are non-negative smoothing parameters, w = (wl, e, Wy) are

non-negative constant weights with > o, myw; = 1, s7 = 31" 1(wzm1) 2 and B7(t)
denotes the p-th derivative of 3;(t) with respect to ¢. In practice, w;’s are usually assigned
to be 1/N and 1/(nm;) which provide equal weight to each single observation and each
single subject, respectively. However, as mentioned in Remark 8 of Chiang et al. (2001),
there may not have the explicit risk representations for the estimators with w; = 1/(nm;)
or more general weights. When the numbers of the repeated measurements are bounded,
it was suggested by Lin and Carroll (2000) that w; = 1/N leads to asymptotically optimal
kernel smoothers for the generalized estimating equations. For the sake of comparison
with the existing estimators in the literature, the weights are assigned to be 1/N in the
succeeding discussions. Setting the Gateaux derivatives of J1,{3; A) to zero, B(s)(t;/\)
uniquely minimize Ji4(3; A) if they satisfy the following normal equations

n m; k
(2.2) ZZ [ (Yij - Z Bll(s)(tiﬁ )\)Xill> gl(tij):|

i=1 j=1 11 =0
=N\ / Biod (t: N g (t)t,

forl = .k, and all g;’s in a dense subset of Hy, 5. A similar argument as in Wahba
(1990) shows that there is a symmetric function Sy, x,(t, s), which belongs to H|, 3 when

either ¢ or s is fixed, so that ,gl(s) (t; A) is given by

n m;

(23) ﬁl(s) t A Z Z N }/ij - Z B\ll(s)(tiﬁ )‘)Xill S)\l,Xl (ta tij)'

i=1 j=1 L1#l

By substituting (2.3) into (2.2) and rearranging terms, we have the characterization of
the S-spline function Sy, x, (t,t;),

b b
(2.4) / Sa (b ) @ () dFw x, () + N / 8P (1 ti)a® (D)t = au(tsy),

where Fiy x, (t) = 30, 2275 (X3 /NsP) 1, <
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In (2.3), we can see that the estimator Bz(s)(t; A) is influenced not only by the
smoothing parameter A; but also by the other smoothers. To make Bl(s)(t A) being
smoothen only by A;, the smoothing parameters A are set equal to \;1. Then, the
by-product estimators, denoted by ﬂl(s)(t A1), can be expressed as

k13 m;
(2.5) Bl(s) () = Zz N Yi; — Zﬂtl(s)(tij;)\z)Xill Sx,x (t,tig).
i=1 j=1 LAl

For the smoothing spline estimation methods of Hoover et al. (1998), their estimators
are obtained by minimizing

nom;

(2.6) st(,B;A) ZZ (ng Zle/Bl(tu)> + Z)\l/ (2) t))zdt

1_1_7 1

The same reasoning as in the derivation of Bl(s)(t; A) shows that the corresponding
minimizers, say, Bl*( S)(t; A") of Jos(B; A) are given by

n m;g

27 Bio®X) = EZ N Yii = > B o3 M) Xa, | Sapoxi(t,ti5),
i=1 j=1 L#L
where A* = (A},...,Ar) with A} = X\;/s?. As we can see, the random smoothing pa-

rameters A* will cause complexity in deriving the properties of Bl*( s)(t; A%). However,

the spline estimators Bl(s) (t; A) can avoid this problem, and are more common in many
practical applications. When each §;(t) has the function form §;(t) = Z;'n:1 i1 B;i(t),
where Bj;(t)’s are basis functions , the minimizers of (2.6) can be derived to be the
estimators of Huang et al. (2002) with B-spline bases. In the following sections, we will
focus only on the discussion of ﬁl(s)(t; A).

To avoid intensive computation in the estimation of the coeflicient curves 3(t),
Chiang et al. (2001) proposed the componentwise smoothing spline estimation meth-
ods for the varying coefficient model (1.2). Even though these methods are fast in
computation, the variances of the estimators, as shown later, have a higher variabil-
ity. Especially, computing considerations are no longer a major consideration in modern
computer equipment. For the sake of comparison in succeeding sections, we summarize
here their estimation methods.

Let Exxr = E[XXT] and assume that the inverse of Exxr, denoted by E7L XxT
exists. By multiplying the both sides of (1.2) by X and taking expectations, 3(t) can
be expressed as

(2.8) B(t) = E[Z (1)),

where Z(t) = (Zo(t),...,Zx(t))T with Zi(t) = E'::O el XY (t) and e the (I,7)-th
element of E;&T Since Exxr is unknown and is invariant with respect to time ¢, it is
naturally estimated by the sample mean

n

(2.9) Exx =n"') (X;XT).

i=1
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Assume further that the inverse of E’XX, denoted by EXX, exists. Substituting £ XXT

with E. <x» the componentwise estimator, say, Bl(c)(t, A1) of Bi(t) is obtained by minimiz-
ing the following penalized least squares

n  m;

(2.10) Je(Bs M) = ZZ(ZUI Bitif))? + N / (B2 (1)),

1-1_7 1

where Zﬂ Ef O’e\lTXllYij is the estimated observed value of Z;;; with €. being the

(I,7)-th element of E? The minimizer EI(C) (t; A1) of Jo(Bi; A1) can be expressed as

XXT

n m;

(2.11) /gl(c) t /\l ZZZHZS)“ t tm)

z—lj 1

where S, (t,s) = Sy, x,(t,5) isin Hia,b)-

As derived in that paper, the asymptotic variance of the estimator §.)(¢; A;) con-
tains the unexpected non-negative terms, which are functions of the moments of the
covariates and the parameter curves. In Section 3, we will show that both By (t; A;)

and BI(C)(t A1) have the same asymptotic bias, but the asymptotic variance of Bl (s)(t A1)
is smaller. Through a Monte Carlo simulation in Section 4 and two empirical examples
in Section 5, it appears that the variance of ﬂl(s)(t A1) is smaller than that of ﬂ, BIURNE
Except the evidence from the finite and the infinite sample properties of the estimators,
the unexpected terms in the variances of ,Bl(c) (t; A1) can also be explained by the following
reasoning: From (1.2) and the definition of Z{t), Z(t) can be reexpressed as

(2.12) Z(t) = Exir XY(t)
= Exyr(XXT)B(t) + Egyr Xe(t)
= IB( ) + 6*(t)$
where
£*(t) = Exyr(XXT — Exxr)B(t) + Exyr Xe(t).

It is observed that the new error process €*(t) consists of two components: the variabil-
ities of the covariates and the original stochastic error process £(t). Thus, the variances

of BI(C)(t; A1)’s are enlarged by the extra non-negative terms.
3. Asymptotic properties

The asymptotic mean squared errors of the simultaneous smoothing spline estima-
tors Oys)(t; A), L =0,..., k, will be derived in this section. Without loss of generality, we
focus on the interval [0, 1]. Extension to the general interval [a,b] can be carried out by
the affine transformation v = (t —a)/(b—a) for ¢t € [a, b]. For the succeeding discussions,
we make the following assumptions:

(A1) The time design points {t;;} are nonrandom and satisfy

Dy = sup |Fn(t)—F(t)] =0, as n— oo,
t€(0,1]
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for some distribution function F' with strictly positive density f on [0, 1], where Fy(t) =
N7 Y1 27520 Lty <4 and f is three times differentiable and uniformly continuous on
[0,1] with f*)(0) = f*)(1) =0 for v = 1,2.

(A2) The coefficient curve §;(t) is four times differentiable and satisfies the bound-
ary conditions ﬂl(")(O) = ﬁl(”)(l) = 0 for v = 2,3. The fourth derivative 51(4)(t) is
Lipschitz continuous in the sense that 1ﬁl(4)(31) - 1(4)(82)| < culss — szl for all
s1, s2 € [0,1] and some positive constants ¢y; and cg;.

(A3) The fourth moment E[X}!] exists.

(A4) Define Dn, = sup,epo 1) | Fn,x, (t) — F(t)]. At = O(Xo) — 0, N/\ll/4 — 00, and

~5/4 a.s.
)‘l / DN,l = 0asn— oo.

(A5) Define 02(t) = E[e?(t)] and p(t) = limy_,; E[e(t)e(t')]. Both o2(t) and p(t)
are continuous at ?.

Under the validity of assumption A3, it is straightforward to show by the law of
large numbers that sup,c(o,1 |Fnv,x,(t) — Fn(t)| converges to zero almost surely. With
assumption Al and the property Dy, < Dy +5supycpo1) | F v, x, (t) — Fn(t)], we can show
that Dy, in assumption A4 converges to zero almost surely. In general, o%(t) need not
be equal to p(t). As discussed in Zeger and Diggle (1994), the strict inequality appears
when £(t) consists of a stationary process of ¢ and an independent measurement error.
Since the spline function Sy, x, (¢, s) in (2.4) does not have an explicit expression, it may
be approximated by the Green function Gy, (¢, s) of the 4th order differential equation

(3.1) Mg (@) + Falt) = FOBE),  teo,1],

with gl(")(O) = gl(V) (1) for v = 2,3. By substituting the smoothing spline function
Sy, x,(t,s) with the Green function Gy, (t,s) and using the exponential bound of
|Sx,.x,(t, 8) — G, (1, 8)|, the asymptotic properties of El(s)(t; A) can be conveniently de-
rived. It was also shown by Abramovich and Grinshtein (1999) and Chiang et al. (2001)
that the Green function G, (t, s) can be approximated by

4y-1/4 - 4\—1/4
62 H(ts) = P00 )i (T4 D n - 1)

(A/yh)~1e
X exp (———\/—2—“|F(t) - P(SM) ’

where v = fol(f(s))l/“ds and T'(t) = y7! f(f(f(s))l/‘ids. Some important properties

of the functions Sy, x,(¢,s), G (t,s) and Hj,(t,s), which will be used in the main
results, can be derived along the same lines as the proof in Lemma 3.1 of Chiang et
al. (2001). Let B(Byy(t; X)) = (B(Bos)(; N); - -» BBeis) (5 X)) and V(By) (6 A) =
[(COV(BII(S)(t; A),Blz(s)(t; A)))] be the bias and the variance of ,@(s)(t; A). By the decom-
position principle of the mean squared error, we can separately evaluate the bias and
the variance of B(,)(t; A).

THEOREM 3.1. Suppose that assumptions (A1)—(A5) are satisfied and t € (0,1).
Then, for sufficiently large n, the bias and the variance of B4 (t; X) are given by

(33)  B(Bo(t:N) = —(F(1) H(Exkr AExxT)BY 1)]T (1 + 0(1)),

and
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(84)  V(Bu®EN) = fN(f( N7 (1) (Byr Ay Bgyr) (14 0(1))

n N2
i (; (%) P(t’t)> Eyxr(1+0(1),
where A = disg(ho,.., W), B = (&), B )T, and Agxr =
[()‘hle[Xllez])] with )‘lllz = ()\1/4 + )\1/4)

PROOF. See Appendix. O

Following the arguments in Hoover et al. (1998), the variance of Bl(s)(t; A) asymp-
totically converges to zero if and only if maxi<;<n(m;/N) — 0. When the smoothing

parameters A in ,Bl(s)(t; A) are set to be equal to A;1, the asymptotic properties of
Bl(s)(t; A1) in (2.5) can be derived straightforward from Theorem 3.1.

LEMMA 3.1. Suppose that assumptions (Al)-(A5) are satisfied and t € (0,1).
Then, for sufficiently large n, the bias and the variance of By5)(t; A1), I = 0,...,k are
given by

(3.5) B(Bys) (M) = —(F ()78 (1) M(1 + 0(1)),
and

(3.6) V(Bisy(t; M) = ) 3NN ena®(8) (L + o(1))

st
+Z( ) eup(t, t)(1 + o(1)).

When the regularity conditions are satisfied, Chiang et al. (2001) derived that the
asymptotic bias and the variance of 3;¢)(t; A1), 1 =0,...,k, are

(37 B(Bio (M) = (1) 78V (OM(L+ 0y(1)) + Op(n/?),

and

(38)  V(Bio(t:M) = —=(F0) " (VA M) + eno® (1)) (L + 0p(1))

5l
_Z( ) (M) + euplt, 0)(1 + 0p(1)) + Op(n™),

where M(t) = 325 321 (B, ()81, () E[ X, X1, (55 _o eus X1,)2)) — (B(t))?. Tt follows from
Lemma 3.1 and (3.7)—(3.8) that both the dominating terms in the biases of BI(S) (t; A1)
and ,/B\I(C) (t; A1) are same. However, the dominating term in the variance of Bl(s)(t; Ar) is
smaller than that of BI(C) (t; A;) since M,(t) is nonnegative.
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4. Monte Carlo simulation

Consider the varying coefficient model (1.2} with coefficient curves

Bo(t) = 3.5 + 6.5sin (%) :

B1(t) = —0.2 — 1.6 cos (%) ,
30 —t\°
Ba(t) = 0.25 — 0.0074 (T)

and covariate vector X = (X, X1, X2)7, where X; and X, are independent Bernoulli
and Gaussian random variables with joint density

1 z3
flz1,22) = 8(2n)i72 &P (—3—;> 110,13 (1) 1(~c0,00) (Z2)-

In this simulation, 400 subjects are scheduled to appear at equally spaced time
points 0,1,...,30 with a 60% probability of missing for each of the 31 “appointments”.
The covariates of each subject are independently generated from the above distribution.
Under the given time points {¢;;}, the errors £(t;;), which are independent of the covari-
ates X;, are generated from the mean zero Gaussian process with covariance function

0.0625 exp(—|[t;, 5, — tinin|), if 11 =19,

Cov(g(ti1j1)7€(ti2j2)) = { 0, p( | wi Z2J2|) if 741 7& 12
Finally, the dependent variables Y;; are automatically obtained by substituting X, ¢;;
and e(t;;) into (1.3).

Based on the above design, the longitudinal data are repeatedly generated 500 times.
In each set of simulated data, Gy, (t; A1) and By (t; A;) are computed by (2.5) and (2.11)
with appropriate smoothing parameters. As mentioned in Chiang et al. (2001), the “leave
one subject out” cross-validation procedure of Rice and Silverman (1991) may sometimes
select inadequate smoothing parameters. It is usually preferable to have a set of smooth-
ing parameters which has the corresponding cross validation score close to the minimum
and gives better estimators. For the purpose of comparison, the smoothing parame-
ters (Ag, A1, A2) = (1,1,1) from their simulation are used to both estimators. Table 1
through Table 3 show the true curves, the 500 averages of the estimated curves and
the standard errors of the 500 simulation estimates at nine selected time points. As
shown in these tables, the variances of the componentwise smoothing spline estimators
are enlarged by the values of M;(t)s, and thus are larger than those of the simultaneous
smoothing splines. The results are consistent with the asymptotic properties discussed
in Section 3. Moreover, based on (3.5)—(3.6), the asymptotic bias and standard devi-
ation of (ﬁo(s)(t;1),31(5)(15;1),32(3)(75;1)) are computed to be (—0.0015,0.0004,0) and
(0.0193,0.0273,0.0034). Tables 1-3 show that the asymptotic variances are slight larger
than the actual variances. It also impractical to directly estimate the unknown quanti-
ties in the moments of the estimators. Thus, in applications, the bootstrapping methods
will be used to construct the confidence intervals of the discussed smoothing estimators.
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Table 1. The real curve (g(t)}, the averages of 500 estimated curves Eo(c)(t; 1} and 30(3)(5; 1},
and the standard errors of 500 simulation estimates at nine time points.

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Bo(t) 4517 5509 6451  7.321 8.096 8759 9292  9.682  9.920
m(Boey(t:1)) 4513 5499 6448 7.323 8103 8766  9.201  9.660  9.901
(s.d.) 0.0955 0.1111 0.1270 0.1395 0.1560 0.1771 0.1866 0.1877 0.2010
m(Boy(t:1)) 4525 5509 6449  7.317 8091 8747 9270  9.652  9.913
(s.d.) 0.0137 0.0110 0.0104 0.0106 0.0101 0.0098 0.0098 0.0101 0.0120

Table 2. The real curve 51(t), the averages of 500 estimated curves b\l(c) (¢;1) and ﬁl(s)(t; 1),
and the standard errors of 500 simulation estimates at nine time points.

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
B1(t) —~0.450 —0.694 —0.926 —1.140 —1.331 —1494 -—1.626 -1.722 —1780
m(Be)(t;1)) —0.438 —0.678 —0.921 —1.144 —1344 —1513 —1.639 —1714 —1.769
(s.d.) 0.1761 0.2040 0.2328 0.2552 0.2831 0.3187 0.3354 0.3376 0.3638
m(Bsy(t;1)) —0.461 —0.696 —0.924 —1.140 -1323 —1477 —1.598 —1.694 —1.785
(s.d.) 0.0172 0.0154 0.0150 0.0152 0.0150 0.0141 0.0144 0.0153 0.0169

Table 3. The real curve B2(t), the averages of 500 estimated curves ,,3\2(0) (t;1) and 23\2( (1),
and the standard errors of 500 simulation estimates at nine time points.

Time 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Ba(t) 0.104 0.148 0.181 0.207 0.225 0.237 0.245 0.248 0:250
m(Byey(t1))  0.103 0.146 0.181 0.207 0225 0235 0.243 0.248  0.251
(s.d.) 0.02178 0.0266 0.0298 0.0314 0.0328 0.0366 0.0410 0.0421 0.0474
m(Bas)(t;1)) 0103 0.146  0.181  0.207 0.225 0.237 0.245 0248  0.250
(s.d.) 0.0021 0.0021 0.0021 0.0020 0.0020 0.0020 0.0019 0.0020 0.0021
5. Application

In this section, the proposed simultaneous smoothing spline estimation methods and
the componentwise ones are applied to two empirical examples. These longitudinal data
sets arise from a CD4 depletion study and an opioid detoxification study.

51 A CD/ depletion study

The first data set is from the Multicenter AIDS Cohort Study (MACS), which
includes 283 homosexual men who were infected by HIV-1 virus. Measurements taken
include CD4 percentage, the cigarette smoking status, pre-HIV infection CD4 percentage,
and age at HIV infection. Individuals were repeatedly measured at scheduled semi-annual
visits between 1984 and 1991. During the study period, many individuals missed some
of their scheduled visits. Thus, the numbers of repeated measurements may differ among
subjects. Details of the design and the methods of this study are described in Kaslow et
al. (1987).

In this study, the objective is to evaluate the effects of cigarette smoking, pre-
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Fig. 1. The simultaneous smoothing splines El(s)(t; A1) (solid curve) and the componentwise
smoothing splines By(c)(t; \i) (dashed curve) with the corresponding 95% bootstrap confidence
intervals labeled o and +.

HIV infection CD4 percentage, and age at HIV infection on the mean post-HIV CD4
percentage at any given time since the infection among seroconverters. Based on model
(1.2), the simultaneous smoothing spline estimation methods and the componentwise
smoothing spline estimation methods are used to estimate the eflects of the concerned
covariates. Estimators 8y(,)(t; A;) and Gy (t; A;) are separately computed from (2.5) and
(2.11) with the smoothing parameters (Ag, A1, A2, A3) = (0.1,0.01,1, 0.1), which have the
corresponding cross-validation score close to the minimum.

Figures (1a)-(1d) show the estimated curves and their 95% pointwise bootstrap
confidence intervals. From these graphs, we can see that Bl(c)(t; A1) and Bl(s)(t; A1) have
similar physical explanations. However, the confidence bands of Bl(c)(t; A1) are wider

than Bl(s) (t; A\1). As mentioned in Section 3 and Section 4, the simultaneous smoothing
spline estimation methods are more reliable. From Fig. (1a), the mean CD4 percentage
for the non-smoking group with average pre-infection CD4 percentage and average age
at HIV infection appears depleting rather quickly at the beginning of HIV infection, but
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Fig. 2. The simultaneous smoothing splines EI( s)(t; A} (solid curve) and the componentwise

smoothing splines [/3\[ () (t; Ar) (dashed curve) with the corresponding 95% bootstrap confidence
intervals labeled o and +.

the rate of depletion seems to be slowing down for the later period of the study after
infection. No significant effects are detected in Figs. (1b) and (1d) for cigarette smoking
and age at HIV infection. However, it appears in Fig. (1c) that the pre-HIV infection
CD4 percentage associated positively with higher CD4 percentage after the infection.

5.2 An opioid detozification study

The second data set is from the National Institute on Drug Abuse (NIDA) opioid
detoxification study, which includes 60 opioid dependent (DSM-IV) heroin users seeking
detoxification treatment. In the study design, 32 patients are randomly assigned to the
naltrexone-buprenorphine group and 28 to the placebo-buprenorphine group. Measure-
ments were taken at 9 scheduled times per day by a trained nurse for a total 72 (8 x 9)
measurements. During an 8 day inpatient clinical trial, each patient was subjected to
the observer-rated opioid withdrawal scale (OOW) measurement, a scale to rate opioid
withdrawal symptoms. Since some patients randomly missed some scheduled measure-
ments or quit the treatment altogether, the number of measurements may be different
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for each patient. Details of this design and its medical implications can be found in
Umbricht-Schneiter et al. (1999).

The objective here is to detect the effects of treatment status and the centered
baseline OOW score on the OOW scores over the trials. Similar to the process of analysis
in Subsection 5.1, two estimation methods are used to detect the effects of the interesting
covariates. Here, estimators §y()(t; A1) and By(s)(t; Ai) are computed with the smoothing
parameters (Ao, A1, A2) = (0.001,0.001,0.1).

Figures (2a)-(2c) show the estimated curves and their 95% pointwise bootstrap
confidence intervals. From these graphs, two estimation methods provide similar expla-
nations. Also, the confidence bands for some of the componentwise smoothing spline
estimators are close to the corresponding simultaneous ones. This can be explained by
the small effect of M;(t) to the variance of §y)(t; ;) in (3.8) for some I. It is shown
that the placebo mean stays very close to a constant throughout the trials, while the
naltrexone treatment is generally associated with lower OOW scores roughly after the
later half of the trial. The peak at the beginning of the trial for the naltrexone treatment
is mainly caused by the patient’s initial negative reaction to the treatment. As expected,
the baseline OOW score has a positive association with the OOW scores.
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Appendix A

Before conducting the proof of Theorem 3.1, a technical lemma is stated first.

LEMMA A.1l. Suppose assumptions Al and A4 are satisfied, and let function M (t)
be continuous for all t € [0,1]. Then, for sufficiently small A,

(A.1) /0 G, (t,8)Guy, (8, 8) M (s)f(s)ds = f@(f(t))—:’/“M(t))\zlb(l +0o(1)),

and

1
(A.2) /0 G, (1, $)M(5) (s)ds = M(D)(1 +o(1)
for allt € [1,1 — 7] with some 7 > 0.

ProOF. It is easy to see that the quantity fol Gy, (t,8)Gx,, (8, s)M(s) f(s)ds can
be expressed as

1
(A.3) / G, (t:5)G, (£, 5)M(s) £ (5)ds
1
- /O (G, (£,5) — Ha, (1,5))Gon, (1 )M (3) (5)ds

1
4 /0 Hy,, (t,5)(Go, (¢, 5)



SIMULTANEOUS AND COMPONENTWISE SPLINES 649

— H,, (t,5))M(s) f(s)ds + /0 Hy, (t,5)Hx,, (t, 5)M(s) f(s)ds

From (3.2), Lemma 3.1 of Chiang et al. (2001), and the properties of double exponential
distributions, there exists a positive constant c¢; so that, as A, — 0, A;, — 0, and
)‘11 = O()‘h)»

(A.4) { [ (@, 0:6) = B (6,506, (6 M6 ()

< / (G, (t:5) — Hag, (t, 9)||G, (1 $)[|M(5) | (5)ds

/ (k)2 exp(—(ea Ay, + anh )it — s))| M ()] (s)ds
= c1|M(t)| f(t)(1 + o(1)).

Similarly,

(A.5) UO Hy,, (,8)(Gx, (b 5) — Ha, (8, 8))M(s)f(s)ds| < co| M ()] f(8)(1 + o(1))

for a positive constant ¢;. Let u = I'(t) and v = I'(s). Again, using the properties of
double exponential distributions, it can be shown that

(A.6) /0 Hy, (t,5)Ha, (t, 5)M(s) f(s)ds

(72()‘11)‘12)_1/4) /1 . (77 Aul“"”l) : (71‘ ’\zzlu_v‘)
= sm|{—-—+~y——j)smm|—+y——
4 A 17T R 17T

exp (2B p e )y )

(£)) "M ()1, (1 + 0(1)),

1
= m(f

where A}, = /\‘1/4 + )\—1/4 By substituting (A.4), (A.5) and (A.6) into (A.3), (A.1) is
then obtained. Slmllar arguments can be used to show that (A.2) also holds.

PrOOF OF (3.3). From (1.3) and (2.3), we can derive the equations

(A7) ﬁl(s)(t )\) Zzi N (ﬂl(tij)Xil - ZBll(S)(tij;A) zll) S)\t X, (t tz])

i=1 j=1 L#l
n m;
N X
ZZZN E(t’J)S)\l,Xz(t tzg) le,...,k,
i=1 j=1

where By, (5)(tij; A) = (ﬂll(s)( i3 A)— O, (ti;)). By the law of large numbers and assump-
tions Al, A3, it can be shown that

(A9 Yy Bt () o

=1 j=1
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Using the properties in Lemma 3.1 of Chiang et al. (2001), (A.8), assumption A4, and
taking expectation of the left hand side of (A.7),

(Ag) [/Bl(s)(t A) ZZ N (/Bl tz])le ZBll(s)(tzJ;)\)lel) S)\l X (t tz])}

i=1 j=1 L#l

= Br + Byy,
where

By = ElBis)(t X)) - /0 Bu(s)Gx, (¢, 5) f(s)ds(L + o(1)),

and

Bu=3 ng;jgl] | Bl 0] = 815G (9 (6)ds(1-+ o),

Let g,(t) = fol G, (t,8)Bi(s)f(s)ds. It follows by the definition of the Green function
in (3.1) and Lemma 6.1 of Nychka (1995) that

(A10)  al) -4 = (t)gi“’(t)(w o(1)) = TAAD ()1 + ().

(t)
Thus, from (A.10) and Lemma A.1, we can get

(A1) Br=E[Bis)(t; M) - (ﬂz(t) - ?% () + 0()\1)) (1+0(1))

— 3 . (4)
= (BlBuo V] - 510 + Z5800)) 1+ o(0)

and

< EXixy] (s N A @ o
(a0 B =3 S (BB s3] - (8,0 - 5800 +000) )
1+ o(1)
P (Bl (0] - 800 + 7570 ) 1+ 0(2)

Xlel
“EX7

>
1 £l
-> (BB + 75800 ) 1+ o)
)

By substituting (A.11) and (A.12) into (A.9),

(A13) E [ﬁz(s)(t A) Z N (5l(tij)Xz'l - ZBll(s)(tij;)‘)Xill) SA:,X:(t,tz’j)J

{4.4} h#

k
-3 X’X’l BB W) + 25 A0 (1) ) (1 +0(1)).
ok

=0
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Since €;(t) is a mean zero stochastic process and is independent of the covariates X, it
implies that

(A.14) [Zzl Ns2 5(tz] S/\z,Xt (t tlJ):l

1=1 j=1
Finally, from (A.13) and (A.14), the bias of ﬁ(s) (t;A) in (3.3) is obtained.

PROOF OF (3.4). Following (A.7), we can get the following equations

{l=l1.,l2}

(A.15) I1 <3z<s)(t; A)
- Z N (/Bl(tlj)Xll - ZBL’;(S) 2_77)‘) zlg) SA;,X[ (t tz]))

{i.d} lal
= I EZN 25(tl])S>\l(t,t,~j) , Vi,lp €{0,... k).
{i=l1,l2} \#=1j=1

From Lemma 3.1 of Chiang et al. (2001), (A.8), (A.10), assumptions A1-A4, and Lemma
A.1, the expectation of the left hand side of (A.15) is derived as

(A.16) E[ 11 (@(s>(t;>\)

{I1=0,12}

- Z (ﬁl(tlJ)Xﬂ - Z Bla(s) ij) A)‘le:a) S)\t X1 (t t'LJ))}
l

{11.7} la#l

{i1=l1,12}

:E{ I1 (Bws)(t;)\)—/o Bi(s)G,(t, 8) f(s)ds(1 + op(1))

£y % || Bl NG (e 5)f(s)as1 + %(m)]

I3 #l

i k
=e| I (Z E_][g)[%?(lz—ia] (313(8)(t; A) + ?(t—)ﬂf)(t)) 1+ Op(l))ﬂ

L{lzll,lz} l3=0

[ k
=5 ]I (Z %)[(;(—%l(ﬁlaw(t; A) = BBy (ML + Op(l)))}

| {1=11,12} \ls=0

k
Z ( Xllig]g{ﬁhfﬁ‘l]) Cov(Blg,(s) (t; )\),314(3) (£ X)) (1 + o(1)).
s.la
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Taking expectation of the right hand side of (A.15),

(A.17) E[ 1T (ZZN (ti5)Sn,x. (¢, t”))]=V1+V11+V111,

{i=ly,1,} \i=1 j=1
where
n my
~ [ Xu, Xu
Vi=E [Z (T\fﬁ) 62(tij)s)\11,X11 (t7tij)S/\l27Xl2 (t’ tij)
i=1j=1 Ll

n
X, Xa
Vir=E {Z (FZIIT?) &(tijy JE(Fija ) S, . xu, (885 )Say x, (8 tig )] :
i y 1 2
and
1 !
Vir = Z Z ( 2 ; ;2 2) E(tiljl)g(tisz)S)\ll’Xll (t t'i1j1)S)\127X12 (t’tiah)
{i1#42} {51,92} 1%

From assumption A4, Lemma 3.1 of Chiang et al. (2001), and Lemma A.1, it can be
derived that

1
(A18) V= % [ 0200, (19)G,, (t5)F(s)ds(1 + o(1)
_ 1 — A 1 2E[X31X2]
m—(f(t)) 8/4 (W) a?(t)(1 + o(1)),
and

_ m; 2 E[X 1X2]
(A9 Vir = ( (%) v N) (E{X_”iﬁE[%al)

[ per a6, 151G, (520 ) (s2)dssdsa(t +o(1)

=1

NagE

Since ¢;(t) is a mean zero stochastic process and is independent of the covariates X, it
implies that V;;; = 0. Substituting (A.18), (A.19), and V;r; = 0 into (A.17), we can get

(A.ZO) E [ H (Zn:zl Ns 251 13)5)\1 X1 (t tzg)>:|

{t=l1,l2} \i=1j=1

_( ElXu X
E[X}E[X;)

(;’;’;v(f(t)) Vo (t) + (Z(mz/w) ot t)) (1+0(1)).

From (A.16) and (A.20), the variance of ,B(s)(t; A) in (3.4) is then obtained.
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