
Ann. Inst. Statist. Math. 
Vol. 57, No. 4, 617-635 (2005) 
Q2005 The Institute of Statistical Mathematics 

NONLINEAR REGRESSION MODELING USING REGULARIZED LOCAL 
LIKELIHOOD METHOD 

YOSHISUKE NONAKA* AND SADANORI KONISHI 

Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, 
Fukuoka 812-8581, Japan, e-mail: konishi@math.kyushu-u.ac.jp 

(Received December 16, 2003; revised August 6, 2004) 

Abs t r a c t .  We introduce a nonlinear regression modeling strategy, using a regular- 
ized local likelihood method. The local likelihood method is effective for analyzing 
data with complex structure. It might be, however, pointed out that the stability of 
the local likelihood estimator is not necessarily guaranteed in the case that the struc- 
ture of system is quite complex. In order to overcome this difficulty, we propose a 
regularized local likelihood method with a polynomial function which unites local like- 
lihood and regularization. A crucial issue in constructing nonlinear regression models 
is the choice of a smoothing parameter, the degree of polynomial and a regularization 
parameter. In order to evaluate models estimated by the regularized local likelihood 
method, we derive a model selection criterion from an information-theoretic point of 
view. Real data analysis and Monte Carlo experiments are conducted to examine the 
performance of our modeling strategy. 

Key words and phrases: Information criteria, local maximum likelihood estimates, 
model selection, generalized linear models, regularization. 

1. Introduction 

Local likelihood est imation has received considerable a t ten t ion  as a useful technique 
for analyzing da ta  with complex s t ruc ture  (Tibshirani  and Hastie (1987), Hjort  and Jones 
(1996), Copas and Eguchi (1998), nguchi  and Copas (1998), Loader  (1999), nguchi  and 
Kim (2001), Eguchi et al. (2003), and so on). 

A local likelihood function is cons t ructed  based on first considering a paramet r ic  
model  for the unknown t rue  model. It  is defined as a locally weighted log-likelihood with 
weights determined by a kernel function and a bandwidth.  When  a large bandwid th  is 
chosen, the es t imator  is close to the max imum likelihood es t imator  and tends to have a 
large bias. On the other  hand, when a small bandwid th  is chosen, the es t imator  depends 
much on the da ta  points and tends to have a large variance. In the local modeling, 
bandwidth  plays an impor tan t  role for controling the trade-off  between bias and variance 
of the est imator  (Wand and Jones (1995), Simonoff (1996)). 

Issues still remain in construct ing nonlinear regression models based on the local 
likelihood from a finite and noisy set of data.  First,  the stabil i ty of local likelihood esti- 
mators  is not  guaranteed  in the case tha t  the s t ructure  of the system is quite complex. 
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In order to overcome this issue, we introduce a regularized local likelihood function with 
regularization parameter that controls the local likelihood function and the complex- 
ity of a nonlinear regression model. Second, the local likelihood procedure requires the 
choice of a bandwidth, the degree of the polynomial and also a regularization parameter. 
In order to choose these adjusted parameters, we derive model selection and evaluation 
criteria. These criteria are derived under model misspecification both for distributional 
and structural assumptions, which is usually the case in practice. Our modeling strategy 
can be easily applied to analyze multi-dimensional continuous data, and clear improve- 
ments are obtained for the use of the regularization parameter in the regularized local 
likelihood functions. 

This article is organized as follows. In Section 2 we describe the proposed regular- 
ized local likelihood method in the context of generalized linear models and present an 
information criterion for evaluating the estimated models. In Section 3 we describe the 
multivariate regularized local likelihood method. Section 4 includes some applications 
to real data sets and numerical results, in which we use the regularized local likelihood 
method with Gaussian and logistic models. Some concluding remarks are given in Sec- 
tion 5. 

2. Regularized local likelihood method 

Local likelihood method has both parametric and nonparametric theoretical aspects. 
Eguchi and Kim (2001) bridged a gap between these theories for the local likelihood 
method. In this paper we call regression models based on the local likelihood method 
"nonlinear" regression models, since a modeling strategy is used for a curve fitting and a 
surface fitting. We consider a nonlinear modeling strategy based on the regularized local 
likelihood method in the context of generalized linear models (Nelder and Wedderburn 
(1972), McCullagh and Nelder (1989), Green and Silverman (1994), Fan et al. (1995)). 
We first introduce the regularized local likelihood method in the case of univariate ex- 
planatory variables. 

2.1 Model 
Suppose we have n independent observations {(Yi, xi); i = 1, 2 , . . . ,  n}, where yi are 

random response variables and xi are univariate explanatory variables. It is assumed 
that the responses Yi are generated from an unknown true distribution G(y I x) with 
density 9(y [ x). Generally, a regression model consists of a random component which 
specifies the distribution of the response Y and systematic component which presents 
the structure of the conditional expectation re(x) = ElY  I x]. 

It is assumed that Y has a distribution in the exponential family, taking the form 

(2.1) / O(x)y -- b(O(x) ) 
f (Y I x) = exp + c(y, r  

L J 

where b(-) and c(., .) are known functions. Here, function 0(.) is called the canonical 
parameter and function r is called the dispersion parameter. We assume that the 
log-likelihood ~--]~i~x log f(yi  I x~) satisfies the Bartlett (1954) identities. The mean and 
variance of Y can be derived easily from the well known relations 

(2.2) re(x) = E[Y I x] = b'(O(x)), Var[Y [ x] = ~b(x)b"(O(x)), 
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where b'(.) and b"(.) are differential of first and second order respectively. In usual 
generalized linear models, the unknown regression function m(x) is modeled linearly via 
the known link function/(-): 

(2.3) l(rn(x)) =/30 +/31x. 

The function l links the regression function to a linear space of the covariates. If l ---- 
(5') -1, then I is called the canonical link function since in the case l(m(x)) is the canonical 
parameter in the exponential family (2.1). Expressions (2.2) and (2.3) characterize the 
generalized linear models. 

In some situations, the use of the linear relationship (2.3) has a problem. Trial and 
error are required in order to search for a reasonable parametric link function. So we 
use the technique with local polynomial. The aim of the local modeling approach is 
searching for a model that  describes the data well. 

Here, we focus on estimating 0(x) since estimating m(x) is equivalent to estimating 
O(x) = (b')-l(m(x)).  Assume that the function O(x) is at least p-times differentiable at 
a point x0. Then O(x) can be approximated locally by a polynomial of degree p for x in 
a neighbourhood of x0 

(2.4) O(x) ,~ O(xo) + o(~)(xo)(x  - xo) + . . .  + o(p) (xo) (x  - x o F / p !  

= ~(x0)r~(x; x0), 
where ~j (x0) = 0(J)(Xo)/j! (j = 0, 1 , . . . , p ) ,  ~(x0) = (~0(x0), Zl (x0),...,/3p(X0)) T and 
x(x; Xo) = (1, x - xo,. �9 �9 (x - xo)P) T. Then the data {Yl, Y2,.-.,  Yn} are summarized by 
a model from a class of probability densities 

(2.5) f(v~ I x~; ~(xo), r 
= exp { ~(x~ x(xi; x~ - b(cl(x~ x(xi; x~ + c(yi, r ) } ,  

where r is the dispersion parameter at Xo. 

2.2 Estimation 
The unknown parameters j3(Xo) and r in (2.5) may be estimated by maximizing 

the local log-likelihood function. However, when fitting a nonlinear model to data with 
complex structure, the local likelihood method does not yield satisfactory results. Instead 
of maximizing this function, we propose choosing the parameters 13(x0) and r to 
maximize the regularized local log-likehood function: 

(2.6) RL(Ct(Xo),r h,A) 
n 

---- ~ Wh ( Xi ; xo ) log f (Yi I xi ; /3( Xo ), r -- n)~t3( xo ) T K ~( Xo ) /2 
i = l  

_ ~ ~(z0)~x(x~; xoly~-_~(~(xol~x(x~; xol) } 
- ~ wh(x~; x0) [ r + c(v~, r 

i=l 
- n/~(xo)TKCl(xo)/2.  

The first term in the right side of the equation (2.6) is a usual local log-likelihood function, 
where Wh(X; Xo) is a weight function and we use the Gaussian kernel: 

(2 .7 )  Wh(X;Xo)=(27rh2) -1/2exp { ( x - x ~  2h 2 , x E ( -oc ,  oo). 
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h is a bandwidth which controls the smoothness of estimated curve. The second term 
in the right side of the equation (2.6) is a regularization term. Typical forms for the 
(p + 1) • (p + 1) matrix K are given in the following forms 

(2.8) P I : K =  0p T ' ' 
D k Dk 0p Ip 

where Ip is a p-dimensional identity matrix, 0p is a p-dimensional zero vector and Dk is 
a (p - k) x p matrix tha t  represents the difference operator given by 

O k  = ( (-1)~ ... (--1)kkCk 0 . . . . . .  0 ) 
0 (-1)~ ... (--1)kkCk 0 - 0 
�9 . . .  " . .  " )  " � 9  " .  " 

0 . . . . . .  0 (-1)%Co ... (-1)kkC~ 

with nCk = n! / {k ! (n  - k)!}. The A is a regularization parameter which controls the local 
log-likelihood and the complexity of the estimated model. 

The estimator ~(Xo) is obtained as a solution of ORL(/S(Xo), r p, h, A)/0/3 = 0. 
This equation is generally nonlinear in /3(xo), so we optimize /3(xo) by the iterative 
algorithm. After the estimator /~)(xo) is obtained, the estimator ~(xo) is given as a 
solution of ORL(~(Xo),  r p, h, A)/0r  = 0. Replacing the unknown parameter/3(Xo) 
and ~b(Xo) by ~(xo) and ~(Xo) respectively and noting that  parameter 0(xi) in the 
exponential family (2.1) is directly given by O(xi) -=/3(xi)Tx(x~; zi) =/3o(x~), we obtain 
the estimated model as follows 

2.2.1 Gaussian model 
We consider the following model: 

(2.10) Yi = m(x~) + si, ~i ~ N(O, a2(xi)) (i = 1 , . . . ,  n), 

where m(.) is an unknown smooth function. Then taking b(O(xi)) = O(xi)a/2, r = 
o2(zo), 

- 2  { Y~ ] /  l l o g { 2 ~ ( x o ) }  c(y~,  ~ ( x o ) )  - Y~ 1 1 
2r 2 log{27r~b(Xo)} = - 2  a--~o) J - 

and l(m(x~) ) = m(x~) = b' (O(xi) ) = O(x~) = 13(xo)T x(xi;  XO) in the exponential family 
of densities (2.5), we have a nonlinear regression model with Gaussian noise which can 
be expressed as 

(2.11) fN(Yi  [ xi;/3(xo),a2(Xo)) = {2wa2(Xo)}- l /2exp [ {Yi--  /3(xo)Tx(xi;Xo)} 2] 
2~2(x0) 

A (p + 1)-dimensional parameter/3(Xo) and an error variance a2(xo) in equation (2.11) 
are estimated by the maximization of the regularized local log-likelihood function (2.6). 
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T he n  the est imators  of /3(x0)  and a2(x0) are explicitly given by 

(2.12) /3(xo) = ( x T w x  + n C K ) - I X T W y ,  

&2(Xo) = {y  - X~(Xo)  } T W  {y  -- X ~ ( x o )  } / t r (W) ,  

where X -- ( x ( x l  ; x0) , . .  �9 X(Xn; Xo) ) T, W = diag{wh(xi; x0)}, y = (Yl, Y2, . . . , Yn) T and 
= Aa 2 is another  expression of the regularization parameter .  Replacing the unknown 

parameters /3(x0)  and a2(Xo) in (2.1t)  by their  sample es t imators /3 (x i )  and 6Z(xi), we 
obta in  the statist ical  model  

[ - 
(2.13) fN(Yi I Xi; ~(Xi),  (12(Xi)) = {27re2(xi)} -1/2 exp {Yi - ~ ( x i ) }  2 

2~r2(xi) 

The  local polynomial  ridge regression proposed by Seifert and Gasser (1996, 2000) 
may  be considerd as a special case of our regularized local likelihood method.  Moreover 
when A -- 0, the es t imator /3(x0)  in (2.12) is equivalent to the local polynomial  es t imator  
(Stone (1977), Cleveland (1979), Fan and Gijbel (1996), Loader  (1999)). 

Example 2.1. We illustrate the proposed regularized local likelihood modeling by 
fitting curve to the simulation data.  The  random samples {(y~, xi); i = 1, 2 , . . . ,  100} were 
generated from the t rue  regression model  y~ = sin(187rxi)+5x~ cos(187rxi-~r/2) +4x~ +s~, 
si ~ N(0,  0.72), where the design points xi are uniformly dis t r ibuted in [0, 1]. Figure l (a)  
shows the t rue  curve and the scat terplot  of the data. We apply the  local likelihood 
method  and the regularized local likelihood method  to the simulation data,  where we 
fix the degree of polynomial  p -- 5 since we focus on the efficiency of regularizat ion 
parameter .  A broken line in Fig. l (b)  gives the smoothed  curve for the bandwid th  
h = 0.07 wi thout  the help of regularizat ion (A = r = 0). This curve is obviously 
oversmoothed,  but  it is impossible to apply the local likelihood me thod  for a smaller 
h since the mat r ix  ( x T w x )  -1 in (2.12) is not computable  in practice. A solid line 
in Fig. l (b)  gives the smoothed curve for the bandwidth  h = 0.015 with the help of 
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Fig. 1. Comparison of the true curve and the smoothed curves with p = 5. (a) shows the true 
curve y : sin(18~rx) + 5xcos(18~rx - 7r/2) + 4x and the scatterplot of the data. (b) shows the 
smoothed curve for the local likelihood methods with h ---- 0.07 (broken line) and the smoothed 
curve for the regularized local likelihood methods with h -- 0.015 and ~ = 10 -s (solid line). 
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regularization, where we use the regularization parameter ~ = 10 -s .  This curve gives a 
good representation of the underlying function over the region [0, 1]. We observe that by 
appropriate choice of h and ~, our nonlinear regression modeling strategy can capture 
the true structure generating the data for large p. 

2.2.2 Logistic model 
Let Yl, Y2,.. . ,  Yn be independent sequences of binary random variables taking values 

of 0 or 1 with conditional probabilities Pr(yi = 1 [ xi) -- 7r(xi) and Pr(yi = 0 [ xi) = 
1 -7c(xi),  where xi are univariate explanatory variables. Taking O(xi) = log[Tr(xi)/{1 - 
7r(xi)}], b(O(xi)) = log[1 + exp{0(x~)}], r = 1, c(y~,r = 0 and l(m(xi)) = 
log[m(xi)/{1 - m(xi)}] = O(xi) = j3(xo)Tx(xi; Xo) in (2.5), we have a nonlinear logistic 
regression model as follows 

(2.14) fL(Y  I f (XO)) = XO) {1 - 7r(xi; XO)} 1-y'  , 

where 

(2.15) 
exp{13(xo)T x(xi; XO)} 

7r(xi; Xo) = 1 + exp{~(xo)Tx(xi; xo)}" 

The unknown parameter vector/3(x0) is estimated by maximizing the regularized local 
log-likelihood (2.6), where the matrix K is given by P2 in equation (2.8). Then we can 
obtain the estimated model as follows 

(2.16) fL(Yi I xi,~(xi)) = #(xi;xi)Ui{1 - ~ ( x i ; x i ) }  1 - y i  (i = 1,.. .  ,n), 

where ~r (xi; xi) = exp {~0 (xi) } /[1 + exp{r (xi) }1 is the estimated conditional probability. 
Nonlinear regression models based on the regularized local likelihood method depend 

on a bandwidth h, the degree of polynomial p and a regularization parameter A. In the 
next subsection we derive a model evaluation criterion for nonlinear regression models 
estimated by the regularized local likelihood method. 

2.3 Model selection 
Suppose that we observe a realization of a random variable with distribution as 

defined in Subsection 2.1. We recall that the statistical model f (y  [ x, ~(x), ~(x)) defined 
in (2.9) is constructed within the generalized linear model framework. We want to assess 
the closeness of f (y  I x, ~(x), ~(x)) to the true model g(y I x) from a predictive point of 
view. 

Konishi and Kitagawa (1996) proposed a model selection criterion as an estimator 
of the Kullback-Leibler information between the true model and the estimated model. 
As shown in the Appendix, we can obtain an information criterion to evaluate the es- 
timated model f(Yi [ xi, ~(zi), r in (2.9) with (p + 2)-dimensional parameter esti- 
mator 0(x) = (~(x) T, ~(x)) T. The information criterion based on the regularized local 
likelihood method with the exponential family is given by 

(2.17) GICh p')' = -2  ~ ~ [3~ - i=1 ( ~-~,e.x~ + c(yi, ~(xi)) } 

2 '~ + -  tr{- (xd-lQ(xd}, 
n 

i=1 
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where we use the following notations: 

(2.18) 

Q(x) - 1 
n~(x) 

-A(2)X/~(x) - AK~(x) ITAX 
pTA(1)T 

AO)p - ~(x) )~K3(x) l~p  ] 
~ ( x ) v ~ w p  j ' 

R(x) - 1 x T w F x  + n~(x))~K AO)ln/~b(x) 1 
n~b(x) 1TAO)T/~b(X) - -r  ' 

.J 

A (k) = X T W A  k, A = diag{yi - b'(~(x)Tx(xi; x))}, 

F = diag{b"(~(x)Tx(xi; x))}, 

P = ( P l , P 2 , . . . , P n )  T, q -- (q l ,q2 , - . . , q~)T ,  

In = (1, 1 , . . . ,  1) T (n x 1), 

~ ( x ) ~ ( x ~ ;  x)y~ - b ( ~ ( x ) ~ x ( ~ ;  ~)) Oc(y,, r  
P~ = ~(x)~ + 0 r  

r 

We select a bandwid th  h, the degree of polynomial  p and a regularization parameter  A 
which minimize the information criterion (2.17). 
2.3.1 Gaussian model 

Using the equations (2.17) and (2.18), we can obtain the  information criterion for 
the  es t imated Gaussian model  fg(Yi ]x~; ~(xi), 52(x/))  in (2.13) as follows; 

(2.19) GICh,p,~ = ~ llog{2~5-2(x{)} -/3o(zi)} 2 ] + 
,=1 L ~2(x,) j 

2 n 
+ - E t r{R(x~)-~Q(xi)} ,  

n 
i=1  

1 
Q(x)- n~4(x) 

[ A(~)X _ )~b2(x)Kh(x)ITAX , ~(3) 1A(1)-I ] 
X | I_.~__ITA(3)T __ l lTA(1)  T 1 T 4 1 t r (W)  J ' 

k 25"2(x) *n`~N 2 * n ' ' N  4a4(x) l n A N  w ] ' n  -- ~ 

R(x) - 1 [ x T W X  + na2(x) AK - - 1  A ( 1 ) I 5 2 ( x )  ~'N ~n ] 

n52(x) | __j_l .1TAO)T 1 t r (W)  ' 
L ~:(~) ~ ~N 2a:(~) 

where A ~  ) = xTWAkN and AN = diag{yi - ~(x) Tx(xi; x)}. 
2.3.2 Logistic model 

In the case of the es t imated logistic model fL(Yi ]xi,/3(x~)) in (2.16), we can obtain  
the information criterion as follows; 

(2.20) GICh,p,~ -- - - 2 E l o g f L ( y i  I~ ,3(x~) )  + -  tr(R(x~)-lQ(~)}, 
n 

i=1  i=1  
n 

1 E { y  i _ ~(x / ;x )}  ~)(x) = 
i = 1  

~x O%(y~, r ~(~) q~ - ~ / { 3 ( x ) T x ( x ~ ;  x)y~ - b (3(x)~x(x~;  x))}  + ~ - ~  �9 
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• [w~(z~; x){y~ - ~(x~; x)}~(~; x) - ~K3(x)]~(z,; x) ~, 
n 

~(x) = _ 1  ~ [ w ~ ( ~ ;  x)~(~; ~){1 - ~(x~; x)}~(x~; x)x(~; ~)~ - ~K], 
n i= l  

where #(xi; x) = exp{~(x)T x(xi; x)}/[1 + exp{~(x)T x(xi; X)}]. 

3. Multivariate regularized local likelihood method 

In this section, we describe the regularized local likelihood method for the case of d 
explanatory variables. 

3.1 Model and estimation 
Suppose we have n independent observations {(y~, x~);i = 1, 2 , . . . ,  n}, where y~ 

are ramdom response variables and xi = (X~l, x i2 , . . . ,  Xid) T are d-dimensional explana- 
tory variable vectors. It is assumed that the conditional distribution of Y, given x = 
(Xl, x2 , . . . ,  Xd) T, belongs to the exponential family which is given by replacing x with 
x in (2.1). The parameters 0(.) and r are related to the conditional mean and condi- 
tional variance similarly to the single covariate case. 

Assume that the function O(x) is differentiable at a point x0. Then O(x) can be 
approximated locally by a polynomial of degree 1: 

O0(x0), f l ,  (3.1) O(x) ~ O(xo) + ~ x T  LX -- Xo) = (xo)Tx*(x; XO), 

where/3*(x0) = (~(~(x0), ~ ( X o ) , . . . ,  ~ ( X 0 ) )  T, /~(~(X0) = 0(~g0), /~;(X0) ---- 00(XO)/(~Xj 
(j = 1, 2 , . . . ,  d) and x*(x; Xo) = (1, (x - xo)T) T. More generally, approximation (3.1) 
can be expanded to the higher order term (see Ruppert  and Wand (1994)). But we use 
approximation (3.1) in order not to increase the number of unknown parameters. 

Then the data {Yl, Y2, �9 �9 �9 Yn} were summarized by a model from a class of probabil- 
ity densities f(Yi ] xi; ft*(~0), r which are expressed by (2.5). We propose choosing 
unknown parameters/3"(~o) and r  to maximize the regularized local log-likehood 
function 

(3.2) RL(I~* (Xo), r H, A) 

---~WH(Xi;XO){ ~*(x~176176176 i=1 ~D (-~-0) 

+ c(~, r  
J 

- nAfl*(xo)TKf~*(xo)/2. 

The weight function WH(ggi; X0) is the Gaussian product kernel: 

Kd(H-I (x  - Xo)) d ( 
(3.3) WH(X;Xo) = idet(H)] , Kd(U) = (27r) -d/2 H exp ~,--lu2"~ 

j=1 2 ] '  

where a matrix H is a p x p nonsingular bandwidth matrix. We use H = hid, where 
Id is a d-dimensional identity matrix and h is a bandwidth. The regularization term is 
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given by equation: 

(3.4) 
0 0F] 
0d IdJ 

where 0g is a d-dimensional zero vector. 
The estimators ~* (x0) and r  are obtained by the iterative algorithm. Replacing 

the unknown parameters f~* (x0) and r by ~* (x0) and ~(x0) respectively and noting 
that the parameter 0(xi) in the exponential family f(Yi I xi;/Y*(x0), r is directly 
given by 0(xi) = fF(xi)Tx*(xi; xi) ----/3~(xi), we obtain the estimated model: 

(3.5) f(Y~ l X~'~*(x~)'~(x~)) = exp { ~)(x~)y~- b(~(x~)) -t-c(Y~' ~(x~)) I 

Example 3.1. We illustrate the proposed regularized local likelihood modeling by 
fitting surface to the simulation data. The random samples {(y~, x~); i = 1, 2 , . . . ,  300} 
are generated from the true model Yi = sin(5~rXil) + cos(27rxi2) + ei, ei ~ N(0, 0.12), 
where the design points Xil and xi2 in xi = (xil,xi2) T are uniformly distributed in 
[-1, 1]. Figure 2 shows the true surface, where Xl, x2 in x = (xl,x2) T and y are 
expressed as X-, Y- and Z-axis respectively. We apply the local likelihood method and 
the regularized local likelihood method to the simulation data  respectively, to examine 
the effectiveness of the regularization parameter r -- /~6r 2, where we use the Gaussian 
model. Figure 3(a) shows the estimated surface for the bandwidth matrix H = h •  
(h -- 0.07) without the help of regularization ()~ = r = 0). This surface is obviously 
undersmoothed in the boundary region. We use a large bandwidth h = 0.1 and the 
corresponding estimated surface is given in Fig. 3(b), but the fitting in the boundary 
region cannot be improved. This result implies that the estimated surface is unstable in 
the boundary region. Figure 3(c) shows the estimated surface for the bandwidth h -- 0.07 
with the help of regularization (r = 10-3). This surface gives a good representation of 
the underlying function over the boundary region. Figure 3(d) shows the four curves for 
the true and estimated surfaces in the boundary region (x2 -- -1) ,  where the solid line 
in Fig. 3(d) is the true model, the broken line in Fig. 3(d) is the local likelihood model 
(h = 0.07), the dotted line in Fig. 3(d) is the local likelihood model (h -- 0.1) and the 

ca 

vao 

o, 

o, 

Fig. 2. True surface y = sin(57rXl) + cos(27rx2). 
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Fig. 3. Comparison of the estimated surfaces. (a) and (b) show the est imated surfaces for 
the local likelihood method with h ---- 0.07 and h ---- 0.1 respectively. (c) shows the est imated 
surface for the regularized local likelihood method with h ---- 0.07 and ~ = 10 - 3 .  (d) shows the 
four curves for the true and estimated surfaces in the boundary region (x2 = - 1 ) .  

thick line in Fig. 3(d) is the regularized local likelihood model (h -- 0.07, ~ = 10-3). In 
this figure, the thick line gives the most appropriate estimate of the true model since 
this gives a stable sine curve. 

In Section 2, the local likelihood method may cause the instability of estimator for 
large degrees of polynomial p. In multivariate case, this issue may be occurred for large 
number of explanatory variables d. 

3.2 Model selection 
The crucial issue is how to choose a bandwidth matrix H and a regularization 

parameter ~. We derive an information criterion to evaluate the estimated model in 
(3.5). Similarly to the way in Subsection 2.3, we obtain the information criterion based 
on the multivariate regularized local likelihood method by n{ } 
(3.6) cIc.,  

i = 1  
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where 

1 
- 

+ ~ E tr{R(x,)-l(~(x,)}, 
i=1  

pTA(')T ~(~)pTWp " / '  

] n~)(x) 1TA(1)T/(~(X) - -~(x)qTWln ' 

A (k) = x T W A  k, X = ( X * ( X i ;  X ) , . . .  , ~ * ( X n ; X ) )  T ,  W --- diag{wu(xi;x)). 

The notations A, F, p and q are given by (2.18), where we use ~*(x)Tx*(xi; X) and 
~(x)  instead of ~(x)Tx(xi; x) and ~(x) respectively. We select a bandwidth matrix H 
and a regularization parameter A which mininize the information criterion (3.6). 

We give the information criteria in the case of Gaussian and logistic models. 
3.2.1 Gaussian model 

We use the Gaussian regression model fN(Yi [ xi; ~*(xi) ,  &2(xi)) in (2.13), where 

the estimators ~*(Xo) and 52(Xo) are given by 

(3.7) ~*(x0) = (X T W X  + n~Q)-lX T Wy,  

52(x0) = {y - X~*(xo)} T W{y  - X~* (xo)}/ tr( W). 

Then we obtain the information criterion for the estimated Gaussian model as follows; 

(3.8) GICH,;~ = s [log{2~-~2(xi)}+ { Y i - ~ ( x i ) } 2 1  2 n 
i = 1  ~ ' ~  J + --n Ei=l tr(R(xi)-lO(wi)}' 
1 

O(x)- n54(x) 
[~T(x)A(2N)X--)~52(z)Kf~(X) ITANX ~ 1  A(3)1  - -1A(1)" I N  n 2 " ' N  ~n 

X 1 ~T a(3)T 1 ~T a(1)T 1 1 T A  4 1 t r ( W )  ' 
~ ' n ' ~ N  -- -~J 'n~N ~ n N w l n  -- "~ 

1 [ x T W X + n o 2 ( x ) A K  1__ .4(1)1 1 

where A~ ) = X T WAkN and AN = diag{yi - ~*(x)Tx*(xi; X)}. 
3.2.2 Logistic model 

In the case of logistic model, we can obtain the information criterion as follows 

Tt ^$ 2 Tt 

(3.9) GICH,,X ---- --2 ElOgfL(yi  I ~ , ~  (~)) + - E tr{R(xi)-l(~(xi)}, 
n 

i =1  i=1  
n I Z{Y~-  *(~'; ~)} Q(~) = 

i=1  

• [~.(~;  ~){y~ - ~(~; ~)}~*(~; ~) - ~K3*(~)]~*(~; ~)~, 
n 

R(~) = _1 E[~ . (~ , ;  ~)~(~,; ~){1 - ~(~; ~)}~*(~,; ~)~*(~; ~)T - ~K], 
n 

i = l  
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for the estimator ~* (x) which maximizes the regularized local likelihood function (3.2), 

where ~(xi; x) = exp{~*(x)Tx*(xi;  X)}/[1 + exp{~*(x)Tx*(Xi; ~)}] and fL(Yi ] xi,  
f3*(xi)) : #(xi;  xi)Y'{1 -- ~(X,; xi)} 1-y'. 

4. Real examples and numerical results 

In this section we use a real data example and Monte Carlo simulations to investigate 
the performance of the regularized local likelihood modeling. 

4.1 Summer rainfall data 
We apply the proposed modeling procedure to the rainfall data in Kagoshima. In 

general, investigators in national meteorological observatories observe the sky at fixed 
times. For example, when they observe the clouds, they look out over the sky and 
observe the rate of the clouds which is called "cloud amount". They classify the weather 
condition as "Blue Sky" or "Cloudy". However, a weather condition such as "Rain" does 
not relate to cloud amount directly. Therefore, we investigate the relationship between 
cloud amount and "Rain" using our nonlinear modeling procedure. 

We use the data {(Yi, xi); i = 1, 2 , . . . ,  92}, where Yi are the binary response variables 
having the value 1 (if the wheather is "Rain") or 0 (otherwise) and x~ E [0, 10] are the 
average daily cloud amounts. These variables were observed in Kagoshima from June, 
2001 to August, 2001. We apply our nonlinear logistic regression model in (2.16) to 
this data and select the bandwidth h, the degree of polynomial p and the regularization 
parameter A by minimizing GIC in (2.20). 

Figure 4(a) shows the minimum GIC with respect to the bandwidth h, where the 
degree of polynomial p -- 3 and the regularization parameter A -- 1.00 • 10 -7. We observe 
that the optimal bandwidth is h - 2.5, and show the estimated curve in Fig. 4(b). In 
general, we tend to predict the probability of precipitation that is higher as the cloud 
amount increases. The estimated curve is not monotone increasing, since the probability 
of precipitation is influenced by cloud types in addition to the cloud amount. 

We examine the relationship among cloud amount, humidity and "Rain" using our 
nonlinear regression modeling. We use the data {(Yi, xi); i : 1, 2 , . . . ,  92}, where xi -- 
(x~l, xi2), xil are the average daily cloud amounts and xi2 are the average daily values 

~.O 25  h 30  3~  40  

J 

o o o  o o o ~ o  o o ~  o o o  o o ~  ~ 0 ~ o  

2 4 e 8 lO 

(~) (b) 

Fig. 4. (a) The relationship between the bandwidth  h and GIC with the number of polynomial 
p ---- 3 and the regularization parameter  A = 1.00 • 10 -7 .  (b) The smoothed  curve based on the 
regularized local likelihood model and GIC (~t = 2.5, ~ = 1.00 • 10-7).  
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of humidity. The data were observed in Kagoshima from June, 2001 to August, 2001, 
respectively. We apply our nonlinear logistic regression model to this data and select the 
bandwidth matrix H and the regularization parameter A by minimizing GIC in (3.9). 
We use H = hi2 (12 is 2 x 2 identity matrix) as the bandwidth matrix. 

Figure 5(a) shows the minimum GIC with respect to the regularization parameter 
A, with the optimal bandwidth. We select the optimal bandwidth h = 0.11 and regu- 
larization parameter A = 3.16 x 10 -5, and show the corresponding estimated surface in 
Fig. 5(b). We observe that the probability of precipitation is influenced by the humid- 
ity rather than the cloud amount, however the relationship between the humidity and 
the probability of precipitation is not monotonic. We conclude that the other factors, 
such as the atmospheric pressure and the sort of clouds, may influence the probability 
of precipitation. 

Figure 6 shows the result of the nonlinear logistic regression model for the data 
{(y~, x~);i = 1, 2 , . . . , 9 2 }  observed in Niigata from June, 2001 to August, 2001. Fig- 
ure 6(a) shows the minimum GIC with respect to the regularization parameter A for the 
optimal bandwidth, and (b) shows the estimated surface (h = 0.1, A = 1.00 x 10 -4) 

2 
O.QGO0 O00G~ 00004 0.00~6 OOCOe 0(]010 

(a) (b) 

Fig. 5. (a) The relationship between the regularization parameter A and GIC with the optimal 
bandwidth h. (b) The smoothed surface based on the regularized local likelihood model and 
GIC (h = 0.11, s = 3.16 x 10-5) .  

- 

O.C~O0 0 .00~  00004 0(:006 Q(X~6 OD010 

Q~ 

(a) (b) 

Fig. 6. (a) The relationship between the regularization parameter A and GIC with the optimal 
bandwidth h (in Niigata). (b) The smoothed surface based on the regularized local likelihood 
model and GIC (h = 0.1, A ---- 1.00 x 10-4) .  
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based on the regularized local likelihood method and GIC. It is clear that the estimated 
surface varies according to the locality where the data were observed, by comparing 
Fig. 5(b) with Fig. 6(b). This difference of the estimated surfaces may be caused by the 
property of summer climate in each place. In this example, Kagoshima is located in the 
Pacific coast, while Niigata is located in the coast of the Sea of Japan. The probability 
of precipitation in Kagoshima is related to the humidity because of the large influence 
of rain shower and typhoon. Conversely, the probability of precipitation in Niigata is 
related to the cloud amount because of the small influence of rain shower and typhoon. 

4.2 Monte Calro simulations 
Monte Carlo simulations were conducted to investigate the performance of the 

nonlinear modeling strategy based on the regularized local likelihood method. For 
the simulation study, repeated random samples {(Yi, xi);i -- 1, 2 , . . . , n }  were gener- 
ated from the true regression model Yi = m(x~) + e~, where xi -- (X~l, x~2) T and 
the design points xil,xi2 are uniformly distributed in [-1,  1]. The errors 6i are as- 
sumed to be independently distributed according to a mixture of normal distributions 
rN(O, (0.5Ry) 2) + (1 - r)N(0,  (0.1Ry)2), where Ry is the range of re(x) over x and 
r = 0.1, 0.5. For the true curve re(x) we consider the following function: m(x~) = 
sin(27rx,1)/2 + cos(47rx~2)/2. 

We fit the nonlinear regression model with Gaussian noise defined by (2.13) to the 
simulated data. The model is estimated by the maximization of the local log-likelihood 
function and the regularized local log-likelihood function (2.6). The values of the band- 
width matrix H -- hi2 and the regularization parameter ~ are chosen as the minimizers 
of the criteria GIC and Modified AIC given by 

2 ~i=1 [ l~ + {Yi -  ~*(xi)Tx*(Xi;~U(X~) xi)}2- + 2 tr(S), MAICH,~ 

where S is the n• smoother matrix (Hastie and Tibshirani (1990)) given by ( s ( x l ) , . . . ,  
s(xn)) T with s(xi) = [ e T X { X  T W X  + n~Q}- IX  T W]T and ei are the n-dimensional 
vectors having the value 1 in the i-th entry and zero elsewhere. The cross-validation 
(CV) and the generalized cross-validation (GCV) were also used for the choice of the 
adjusted parameters. These criteria were examined by comparing the mean squared 
error: 

n 

MSE = 1 V ~ i ~ . l x  ~Tx.(X 
i----1 

and the standard deviations (SD) of the selected h and A. 
Tables 1 and 2 compare the MSE between the true and estimated functions, in which 

the fitted functions are obtained by averaging over 100 repeated Monte Carlo trials so 
we set this as AMSE; h and )~ in each table are the averages of optimal h and )~, and 
(SD) is the standard deviation of h and A. In the case where n = 100 and r = 0.1 in 
Table 1, RLLM & GIC and RLLM &: GCV are superior to other methods in the sense of 
decreasing MSE. In the other cases where r = 0.5 in Table 2, LLM ~z GIC and RLLM 
GCV are superior to other methods in that sense. Moreover, the selected models based 
on GIC are more stable since the optimal h has smaller variance than the use of CV and 
GCV. This implies that the proposed modeling procedure gives the fitted functions that 
capture the true structure in practical applications. 
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Table  1. The  resul t  of  t he  surface when  r = 0.1. 
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LLM G I C  M A I C  C V  G C V  

h 0.119 0.063 0.126 0.096 

(SD) 0.015 0.008 0.034 0.014 

A M S E  • 104 395 331 454 314 

(SD) 1.03 • 10 - 2  5.72 • 10 - 3  2.28 • 10 - 2  5.95 • 10 -3  

RLLM G I C  M A I C  C V  G C V  

h 0.076 0.054 0.088 0.080 

(SD) 0.009 0.002 0.024 0.014 

A 4.58 x 10 - 1  8.40 x 10 - 3  3.66 • 10 - 2  8.56 • 10 - 2  

(SD) 5.05 • 10 - 2  2.51 x 10 - 2  7.46 x 10 - 2  1.08 x 10 -1  

A M S E  x 104 291 355 299 292 

(SD) 4.02 • 10 - 3  5.36 x 10 - 3  5.57 x 10 - 3  4.98 x 10 -3  

Table 2. The  resul t  of t he  surface when  r = 0.5. 

LLM G I C  M A I C  C V  G C V  

h 0.123 0.064 0.205 0.170 

(SD) 0.017 0.007 0.065 0.055 

A M S E •  104 1183 1971 1348 1283 

(SD) 2.21 • 10 - 2  3.34 • 10 - 2  2.51 • 10 - 2  2.84 • 10 -2  

R L L M  GIC M A I C  CV G C V  

h 0.084 0.051 0.154 0.134 

(SD) 0.014 0.002 0.062 0.042 

A 3.53 • 10 - 2  7.22 x 10 - 5  1.89 x 10 - 2  2.20 • 10 - 2  

(SD) 7.65 x 10 - 3  1.50 x 10 - 4  1.59 • 10 - 2  1.49 x 10 - 2  

A M S E  x 104 1232 2185 1241 1186 

(SD) 2.34 • 10 - 2  3.45 x 10 - 2  3.03 x 10 - 2  3.24 x 10 -2  

Figure 7 shows the comparison between GIC and MAIC, where we use the reg- 
ularization parameter ~ = 10 -5. Figure 7(a) indicates the relationship between the 
bandwidth h and the log-likelihood term given by 

i=1 (~2 ( ~ i )  ' 

which is a monotone increasing function with respect to the bandwidth h. Figure 7(b) 
shows the comparison between GIC and MAIC with respect to the corrected bias terms, 
where the dotted line indicates the bias of MAIC and the solid line the bias of GIC. The 
biases present a monotone decrease function with respect to the bandwidth h. Figure 7(c) 
shows the results for GIC and MAIC. In the case of MAIC, the optimal bandwidth tends 
to be too small to select as shown in Fig. 7(c), since the estimator may be incomputable 
for smaller values of h. On the contrary, GIC always selects the optimal bandwidth as 
in Fig. 7(c), and has smaller variance than the cases of CV and GCV. 

Nonaka et al. (2003) examined the efficiency of our proposed method through a 
Monte Carlo simulation for the one-dimensional explanatory variable x. 
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Fig. 7. (a) The  re la t ionship between the  b a n d w i d t h  h and  the  log-likelihood t e rm wi th  the  
regularizat ion pa rame te r  ~ --= 10 -5 .  (b) The  relat ionship be tween the  bandwid th  h and  the  
corrected bias term.  The  dot ted  line expresses the  bias of MAIC and  the  solid line expresses 
the  bias of GIC. (c) The  relat ionship between the  bandwid th  h and  the  informat ion cri terion 
(IC). The  do t t ed  line expresses the  value of MAIC and  the  solid line expresses the  value of 
GIC. 

5. Concluding remarks 

The main aim of this paper was to introduce the regularized local likelihood method 
in constructing a nonlinear regression model; determining a set of kernel function with 
bandwidth, estimating the unknown parameters by regularization and then evaluating 
the constructed model to select a suitable one. The estimated curve based on the local 
likelihood method tends to be unstable for a small bandwidth h and a higher degree 
of polynomial p. In particular, the estimated surface can not be calculated for a small 
H = hid  in the multivariate case. We proposed the nonlinear regression modeling 
procedure based on the regularized local likelihood method in order to obtain a stable 
estimator, and derived a model selection criterion for evaluating constructed models from 
an information-theoretic point of view. 

We applied the regularized local likelihood method to summer rainfall data and 
simulated data. We observed that  our method is effective in constructing nonlinear 
regression models for the multivariate data, and that  the proposed strategy using the 
information criterion GIC yields stable parameter estimates. It may be applied to con- 
struct Gaussian, logistic and Poisson nonlinear regression models, and provides a tool 
to draw information about the system under consideration from a finite and noisy data 
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set. We would recommend implementing nonlinear regression modeling based on the 
regularized local likelihood method, using the information criterion GIC. 
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Appendix: Derivation of the information criterion 

We derive an information criterion to evaluate models estimated by the regularized 
local likelihood method. 

Suppose that zl, z2 , . . . ,  zn are future observations for the response variable Y drawn 
from g(y [ x). Let f (z  [ X;O(X)) = [L~=I f(z~ [ xi;~(xi),r and g(z I X) -- 
I-L~=I g(z~ [ x~). An information criterion may be derived as an estimator of the Kullback- 
Leibler information (Kullback and Leibler (1951)) 

(A.1) KL{g, f} = EG(zix)[logg(z I X)] - Ea(zpx)[logf(z ] X; 0(X))] 

conditional on 0(X) = (/3(X) T, ~(X)) T. 
The first term in the right-hand side of equation (A.1) is constant over all models 

and only the second term 

(A.2) Ea(z,x)[logf(z I X;O(Xo))] = f logf(z I x;O(xo))dG(z Ix), 

is relevant. Hence, instead of minimizing the Kullback-Leibler information (A.1), we 
maximize the expected log-likelihood (A.2) that depends on the unknown true distribu- 
tion G(z I X). An estimate of the expected log-likelihood is the log-likelihood 

(A.3) ~ log f(Yi ] xi; 0(x0)), 
i=1 

obtained by replacing the unknown distribution G(z ] X) by the empirical distribution. 
Then the bias of the log-likelihood in estimating the expected log-likelihood is given by 

b (a )  = Ea(ulX)[log f (y  I X; b(x0)) - EG(z,x)[log f ( z  I X; b(x0))]]. 

Konishi and Kitagawa (1996) considered an asymptotic bias for a statistical model 
with functional estimators and gave the bias by a function of the empirical influence 
function of estimators and the score function of a specified parametric model. It may 
be seen that the regularized local likelihood estimator 0(x0) = (~(Xo) T, ~/)(XO)) T c a n  be 
expressed as 0(x0) = T(G) for the functional T(.) defined by 

(A.4) f ~---o{Wh(X;xo)logf(z I x;O(xo))- ;~f~(xo)TKf~(xo)/2} T(C)dG(z)=0, 

where G and G are respectively the joint distribution of (x, y) and the empirical distribu- 
tion function based on the observed data. Replacing G in (A.4) by Ge -- (1-E)G+eS(v,x) 
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with 5(u,~ ) being a point of mass at (y, x) and differentiating with respect to ~ yield the 

influence function of the regularized estimator O(xo) = T(G) in the form 

(A.5) T(I)(z l x;C) 

= R(G)-lO{Wh(X; xo)log f ( z  I x; O(xo)) - Aj3(xo)TK~(xo)/2} 
T(G) ~ 

where 

OOO0 T dG(z), 

with a(z [ x; O(xo)) = Wh(X; Xo) log f(z I X; O(xo)) -- A~(xo)TKj3(Xo)/2. 
It follows from Theorem 2.1 in Konishi and Kitagawa (1996) (see also Konishi 

(1999)) that the bias is asymptotically given by D(G) = tr{R(G)-IQ(G)} + o(1/n), 
where 

Q ( G ) :  f { OA(zlx;O(x~ 0logf(zlx;O(xo))}ooT T(G)dG(z). 

By replacing the unknown distribution G by the empirical distribution G, we have an 
information criterion 

~b 

(A.7) GICh,p,:~(xo) = - 2 E l o g  f(yi  I xi; O(x0)) + 2 t r{R(G)-IQ(G)}.  
i=1 

where 

Q(~) = 1 ~ { OA(yi I xi;O(xo))Ologf(yi I xi;O(xo)) 

n i=1 [ O000T 

It might be noticed here that the information criterion based on the local method 
has two problems: the information criterion GICh,p,),(Xo) in (A.7) depends on the point 
x0, and this method assesses the closeness of f(y I x; 0(x0)) to the model g(Y I x) for a 
fixed point x0. In order to assess the closeness of f(y I x; O(x)) to the model 9(Y ] x), we 
modify the information criterion (A.7) in the following: 

n n 

(A.8) GICh,pA = - 2  Z l o g f ( y i  I xi;O(xi)) + 2 E tr{[~(xi)-lQ'(xi)}' n 
i -~ l  i = 1  

where we replace Q(G) and R(G) with Q(x0) and -~(x0), respectively. For the problem 
of choosing among different models, we select the model for which the value of the 
information criterion GICh,pA is smallest. 

Irizarry (2001) proposed the use of a weighted version of the Kullback-Leibler in- 
formation and derived the model selection criterion WAIC. That assesses the closeness 
of f(y [ x; t~(x0)) to the model g(y [ x) for a fixed point x0. 
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