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A b s t r a c t .  Although statistical process control (SPC) techniques have been focused 
mostly on detecting constant mean shifts, dynamic and time-varying process changes 
frequently occur in the monitoring of feedback-controlled and autocorrelated pro- 
cesses. In this research, the performances of cumulative score (Cuscore), generalized 
likelihood ratio test (GLRT), and cumulative sum (CUSUM) charts in detecting a 
dynamic mean change that finally approaches a steady-state value are compared. 
Theoretical results in average run length (ARL) comparison are provided. From the 
theoretical study we find that, when the steady-state value is greater or less than a 
critical value, R5/2 + 5/2, the Cuscore and CUSUM charts have a different perfor- 
mance in detecting the mean change. We prove also that the GLRT has the best 
performance among the three charts in detecting any mean change for which the 
steady-state value is not equal to 5 or 5R, when the in-control ARL is large. 

Key words and phrases: Statistical process control, change point detection, average 
run length. 

1. Introduction 

The  impor tance  of stat ist ical  process control  (SPC) techniques in qual i ty improve- 
ment  is well recognized in industry.  Current ly  most  compet i t ive  manufac tur ing  com- 
panies are implement ing SPC in various applications.  Al though SPC techniques are 
popular ,  the  current  methods  have been focused most ly  on moni tor ing and detec t ion  of 
constant  shifts in the mean. SPC methods  for detect ing dynamic  mean  changes, i.e., 
non-constant  t ime-varying shifts in the  mean, have not  been thoroughly  studied.  Th e  
detec t ion of dynamic  mean changes is par t icular ly  impor t an t  in moni tor ing  autocorre-  
lated or feedback-controlled processes where dynamic  pa t te rns  in the  mean  shifts are 
usually observed. The  main purpose of this paper  is to present  some theoret ical  results 
on the per formance  of conventional  moni tor ing and detec t ion methods  under  the  situa- 
t ion wi th  a dynamic  mean change tha t  approaches a stable value (i.e., a s teady state) .  
Two mot iva ted  examples on au tocor re la ted  processes and feedback-control led processes 
are i l lustrated in Section 2. In Section 3, the cumulat ive score (Cuscore),  generalized 
likelihood rat io test  (GLRT) ,  and cumulat ive  sum (CUSUM) charts,  wi th  correspond-  
ing no ta t ion  are briefly outlined. The  est imat ions and comparisons of the  average run 
lengths (ARLs) of the  three  tests  in detect ing dynamic  mean  changes when the in-control  
ARL is large, are given in Section 4. Section 5 contains some numerical  s imulat ion re- 
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sults which illustrate the detection performance of the three tests. The proofs of the 
theorems in this paper are shown in Section 6. Conclusions and problems for further 
study are discussed in the last section. 

2. Motivating examples 

2.1 Processes with feedback control 
Many sophisticated manufacturing processes are equipped with feedback control for 

short-term variation reduction. However, as discussed in Box and Lucefio (1997), for 
long-term process improvement, SPC techniques are still needed to detect the out-of- 
control problems related to assignable causes. Currently most SPC charting techniques 
treat the feedback-controlled process essentially as a black box. They are applied primar- 
ily to the process output after feedback control and are often ineffective as the dynamic 
information contained in the control schemes is ignored. Keats et al. (1996) gave a com- 
prehensive illustration of monitoring output deviation from target for three commonly 
used feedback controllers: Proportional-Integral-Derivative (PID), Proportional-Integral 
(PI), and Integral (I) controllers. Tsung and Tsui (2003) further indicated that  although 
the mean shift in the original process is constant, the actual mean shift in the output 
of the feedback-controlled process changes over time depending on the feedback control 
compensation. 

Here we use a throttle position sensor (TPS) assembly process as an example that  
was used to demonstrate the applicability and efficiency of a monitoring strategy by 
Tsung et al. (1999). The TPS is a potentiometer, mounted on the throttle body of a 
vehicle, which detects the opening of the throttle plate and sends this information to 
the power train control module. The process outputs are the rotor-end play readings 
(i.e., the distances between the potentiometer arms and the substrates) collected from 
a TPS assembly process of an automotive supplier. The variability of the rotor-end 
play may cause mal-function of the TPS. For example, large rotor-end play will cause 
open circuit conditions, while small rotor-end play will cause "sticking" of the TPS when 
the potentiometer arm inside comes in contact with the underlying substrate. Thus, to 
reduce process variation, it is necessary to control the rotor-end play by adjusting the 
screw heights of the press via feedback control such as MMSE. It is also important to 
monitor the feedback controlled process using SPC for long-term process improvement. 

The output of the MMSE feedback-controlled process, i.e, the rotor-end play read- 
ings in this case, can be represented as 

ek = ak + N'fk, 

where ak's are independent and identically distributed (i.i.d.) normal variables with mean 

0 and variance 1, p is the magnitude of the mean shift fault of the process and fk is 
the fault signature of the fk ,  where fk  is magnitude of the mean shift fault occurring 
in the original data. It should be noted that  if a step mean shift fault occurs in the 
original process, the resulting mean shift in the output will not be a step function but a 
time-dependent function since the form of the fault signature ~ depends heavily on the 
process dynamics, the feedback control scheme, and the parameters of the disturbance 
model. The research results in this paper will provide some guidelines in the efficient 
use of control charts for dynamic mean shifts in feedback-controlled processes. 
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2.2 Monitoring of  autocorrelated processes 
As automated sampling technology develops and high volume production processes 

become more common, the need to monitor autocorrelated process data will increase. 
To deal with autocorrelation in data, different approaches have been proposed in the 
literature. See, for example, Vasilopoulos and Stamboulis (1978), Alwan and Roberts 
(1988), Montgomery and Mastrangelo (1991), and Yashchin (1993). One increasingly 
popular scheme proposed by Alwan and Roberts  (1988) is to model the autocorrelated 
processes using time series models. If the model is adequate, the model residuals (specif- 
ically, one-step-ahead prediction errors) are approximately uncorrelated, and therefore, 
conventional control charts can be applied to the residuals. 

A brief review how to generate the uncorrelated residuals was given in Apley and 
Shi (1999). The residuals can also be represented as 

ek ~ ak + # f k ,  

which is the same as the MMSE controlled process output.  If a constant mean shift 
occurs in the original process, the resulting mean shift in the residuals will not be a step 
function but a dynamic function where the form of the fault signature fk depends on 
the time series model and its parameters (see Wardell et al. (1992)). 

Hu and Roan (1996) investigated the fault signature for the residuals of different 
first-order autoregressive-moving-average (ARMA(1, 1)) processes. In their paper, three 
zones in the ARMA(1, 1) parameter space are determined by the stability conditions, 
the value of the first transient shift and steady state shift in each zone. In zone 1, the 
process outputs consist of a steady-state mean shift of increased magnitude with several 
steps delay. In zone 2, the process outputs  consist of a spike followed by a steady state 
shift of a smaller magnitude. In zone 3, the process outputs are decaying, oscillating and 
reaching a steady-state value. The run length performance of Shewhart charts in these 
three zones has been studied in detail (Tsung and Tsui (2003)). In order to make use of 
the fault signature information to detect the mean shifts, the LRT, GLRT and Cuscore 
charts have been developed. 

Using the likelihood ratio statistic, Siegmund and Venkatraman (1995) proposed a 
CUSUM-like control chart called LRT (the likelihood ratio test) which does not depend 
on a reference value 5 which, for the CUSUM chart, is the magnitude of a shift in the 
process mean to be detected quickly. Their simulation results show that  the LRT is better  
than the CUSUM control chart in detecting a mean shift which is larger or smaller than 5 
and is only slightly inferior in detecting mean shift of size 5. Apley and Shi (1994, 1999) 
developed the GLRT (the generalized likelihood ratio test) for monitoring autocorrelated 
process and found that the GLRT performance is far superior to either a CUSUM or a 
Shewhart chart on the residuals for various models. The Cuscore chart, which is based on 
the principle of Fisher's efficient score statistic (1925), was further developed by Bagshaw 
and Johnson (1977), Box and Ramfrez (1992), Box and Lucefio (1997), Ramfrez (1998), 
Lucefio (1999), and Shu et al. (2002). 

As can be seen in the literature, most work focus on a study of the performance of 
various control charts in detecting constant mean shifts, and the study is mainly based 
on the numerical simulation of the average run length (ARL). Though the theoretical 
approximations of ARLs of the LRT and CUSUM chart in detecting a constant mean shift 
have been done by Siegmund and Venkatraman (1995) and Wu (1994), their methods 
are not efficient in estimating the ARLs of the Cuscore, GLGT and CUSUM tests in 
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detecting a dynamic mean change {#i}. In this paper, we shall not only present a different 
approach to estimate the ARLs of the three tests but also compare the performance of 
the three test both in theoretical estimation and numerical simulation in detecting a 
dynamic mean change which finally goes to a steady-state value. 

3. The Cuscore, GLRT and CUSUM tests 

The controlled outputs or the residuals can be seen as a general model. Let Xi 
(i -- 1, 2 , . . . )  be the i-th observation on an i.i.d, process and its distribution be a normal 
with N(#/,  a2). Suppose that  at some time period ~-, which is usually called a change 
point, the distribution of Xi changes from N(#0, a 2) to N(#~+k, a 2) (k -- 0, 1, 2 , . . . ) ,  
in other words, from time period ~- onwards the mean of Xi undergoes a change of size 
#i - #0, where we assume that  #0 and a are known and without loss of generality #0 = 0 
and a -- 1. Let 5 > 0 be a reference value which is related to the mean shift magnitude 
of particular interest. The first time (stopping time) outside the control limit c > 0 for 
the one-sided standard CUSUM chart is of the form: 

Tc(c)=inf { n > l :  l<k<nmax [i=-n-k+l f i  (Xi-6/2)] >_c}. 

The stopping time for the one-sided Cuscore chart is defined as follows (see Lucefio 
(1999)): 

i=n-k+l 

where ri is the value of a known signal which may badly disturb the process mean. The 
{ri} can also be called as reference pattern of the mean change. Obviously, Tc(c) = 
Tso(c) when r~ ==- 1. That  is, the CUSUM chart is the special example of the Cuscore 

chart. Note that  the reference pattern {r~} is usually taken as the fault signature {~} 
in the residual-based charts (see Lucefio (1999)). 

Motivated by the works done by Siegmund and Venkatraman (1995) and Apley and 
Shi (1999), we consider the stopping time for the one-sided GLRT as follows: 

TGL(C) = inf n > 1 : max r E riXi >_ c 
l~k<n 

i=n-k+l i=n-k+l 

where the reference pattern {ri} depends on the change point time 7, having the form 

1 at i<T 
r i-~+l at i > T. 

Note that  the GLRT here is slightly different from that  one given by Apley and Shi 
(1999). It may be said that  Apley and Shi's model stresses on detecting the "beginning" 
(or "past") change pattern, i.e. rl,r2,..., but our version emphasizes the "end" (or 
"current") change pattern, i.e . . . .  , m - l ,  rn. When r~ - 1, the GLRT is the same as the 
LRT control chart proposed and studied by Siegmund and Venkatraman (1995). The 
LRT chart can be written as 

TL(c)=inf{n>--l:max[ k-l~2 l<k<n f i  Nil ~__c}. 
i=n-k-~ l 
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To compare the performance of the three charts in detecting a dynamic mean change 
{#~}, we need some of corresponding notation. Let P(.) and E(.) denote the probability 
and expectation operators when there is no change. Denote P ~  (.) and E ~  (.) as the 
probability and expectation when the change point is at T and the mean change value is 
{#i}. When #i -- #, # is usually called the mean shift value. The two most commonly 
used operating measures in SPC are the in-control average run length (ARLo) and the 
out-of-control average run length (ARLu), defined by 

ARLo(T) = E(T),  A R L ~ , ( T )  = E~,~(T). 

Here T is a stopping time (or the alarming time) outside a control limit with a detecting 
procedure. When #i ~- # and ~- = 1, we denote E ~ ,  (T) by ARL~(T).  

Usually, comparisons of control chart performance are made by designing the charts 
to have a common ARLo and then comparing the ARLene's of the control charts for a 
given change #i and a change point T. The chart with the smaller A R L ~  is considered 
to have better performance. 

It often occurs in practice that  the mean change may finally approach a stable value. 
Thus, we assume that  a mean change {#~} and a reference pattern {r~} considered in 
this paper satisfy that  there exist two positive numbers # and R such that  

(3.1) # = lim #i, ~ - RI < ~ .  
i---*c~ 

i = 1  

By (3.1) we know that  )-~'-~=k Ir~ - RI  --* 0 as k - - ,  ~ .  The two number # and R can 
be called, respectively, a steady-stable value of the mean change and steady-stable value 
of the reference pattern. Two examples for {r/} are given in the following (see Hu and 
Roan (1996) and Box and Lucefio (1997)). 

Example 1. ri = R + b(�89 where R > 0, and b are two constants. 

Example 2. ri = R + b[sin(i~)](3) i-1, where R > 0, b and ~ are three constants. 

4. Comparison of the Cuscore, GLRT and CUSUM tests 

To compare the performance of the Cuscore, GLRT and CUSUM tests in detecting 
a dynamic mean change we shall first give an approximation of ARL~,~s of the three 
tests under a condition that  the ARLo is large enough. The reason to assume that  
ARLo --~ oc, is not only for us to obtain the theoretical approximations of ARL~u~s 
but also is due to a consideration of practicality. In fact, if a false alarm obtained in 
detecting the mean changes can make a big loss in practice, an alternative approach 
is to take ARLo large to avoid or reduce the loss. Obviously, ARLo ~ oc means the 
corresponding control limit c --~ oc. 

Denote by (I)(.) the distribution function of the standard normal distribution. Let 
c~ 2 co K = fo xr dx, where r = 2x -2 exp{-  ~-~n=l ~(-Xv/-n/2)/n} . We give now the 

approximation of ARLos and A R L ~ s  for the Cuscore, GLRT and CUSUM charts in 
the following two theorems. 
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THEOREM 4.1. For any small c (0 < ~ < R/2) ,  there are three positive constants 
M1, M2 and L such that 

(4.1) 

(4.2) 
and 

(4.3) 

e T c R 1 / R 2  
M 1 -  <_ A R L o ( T s o )  <_ M2(c)3/2e 6r 

c 

e 6c 
M 1 - -  <_ A R L o ( T c )  < M2(c)3/2e 6~ 

c 

K c  <_ ARLo(TGL) <_ Lce c2/2 

for large c, where R1 = R - e  > 0, R2 = R + e ,  M1 < 1, M2 > 2dv/TrhR2/R1 and 
L>v . 

THEOREM 4.2. 

(4.4) 

for 0 < # < 5R/2,  

(4.5) M1 

for 0 < # < 6/2, 

(4.6) 

for # > 5R/2,  

(4.7) 

for # > 5/2, 

(4.8) 

For any small c and large c 

M 1  m 

e6CR~/R2 

C 
<<_ ARL~,~(Tso)  <_ M~(c)3/2e 6cR'~/R1 

eTC(1-2tt/5-e) 
<_ A R L ~  (To) <<_ M~(c)3/2e6r 

c 
A R L ~ ( T s o )  ,- (# _ 5 R / 2 ) R  

c 
A R L T ~ ( T c )  ,,~ (p _ 5/2) 

c 2 
ARLT~, (TcL) ,'~ #---~ 

for # > O, where R~ = (R - 2#/5 - ~) > O, R'2 = (R - 2#/5 + e), M~ > 2dv/TrhR~2/R1 
and x ~ y means that x / y  ~ 1. 

We can see from (4.6), (4.7) and (4.8) that the detecting performance of the GLRT 
is more robust than that of the Cuscore and CUSUM charts in the sense that the ARLs of 
the GLRT do not depend on the steady-stable value of the reference pattern or reference 
value but  the Cuscore and CUSUM charts do. 

The comparison of the Cuscore, GLRT and CUSUM tests are given in the following 
theorems. 

THEOREM 4.3. Let 0 < R < 1. For the Cuscore and CUSUM tests, if  
A R L o ( T s o )  = A R L o ( T c )  ---, c~, then 



COMPARISON OF CUSCORE, GLRT AND CUSUM TESTS 537 

(al) A R L ~ ( T s o )  < ARLr~(Tc )  for # < 5 ( R +  1)/2, # r 5/2 and it ~= 5R/2; 
(bl) ARL~.~, (Tso) ~ ARL~-t,~ (Tc) for # = 5(R + 1)/2; 
(Cl) ARL~, , (Tso)  > ARL~, , (Tc)  for # > 5 ( R +  1)/2. 

By Theorem 4.3 we know that if R < 1, then the performance of the Cuscore chart 
is better than the CUSUM chart with the small steady-state value p, and the CUSUM 
chart is better than the Cuscore chart with the large p when the ARLo is large. 

THEOREM 4.4. Let R > 1. For the Cuscore and CUSUM tests, if ARLo(Tso) = 
ARLo(Tc) ~ co, then 

(a2) A R L ~ ( T s o )  > A R L ~ ( T c )  for # < 5 ( R +  1)/2, # ~ 5/2 and # r 5R/2; 
(52) ARL~,~ (Tso) ~ ARL~,~ (Tc) for # = 5(R + 1)/2; 
(c2) ARL~,~ (Tso) < ARL~,,  (Tc) for # > 5(R + 1)/2. 

It follows from Theorem 4.4 that  the performance of the Cuscore and CUSUM charts 
with R > 1 is on the contrary in case of R < 1. 

THEOREM 4.5. For the Cuscore, GLRT and CUSUM tests, as ARLo(Tso) 
ARLo(Tc) = ARLo(TcL) ~ co, 

(a3) A R L ~ ( T s o )  > ARL~,~(TcL) for # r 5R; 
(b3) ARL~,~ (Tc) > ARL~,~ (TGL) for # r 5; 
(c3) ARL~,~(Tso) ~ ARL~,~(TGL) for # = 5R; 
(d3) ARL~,~ (Tc) ~ ARL~,~ (TGL) for # = 5. 

Theorem 4.5 tell us that when ARLo --* c~, the GLRT has the best performance 
among the three tests except the steady-state value # is equal to 5 or 5R. 

COROLLARY 4.1. 

/or # = SR and R r l, 

f o r # = 5  a n d R e 1 ,  and 

for# -=5  and R --1. 

As ARLo(Tso) = ARLo(Tc) ~ co, 

ARL~t,~ (Tso) < A R L ~  (Tc) 

A R L ~ ,  (Tso) > A R L ~ ,  (Tc) 

A R L ~ ,  (T8o) ~ A R L ~  (Tc) 

By Corollary 4.1 we see that  the CUSUM and Cuscore charts have the best per- 
formance if the steady-stable value of a dynamic mean change is equal to 5 and 5R, 
respectively. 

Remark 1. The values R5/2 and 5/2 can be seen as two handicaps respectively 
for the Cuscore and CUSUM charts. It follows from Theorem 4.3 and Theorem 4.4 that  
the sum R5/2 + 5/2 is just a critical value. When the steady-stable value is great or less 
than the critical value, the Cuscore and CUSUM charts have a different performance in 
detecting the mean change. 
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R e m a r k  2. It has been shown by Moustakides (1986) and Ritov (1990) that  the 
performance in detecting the mean shift of the one-sided CUSUM control chart with 
the reference value 5 is optimal if the real mean shift is 5. The similar results for the 
CUSUM chart with the steady-stable value 5, can be seen in (d3)  of Theorem 4.5. 

R e m a r k  3. The above results are only dependent on the three values #, R and 5, 
since both patterns of the dynamic mean change {#~} and the reference value {r~} has 
neither influence on the detecting performance of the three tests when the A R L o  -~ c~ 

or c --* co. 

5. Numerical il lustration 

In this section we show some simulation results of ARL's of the Cuscore, GLRT and 
CUSUM charts, that  is, the ARL's of the upward stopping times. The numerical results 
of ARL's were obtained based on 10000-repetition experiment. Tables 1 and 2 illustrate 
the simulation results in detecting two types of the dynamics mean changes with change 
point ~- ---- 1. In the last three rows of Tables 1 and 2, rk is the reference pattern, 5 
is the reference value and c denotes various values of the control limit. The dynamic 
mean change {#Pk} is listed in the first column of Tables 1 and 2, where { P k }  denotes 
the pattern of the mean change, which is taken as pk = 1/4 + 3/2(1/2) k in Table 1 and 
Pk = 5/4 - 1/4(1/2) k-1 in Table 2. 

As can be seen from a comparison of the simulation results in Tables 1 and 2 that: (1) 
The simulation results are basically consistent with the theoretical results of Theorems 
4.3 and 4.4. In fact, by Theorems 4.3 and 4.4 we know that,  when the steady-state 
value is greater or less than the critical value, 5(1 + R)/2,  the Cuscore and CUSUM 
charts have a contrary performance in detecting the mean change. There are two critical 
values, (1 + 1/4)/2 = 0.625 and (1 + 5/4)/2 = 1.125 in the numerical examples since the 
steady-stable value, R, of the reference pattern, {ri}, is equal to 1/4 or 5/4. Note that  
Pk = 1/4 + 3 / 2 ( 1 / 2 )  k --~ 1/4, and for large k, #Pk < 0.625 for # < 2 and #Pk > 0.625 

3(1)k) Table 1. Comparison of ARL's  of three control charts with ARLo  ~ 870, (Pk ---= �88 + ~ ~ �9 

{lapk } Cuscore CUSUM Cuscore GLRT GLRT 

0 870 870 870 868 870 

(0. lpk } 605 711 725 833 836 

{0.25pk} 361 526 559 679 682 

{0.5pk } 180 322 367 371 377 

{0.75pk} 103 202 237 206 214 

{lpk} 68.9 128 160 126 135 

{1.25pk} 48.3 84.6 110 81.2 89.2 

{ 1.5pk } 35.8 55.9 77.9 54.6 61.9 

{2pk} 21.6 25.6 40.2 24.2 31.6 

{3pk } 9.17 6.28 13.5 6.05 7.51 

{4pk } 4.27 2.62 6.09 1.76 1.94 
3(1)k 5 l(1)k 1 (1)k 5 1(1)k 

rk �88 ~ 4 ~ ~ z + ~  ~ 4 ~ 
c 3.172 5.624 5, 11 3.675 3.675 

5 1 1 1 
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Table 2. Comparison of ARL's  of three control charts with ARLo ,.~ 870, (Pk = 5/4 - 1 /4(1 /2)k-1) .  

{ttpk } Cuscore CUSUM Cuscore GLRT GLRT 

0 870 870 870 871 871 

{0.1pk } 184 325 368 377 380 

{0.25pk} 54.5 94.2 113 93.9 96.6 

{0.5pk } 21.5 24.0 27.8 28.9 29.7 

{0.75pk} 12.6 11.9 12.3 14.8 14.8 

{ lpk } 8.33 7.84 7.63 9.52 9.30 

{1.25pk} 5.90 5.89 5.55 6.84 6.54 

{1.Spk} 4.43 4.75 4.41 5.24 4.98 

{2pk } 2.85 3.52 3.22 3.47 3.30 

{3pk} 1.69 2.39 2.21 1.99 1.95 

{4pk } 1.20 1.96 1.87 1.37 1.37 
rk 1 .~_ _3 (1)k 5 1(1)k (1)k 5 l ( 1 ) k  

c 3.172 5.624 5.11 3.675 3.675 

6 1 1 i 

for p > 3. We can see that  the critical value, 0.625, is just between {2pk} and {3pk} in 
Table 1 since the performance of the Cuscore chart with rk = 1/4 + 3/2(1/2) k, k >_ 1, 
is better than the CUSUM chart for #Pk < 0.625 and # < 2, and bad than the CUSUM 
chart for #Pk > 0.625 and # _> 3. For Pk = 5/4 - 1/4(1/2) k-1 in Table 2, the two 
critical values, 0.625 and 1.125 are between {0.5pk} and {0.75pk} and {0.75pk} and 
{lpk}, respectively. (2) The performance of the three tests depends not only on the 
pattern of the mean change but also on the reference value and the reference pattern. 
(3) The GLRT is more robust than the Cuscore chart since the influence of the reference 
pattern {ri} on the detecting performance of the GLRT is less than that  of the Cuscore 
chart. (4) The simulation values, ARLr~S of the GLRT are not always less than that  
of the other two charts since the ARLo(~ 870) is not large enough. This shows that  the 
condition, ARLo ---* c~, is necessary for the results of Theorem 4.5. 

6. Proofs of the theorems 

PROOF OF THEOREM 4.1. For small e > 0, it follows from (3.1) that  there exits a 
large natural number k0 such that  

1 n 2 

i=n-k+l 

for all n > k0 and 1 < k < n - k0, where R1 = R - e > 0 and R2 = R + e. Let 

A m = {  i=n-k+l ~ r i (X i -S r j2 )<c , l<k<n ,e<_n<_m}  

for m ~ ko, 

Bm,ko : 
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Bm,ko(r -= [Ei=n-k+ln rij211/2 <---nlV/- ~ 4- - -  

and 

Cm,ko = 

6R2x/k l < k < n -  ko, ko < n < m~ , _ , 

J 

{ ~ r i ( X i - 6 r i / 2 ) < c , n - k o + l < k < n ,  ko<n<_m}  
i=n-k+l 

for m > ko. Then, 
{Tso > m} = AkoBm,koCm,ko, 

for m > ko. Note that the set Bm,ko can be rewritten as 

I n n 2 
Bm,k ~ : Ei=nZk+l ?~iXi c 6~/Ei=n-k+l  ri 

n 211/2 < V/ -~- [E ,=n_k+l r i  j E~_n_k+lri2 2 

l < k < n - k 0 ,  k o < n < m } .  

Obviously, Bm,ko(e) D Bm,ko. 
minimum value X/25cR2/R1 at x = 2c/(SRxR2), it follows that 

Eir~:ko+l r ix i  42(~cR2/R1 ) e(B~,ko(~)) < e i r ~ - - - ~ 2  < 
\ tZ-.-~/=ko+l i J 

LR_zR ~ (X > 0), attains its Since the function, ~ + 2 v 

k0 

ARLo(Tso) = ~ P(Am) + 
m=l  m=ko+l 

P(Ako Bm,ko Cm,ko) (6.1) 

1 < l < j ,  are independent mutually. Hence, 

where the last equality holds since the events 

{ x-~k~ } 
A-,i=ko+(1--1)dc+l riXi 

[X-~ko+ ldc 211/2 ' 
[Z-~i=ko+(1-1)dc+l ri J 

= [~(V/2~cR2/R1)] j, 

= ~(X/25cR2/R1) 

for m = ko + dc, where d = 2/(~RIR2) and ~(.) denotes the distribution function of the 
standard normal distribution. We further have 

P(Bm,ko@)) <_ P(Bko+jdc,ko(e)) 

f o r k 0 + j d c < m < k o + ( j + l ) d c a n d  

[ ~-~koq-ldc ) 
A-~i=ko+(l-1)dc+l riXi 

P(Bko+jdc,ko(e)) < P ~ rV, ko+td c 211/2 < V/2~cR2/R1, 1 < 1 < j 
\ tA.~i=ko+(l-1)dc+l ri J 
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ko oo 

<- E P(Am)  + E P(Bm,ko(e)) 
m = l  rn=ko+l  

oo ko+(j+l)dc--1 
<_ ]Co +dc + E E P(Bm,ko (e)) 

j = l  m=ko+jdc 
OC 

<_ ko + dc + d c  E [ ~ ( V / 2 6 c R 2 / R 1 ) ]  j 
j = l  

= ko + dc + d c  ~(V/26cR2/R1)  
1 - ~(V/26cR2/R1)  

'~ ko + dc + 2dcv/Tr6cR2/Rle &R2/RI 

as c -*  o~, since ~ ( x )  + 1 - e-~=12/(v /~x)  as x ~ oo. Thus ,  there  exits a constant/I/ /2 
such that/I / /2 > 2dv/Tr6R2/R1 and 

A R L o ( T s o )  <_ M2(c)a/2e&R=/R1 

for large c. This  proves the upward  inequali ty of (4.1). 
Let  

and 

~ X B'  Ei=n--k+l ri i c 
m,~o(~) = [E~=n-~+x  ~ ~,~l~/~ < --R~v~ 

6Rl v~ - [ - - -  
2 

l < k < n-ko, ko < n < m 

{ ~-~inn-k+l riXi r ~R1v~ 
Cm,ko(s [x'~n Ir2ll/2 < - -  Jr- 

t ~ i = n - k + l  iJ R 2 v ~  2 ' 

ko + l < k < n, ko < n < m ~ n -  

J 
for m > ko. Obviously, B~,~o (e) C Bm,ko and Cm,ko (e) C C,~,ko for m > k0. 

Since the  function,  ~ + ~-~ x/~ (x > 0), a t ta ins  its min imum value V/26cR1/R2 

at x = 2c/(6RIR2) and there  exists two positive numbers  a < 1 and b > 1 such tha t  

R ~  
6-~1 I-- 

- -  + - ~ - v x  >_ 2x/&R~/R~ 

for 0 < x < ac and x > bc, it follows tha t  

r iXi  < V/26cR1/R2, n - ko + 1 < k < n, 

k o < n < m  } 
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and B~m,ko(e) ~ Dm,ko(~)Em,ko(C)Fm,ko(C) for m > ko, where 

l < k < m i n { a e ,  n } k o < n < _ m  , 

Em,~o(~) = r~ ~ r~x~ < r 
i=n--k+l i=n--k+l 

min{ac, n} + 1 < k < m i n { b c -  1, n}ko < n < m } ,  

and 

Fm,ko(e) r2 E riXi  < 2 j 6 c R 1 / R 2 ,  
i:n-k~-i i=n-k-H 

m i n { b c - l , n } + l < k < n ,  k o < n < m ~ .  

J 
Let M - ko = e~cR1/R2/c. By Lemma 1 in Lai (1974) we have 

P(CM,ko) >__ P(CM,ko(e)) 
> [O(~/25cR1/R2)] k~176 

koe 5cR1/R2/c 
e_6cR1/R 2 

... 1 -  v/~V/25cR1/R 2 

! s P(BM,ko) >_ P(BM,ko( )) 
>_ P(DM,ko (e))P(EM,ko (e))P(FM,ko (c)) 

[d2(2~/bcR1/R2)] (M-k~ [~( ~/25cR1/R2)](b-a)c(M-k~ 
e25CRl / R2/C 2 

e_25CRl/R2 

1 -  2V,-ff~V/SCR1/ R 2 
1 - e-bcR1/R2 

2 ~/~bcR1/ R2 ] 

and 

(b--a)e~CR1/R2 

as c -~ co. By Lemma 1 in Lai (1974) again we have P(Tso > m) > 
P(Ako)P(Bm,ko)P(Cm,ko) for m > ko. Obviously, P(Am) -~ 1 for m < ko as c --* c~. 
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Thus,  there  exits a posi t ive cons tant  M1 < 1 such t h a t  

ko oo 

(6.2) ARLo(Tso) >_ E P(Am) + E P(Ak~176176 
m=l m=ko+l 

ko 

>- E P(Am) + (M - ko)P(Ako)P(BM,ko)P(CM,ko) 
m = l  

ko + eecR1/R~/c 1 - o 

>_ MleeCR1/R2/c 

for large e. Th is  is the  downward  inequal i ty  of (4.1). 
Tak ing  R1 = R2 = 1 in (4.1) we can  ob ta in  (4.2) since To(c) = Tso(c) when ri  --- 1. 
Next  we e s t ima te  ARLo(Tac).  Since 

P(TCL > m) = P r2i f iX  i < c, 1 < k < n, 1 < n < m 
i = n - - k + l  i = n - k + l  

< P(Xk < c, 1 < k < m)  = [(I)(c)] m 

and 1 - (I)(x) ~ e -~ /2  (1 - O(1/x)) as x --~ oc, it follows t h a t  
x 

ARLo(TGL) <_ E [ r  -< LceC2/2 
m=l 

for large c, where  L is a cons tan t  such t ha t  L > v~-~. 
To prove the  downward  inequal i ty  of ARLo(Tac),  let 

Gin= r2 E 
i = n - - k + l  i = n - - k + l  

for m < ko, 

and 

riXi < c, 1 < k < n, 1 < n < m I 

i=n--k-k  l i = n - - k  + l 

riXi < c, l < k < n - ko, ko < n < m } 

Im,ko = r~ 
i = n - - k + l  i = n - k + l  

riXi < c, n - ko + l <_ k < n, ko < n < m } 

for m > k0. T h e  se t  Hm,ko can be rewr i t t en  by 

H~,~o = X , / v ~  < c k -~ F_, 
i = n - - k + l  i = n - - k + l  

i /2  

i < k < n - k o ,  k o < n < _ m ~  

J 
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where, Yn-k+l(n) = ~ i n = n _ k + l ( r i  - -  R)Xi. Let  Y~(n) = Y~.ink I(ri -- R)Xi[. By (1) we 
can take the  n u m b e r  ko such t h a t  ~mko+~(r~ -- R) 2 < e 2 for all m > ko and  therefore  

P(Y'-k+l(n) < ee, 1 < k < n - k o ,  ko < n < m )  

E ~ : ~ o + ~ ( ~  - R)  2 
= P(Z~o+l(m) < ce) > 1 - (ce) 2 

for large c. Let  

Then  

H m , k o ( e ) = {  ~ X i / v ~ < c ( 1 - 2 e / R ) , l < k < n - k o ,  k o < n < _ m } .  
i = n - k + l  

Taking m - ko = tx/~e[C(1-2~/n)]:/2/(c(1 - 2e/R)K), it follows f rom T h e o r e m  1 in 
Siegmund and V e n k a t r a m a n  (1995) t h a t  P(Um,ko(E)) >_ e -~ as c -+ oc. Note  t h a t  

P(Gko) --+ 1 and  
P(Im,ko) >_ [42(C)]k ~176 --+ 1 

as c --+ oc. Hence,  

P(TcL > m) > P(Vko)P(Hm,ko)P(Im,ko) 

>_ ( l - o ( 1 ) )  p(Gko)P(Hm,ko(e))[r k~176 

o(i))e  
as c --+ oo. By using the  proper t ies  of exponent ia l  d is t r ibut ion,  we have 

ARLo(TcL) >_ x/~e[CO-2~/n)]2/2/(c(1 - 2e/R)K) 

as e --+ oo. This  comple tes  the  p roof  of T h e o r e m  4.1. 

PROOF OF THEOREM 4.2. Let  # < R5/2. For any  small  fixed e > 0 sat isfying 
R~ = (R - 2 # / 5  - e) > 0, we can take  a na tu ra l  n u m b e r  ko > r such t h a t  

n 2 
! E i = n - k W l ( r i  - -  2 T i ~ i / { 5  ) ! 

R, < [k E~%n-k+lr~]'/2 < ( R -  2 , /~  + ~) = R2 

holds f o r n > k o  and l < k < n - k o .  Let  

~ i = ~ - k + l  r i (  i - ~i)  

t A - ~ i = n - - k + l  i J 

l < k < n - k o ,  k o < n < m } .  
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Then  Bm,ko C Bm,ko(e, tL). As (6.1) we can obtain  

ko o~ 

ARL~u~(Tso) = E P~m(Am) + E P~m(Ak~176176 
m= l m = k o + l  

o~ 

<_ ko + E P(Bm'k~ 
m=ko+l 

<_ ko + dc + 2dcv/TrScRI2/Rle6CR'2/R~ 

for large c. Thus, there exits a constant  M~ such tha t  M~ > 2dx/rrhR~2/R1 and 

, / 
ARL~u~(Tso) < M~(c)3/2e 6~R~/R1 

for large c. This is the upward inequality of (4.4). Similarly, we can prove the downward 
inequality of (4.4) as (6.2). Moreover, taking R1 = R2 = 1 and R -- 1 in (4.4) we can 

obta in  (4.5). 
Suppose tha t  # > R5/2. Taking k0 _> T such tha t  

R i '  = ( 2 ~ / 6  - R - r  < 
E , % n - k + i ( 2 r ~ . i / 6  - ~F) 

< ( 2 , / e  - R + ~) = R~' 

holds for n > ko and 1 < k < n - ko, where R~' = (2#/6 - R - ~) > O. 
Let g = ko + 2c/(hR]'R1) + 4 d ~ )  and n = N -  ko + k, where d = 

(hR]'v/6R]'R1) -1. It follows tha t  

c 5R~1' ~-~ = - N - ko + k R1----~ 
Rl v/-~ 2 

_ 5 R ' l ' v / N _ k o + k { 1  - 1 } 
2 1 + 2dhR]'R1 ~ + 6R~x'Rak/(2c) 

< -6R~I'ANv/N - ko + k ,~ -21x/~nc ~ -00  

as c --* ec since (hR~ 'AN)2 (N-  ko) 
2d6R~1'R1 x / q - ~ ) - l ] / 2 .  

As c --* oc and r --* 0, we have 

41nc as c -~ oc, where AN = [1 - ( 1  + 

P~u,(Tso > n) 
n=N--ko+l  

< 

< 

P I r-~--~-- ,--~r?l~~ < 
n=N-ko+l  \ tZ.~i=n-k+I i J R1-V~ 

oo 

E P 
n = N - k o + l  

, 

1 < k < n - k o ,  k o < n < m )  
/ 

n 2 V ~ )  ( E i = n _ k w l r i ( X i : [ - t i )  c ~1~ 
| [X -'n r2]1/2 < 
\ Lz_. i=n-k+l  i J R l V ~  
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T h u s  

(6 .3)  

< r  <_ r  
n=N-ko.-F1 J --oo n= -- o+1 RIl'ANx/'-n 

{ - ~ ( S R ' I ' A N ) 2 ( N  - ko + k ) }  

5R~' V ~ A N  V ~  - ko 

exp 

{ - 2 ( S R I l l A N > 2 ( N - k o > } ( l _  

k----1 

e x p  
< 
- a R ' { v / - ~ A N v / - N  - ko 

1 < 
- v ~ ( a R ~ , ) 2 ( l n  c)3/2" 

e-1/2(SR'I' AN)a) 

N-ko  1 
ARLr~,~ ( T s o )  < E P~'J*~ ( T s o  > n) + 

n= l  V ~ ( ( S R ~ ' )  2 ( In c)3/2 

1 
< N - k o +  
- v / -~(SRi , )2 ( lnc)3 /2  

2c ( 1 )  
<- 5RfR------7 + 4d~/c In c + o ~ 

2c 
"" (2/,  -- ~R) /~  (1 + o(1))  

as C----+ 0~. 
O n  the  o t h e r  hand ,  let  M = ko + 2c/(~R'2'R2) - 4 d ' v / ~ - ~  c a n d  M '  = M -  ko, whe re  

d '  /~Ri,  ~/~-R~,D ~-1 Since ---- i,u 2Voxt21L2) . 

c ~ elv  
R2v/M 7 2 

as  c --+ oo a n d  e -+ 0, it follows t h a t  O(R--~-v~ ~n~'2 x/-M-7) "~ 1 - ( 2 ~ c 2 )  -1  as 

c --+ oc and  ~ -+ 0. Le t  m '  = m - ko a n d  n '  --  n - ko. T h e n ,  b y  us ing  T h e o r e m  5.1 in 
E s a r y  et al. (1967) we have  

M 

(6.4) E P r , , ( B m , k o )  
n=ko+l  

[ Eim_--m--k+l r i ( X i  -- /*i) C ~RI21v/k 
> P [, [ - ~ - - ~ - - - 7 g l i 7 / 2 -  < R -~2v~ 2 ' n=ko+l  tA-~i=n--k+l "i J 

l < k < m -  ko, ko < m < n ~  ) 
M' n ~ m' ( v-~m~ q-ko [ .,,- 

2...,i=m'+ko-k+l ri[ A i  --/*i) 

n ' = l  m ' = l  k=l  LZ-..~i=m'+ko-k+l i J 
M' n' m ~ 

n'=l m'=l k=l 

< - -  
R2v~ 
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n l = l  

I 

R2 v~-~ 2 

( i (  c 1 _ o  

c ~R~'j-~)] 

1 
~ M '  ( 1 - o  ( ~ ) )  

a s c  --* c~ a n d  e --* 0. N o t e  t h a t  P~,~(Ako) --* 1 a n d  

~ 1 2 ~ c c  2 

as c ~ c~. T h u s ,  we have  

(6.6) 

(M'+1)/2 

k o M '  

A R L ~ ( T s o )  
ko M 

~-- E Prm(Am) + E P~m(Ak~176 ~(Cm,ko) 
m = l  m = k o + l  

ko M 

> - E  p(Am)+P~'~(mk~176 E P,,~(Bm,ko) 
m =  l m = k o + l  

> k o + M '  1 - o  1 - o  ~ ( 2 # -  - o ( 1 ) ) ,  

as  c --~ c~. B y  (6.3) a n d  (6.6), we o b t a i n  (4.6).  T a k i n g  n = 1 in (4.6) we  can  ge t  (4.7). 
To  p rove  (4.8) let  e > 0 such  t h a t  # - e > 0. Obvious ly ,  we c a n  t a k e  a n a t u r a l  

n u m b e r  ko _> 7 such  t h a t  

1"~ A - ~ i = n - - k + l  " i  J 

holds  for n > ko and  1 < k < n - k o .  Let  N -- ko§ §  lv/~-~)/(#,l) 2 a n d  n = N +k.  
I t  fol lows t h a t  

c - # . l V / ~ - k 0  = - ( # v / N - k 0 + k - c )  

= - , . 1  ./N-ko+k 1 -  ' / 1 + 4 , / ~ c / c + ( , ' 1 ) 2 k / c  

_< - #  *1 AN V/ N - ko + k ~ -2v'~n c --~ - e e  

a n d  ( # , I ) 2 A ~ ( N  - ko) ~ 4 1 n c  as c ~ ec,  w h e r e  AN = [1 -- (1 + 41v"~--c/c)-1/2]. L e t  

A~m = r E r iXi  < c , l  < k < n , l  < n < m 
i = n - k  + l i - ~ n - k  + l 
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for m ~ ko, 

and  

for m > ko. Note  t ha t  

i = n - k + l  

- -1 /2  n 

E 
i=n--k+l 

- -1 /2  n 

E 
i=n--k+l 

- 1 / 2  

-1/2 

fi 
i~n--k+l 

n 

E 
i~n--k+l 

r i X i < c ,  1 < k < n - k o ,  k o < n < m }  

riX~ < c , n -  ko + l < k < n, ko < n < m }  

riXi < c, l < k < n - ko, ko < n < m 

r~(X~ - ~ )  < c - ~ "1 v ~ ,  

n -  ko, ko < n ~ m~  1 k 
J 

for m > ko. As (6.3) we can prove t h a t  

N 1 
(6.7) A R L ~  (TGLp) ~ E P~"~ (TGLP > n) + 

n=l  4 V ~ ( t t * l ) 2 ( l n  c) 3/2 

1 
< N +  
- 4 v ~ ( , , ~ ) ~ ( l n ~ ) ~ / ~  

< ko + ~ ( c  2 1 

c 2 

pt 2 

c --~ c~ and  z ---~ 0. 

t h a t  

} 

1 ~c 2 - 4 c ~ )  a n d M '  M ko. Note  On the  o ther  hand,  let M = ko + ~ = - 

- -1 /2  n 

r~) E r~(X~- tti) < e -  , * 2  x/k, 
i=n--k+l 

1 < k < n -  ko, ko < n < m~ 

J 
for m > ko and  ~ ( c  - # *2 v / ~ )  ~ 1 - ( 4 x / ~ - ~ c 4 )  -1 as c --+ c~ and  ~ ~ 0. As (6.4) 
and  (6.5) we have 

M 

~=ko+lP~,~(~,ko) > 1 - o  

and 
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, 
P(Cu,ko) ~ 1 - - o  

a s c ~ o c a n d E ~ 0 .  Thus 

(6.8) ARL~-~ (TCLp) 
ko M 

>- E P~-.,(A~) + Z P~.,(A'ko)P~'.,(B~,ko)P~~(C~,ko) 
m = l  m----ko+l 

ko M 

>-EP'~'*(Xm)+P~-"(A;o)P"~(C'M,ko ) E PT,,(B'm,ko) 
m = l  m----ko+l 

> k o + M '  1 - o  ~ (#,2)2(c 2 - 4 c ~ ) ~ -  - -  # 2 '  

A '  I since P~-,~(ko)P,-u~(CM,ko) --, 1 as c ~ oc. Obviously, (4.8) follows from (6.7) and 
(6.8). This completes the proof of Theorem 4.2. 

PROOF OF THEOREM 4.3. Let 0 < R < 1. Note tha t  ARLo ---* oc means tha t  
the control limit c ~ oc. It follows from (4.1) and (4.2) tha t  the Cuscore and CUSUM 
charts have the same order of infinite large control limits, c and c', t ha t  is, cl/c ~ 1 
when ARLo(Tso(c)) = ARLo(Tc(c')) ---* oc. By (4.4) and (4.5) we have 

(6.9) M1 ehC(1-2u/(hR)-~ ~_ ARL~-t,~(Tso(c)) <_ M~(c)3/2e 5c(1-2u/(hR)+~ 
c 

for 0 < # < 5R/2 and 

(6.1o) 
e5c'(1-2~/5-o(1)) 

M1 ~ <_ ARLTu~(Tc(c')) <_ M~(c')3/2e 5c'(1-2t*/5+~ 

for 0 < # < 5/2 as c,c' --+ ~ .  It follows from (6.9) and (6.10) tha t  AnL~-u~(Tso(c)) < 
ARL~-~(Tc(c')) when ARLo(Tso(c)) = ARLo(Tc(c')) ---* oc for # < 5R/2 since ( h R -  
2#)/R < (5 - 2#) and c'/c ~ 1. By (4.6) and (6.10) we see tha t  ARL~-~(Tso(c)) < 
ARL~-~(Tc(c')) for 5R/2 < # < 5/2. Let 5/2 < #. It follows from (4.6) and (4.7) t ha t  
ARL~-,,(Tso(c)) < ARL~-~(Tc(c')) if and only if 

1 1 
< 

(# - 6R/2)R (# - 5/2) 

as ARLo(Tso(c)) -- ARLo(Tc(c')) ---* ~ .  It can be checked tha t  (tt_hRI2)R1 < (/t--5/2)1 for 
1 1 512 < # < 5(R +1)12, 1 1 for h(R + l)12 = # and (u-hR/2)R > (,-5/2) (~-~R/2)R - (~-5/2) 

for # > 5(R + 1)/2. This completes the proof of Theorem 4.3. 

PROOF OF THEOREM 4.4. Theorem 4.4 can be proved similarly as Theorem 4.3. 

PROOF OF THEOREM 4.5. From (4.1) and (4.3) it follows tha t  there exists a 
positive increasing function /(c) such tha t  /(c) ~ ~ and ARLo(Tso(c))  = 
ARLo(TcL(I(c))) ---* oc as c -~ oc. Thus, by (4.4) and (4.8) we see tha t  
ARL.~(Tso(c ) )  > ARL.~(TGL(I(c))) ~ 26c for 5R/2 > as c 7 # co. Let  # > 5R/2. 
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It follows from (4.6) and (4.8) that  A R L ~ ( T s o ( c ) )  > ARL~,~(TcL(I(c))) for large c if 
and only if 

1 25 
(# - 5R/2)R > --#2 ' 

since 
1 25 (p - 5R) 2 

- > 0 .  
- 5 R / 2 ) R  - 5R/2)R,  - 

T h u s ,  ARLr~(Tso(c))  > ARL~.~(TGL(I(c))) for # r ~R and ARL~-~(Tso(c)) 
ARLT~(TGL(I(c))) for # = 5R as c ---* oo. Similarly, ARL~-~(Tc(c)) > 
ARLT~,(TGL(I(c))) for # r 5 and ARL~-~(Tc(c)) ~ ARLT~(TGL(I(c))) for # -- 5 
a s  C---~ OO. 

PROOF OF COROLLARY 4.1. Taking # = 5R in Theorems 4.3 and 4.4 we have 
A R L ~ ( T s o )  < ARL~,~(Tc) for 0 < R r 1. Similarly, A R L ~ ( T s o )  > A R L ~ ( T c )  
for # = 5 and R 7 ~ 1. It follows from (c3) and (d3) in Theorem 4.5 that  

A R L ~  (Tso) ~ ARL~,~ (Tc) 

for # = 5 and R = 1 as ARLo(Tso) = ARLo(Tc) --~ oo. 

7. Conclusions 

It is known that  the ARL is a very important quantity to measure the detecting 
capability of the control charts. Therefore, how to calculate or estimate the ARL becomes 
one of the major tasks in the study of SPC. As can be seen in the literature that  most work 
on a study of the performance of various control charts is mainly based on the numerical 
simulation of the ARL. Though the theoretical approximations of ARLs of the LRT 
and CUSUM chart in detecting a constant mean shift have been done by Siegmund and 
Venkatraman (1995) and Wu (1994), their methods are not efficient in estimating the 
ARLs of the Cuscore, GLGT and CUSUM tests in detecting a dynamic mean change 
{#i}. Thus, we present a different approach to estimate the ARLs of the three tests and 
compare their performance both in theoretical approximation and numerical simulation 
in detecting a dynamic mean change which finally goes to a steady-state value. 

From the theoretical study we find that,  when the steady-state value is greater or 
less than a critical value, R5/2 + 5/2, the Cuscore and CUSUM charts have a contrary 
performance in detecting the mean change. Moreover, the detecting performance of the 
GLRT is more robust than that  of the Cuscore and CUSUM charts in the sense that  the 
ARLs of the GLRT do not depend on the steady-stable value of the reference pattern 
or reference value but the Cuscore and CUSUM charts do. The simulation results in 
Tables 1 and 2 show that  the above conclusions are still true even if the in-control ARLo 
(~ 870) is not large. We prove also that  the GLRT has the best performance in detecting 
any mean change except that  the steady-state value of the mean change is equal to 5 or 
5R, and the CUSUM and Cuscore charts have the best performance if the steady-stable 
value is equal to 5 and 5R, respectively, when the in-control ARL is large enough. Since 
the ARLo is not large enough in the numerical simulation, the detecting performance of 
the GLRT is not always best as shown in the theoretical comparison. This shows that  
the condition, ARLo ~ oo, is necessary for the results of Theorem 4.5. 
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It is known that the efficiency of Cuscore, GLRT and CUSUM charts depends on the 
knowledge of the change point T, the reference value 5, and particularly the reference 
pattern {rk}. It is worthwhile to investigate robust charting techniques that  are not 
sensitive to these parameters. In addition, how to detect a dynamic mean shift without 
a steady state value when ARLo is not large enough also warrants future research. 
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