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A b s t r a c t .  The present paper establishes conditional and unconditional central 
limit theorems for various resampling procedures for the t-statistic. The results work 
under fairly general conditions and the underlying random variables need not to be 
independent. Specific examples are then the 're(n) (double) bootstrap out of k(n) 
observations, the Bayesian bootstrap and two-sample t-type permutation statistics. 
In case when m(n)/k(n) is bounded away from zero and infinity necessary and suffi- 
cient conditions for the conditional central limit law of the bootstrap t-statistics are 
established. For high resampling intensity when m(n)/k(n) tends to infinity the fol- 
lowing general result is obtained. Without further other assumptions the bootstrap 
makes the resampled t-statistic automatically normal. The results are based on a 
general conditional limit theorem for weighted resampling statistics which is of own 
interest. 

Key words and phrases: Student's t-statistic, Welch statistic, two-sample permu- 
tation statistic, weighted bootstrap, double bootstrap, Bayesian bootstrap, central 
limit theorem, conditional central limit theorem. 

1. Introduction 

Consider a t r iangular  ar ray of a rb i t ra ry  real r andom variables Xn,i, 1 < i < k(n) ,  on 
some probabi l i ty  space (gt, ,4, P )  with k(n) --+ ~x~ as n --~ c~. Th e  one-sample t-s tat is t ic  
is then  

(1.1) t ~ =  
k ( ~ - l / 2  ~--~k(n) Xn,i \ '~1  A.~i----1 

1 ~-]ki:(~)(Xni_-Rn)2 ) 
k ( n ) -  1 = ' 

i/2 

given by the  mean X ~  = 1/k(n) V'k(n) Xn ~. A. .~ /=  1 

Thr oughou t  we will discuss the limit behaviour  of various resampling versions of tn 
and tests  of t- test  type.  Specific examples are all kind of boo t s t r ap  and pe rmuta t ion  
resampling statistics. The  results are typical ly applied in test ing stat is t ical  hypotheses  
when critical values of tn are derived by resampling me thods  under  a nonparamet r i c  
null hypothesis ,  see Section 5 and Janssen and Pauls  (2003). At this stage we like to  
emphasize tha t  the Xn# may come from arb i t ra ry  al ternat ives which may  no longer be 
independent  or identically distr ibuted.  In a for thcoming paper  the  present  results will 
be applied to establish power functions for resampling tests. Two-sample  t-stat ist ics are 
t r ea ted  similarly in Section 4. All proofs can be found in Section 6. 

In the next  step let us draw re(n) resampling variables X~', , Xm n given the  �9 .. ( )  
original da t a  Xn#. Below various different resampling schemes are discussed in detail. 
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The conditional resampling statistic of tn is given by 

(1.2) t* = m(n)l/2(--X*k(n),m(n) - --Xn) 
((re(n) - 1) -1 ~-~m(n){~(, -~* h2hl/2 

Z.~i=l ~ ' ' i  - - ' ~ k ( n ) , m ( n ) ]  } 

where-X*k(n),m(n ) 1 v 'm(n) * -- re(n) Z-~i=l X i  denotes the m(n)-resampling mean of k(n) variables. 
We like to focus the attention of the reader to the fact that the denominator of 

tn is also subject of the resampling procedure. This has sometimes an interpretation 
as a variance correction. Such studentized resampling procedures are recommended in 
the guidelines for bootstrap testing, see Hall and Wilson (1991), Beran (1997), Bickel 
and Freedman (1981). For the bootstrap of i.i.d, variables we refer to Mason and Shao 
(2001) who established necessary and sufficient conditions for asymptotic normality of 
the bootstrap version (1.2). The present results also apply to the double bootstrap which 
is important for prepivoted test statistics, see Beran (1988). Another application is given 
for studentized permutation tests, see Neuhaus (1993), Janssen (1997) and Janssen and 
Mayer (2001) for earlier results. 

In this paper we will investigate conditional and unconditional central limit theorems 
for t* and its two-sample version. The conditional results rely on a metric d on the set 
of probability measures Adl(1R) on I~ such that convergence in (Adl(IR), d) is equivalent 
to weak convergence. 

Introduce a standard normal random variable Z and let In denote the set In = 
{~-~/k__(1)(Xn, i _ ~ )2  > 0}. If the denominator of a statistics happens to become zero 
we then define the statistics to be zero (according to O/0 = 0). Throughout, we will 
consider the conditional distribution s I - ~ )  given the vector of variables )~n := 
(Xn, l , . . .  ,Xn,k(n)). We say that a conditional central limit theorem (CCLT) holds for 
t* if 

(1.3) d(s  I Xn), s  I Xn))  --* 0 

in P-probabili ty as n --* cxz. The resampling step will be described by weight functions 
Wn,i which are independent of the X's,  see Section 2. 

Recall that  under the extra condition 

(1.4) P(In)  ---* 1 as n ---* oc 

the CCLT then implies the unconditional central limit theorem (CLT) 

(1.5) t n --~ Z 

in distribution as n --~ oc, confer Remark 1 below. 
The following example motivates the treatment of the CCLT. The applications for 

composite null hypotheses are discussed in Section 5 in more detail. The present discus- 
sion about  resampling tests refers to Janssen and Pauls (2003), Sections 2 and 6. The 
use of studentized resampling tests for Behrens-Fisher type problems was earlier pointed 
out in Janssen (1997). 

Example 1. Suppose that the means E p ( X n , i )  always exist. We like to establish 

tests for various composite (nonparametric) null hypotheses To (.) given by heterogeneous 
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distr ibutions of the Xn# with the same expectation.  Under the null hypothesis  the Xn,i 
are in general neither independent  nor identical distributed. 

(a) One-sample problem. The composite null hypothesis is here given by 

(1.6) po(1) C { P :  Ep(Xn#) = 0  for all i < k(n)}. 

One sided alternatives are given by positive means. Two sided tests can be t reated 
similarly. A good test  statistic is the t-statistic tn defined in (1.1). 

Suppose tha t  for each P E I)0 (1) the uncondit ional  limit theorem 

(1.7) tn --+ Z 

holds in distr ibution where Z is again s tandard  normal. If u l - a  denotes the (1 - a)  
s tandard  normal quantile then  

(1.8) ~n := l(ul_,,oc)(tn) 

defines tests of asymptot ical  level a tests under  po(1). Resampling tests can now be 
applied in order to establish more accurate  critical values at  finite sample size. The 
procedure work as follows. 

�9 Keep the da ta  Xn#(W) fixed. 
�9 Take a resampling statistic t* of type (1.2) and calculate the conditional (1 - a)-  

quantile c*(a) of s  [ Xn, l , . . .  , Xn,k(n) ). 
�9 The resampling test  is given by 

(1.9) ~* = l(c*(~),o~)(tn). 

The CCLT, s ta ted in (1.4), then implies 

(1.10) c*(a) -~ ul-a in P-probabi l i ty  and EP(I~n - ~1) -~ 0 

as n --+ oo for P E ~DO(1) �9 Then we say tha t  the resampling tests work well. 
(b) Two-sample problem, confer with Section 4. Suppose tha t  the Xn# are derived 

in two groups of sample sizes n l  and n2 with n l  + n2 = k(n) and means 

Ep(Xn,i) = bl for i < n l  and Ep(Xn,i) = b2 

otherwise for i > nl .  The null hypothesis  is a composite subset 

(1.11) p(2) C {P  : bl = b2} 

which is tested against one sided alternatives with bl > b2. If we replace tn and t* by 
their two-sided counterparts  tn,II((Xn,i)i), given in Section 4, the same methodology as 
in (1.7)-(1.10) can be developed. Detail  are again discussed in Section 5. 

Note tha t  permuta t ion  tests are special resampling tests of type  (1.9) which yields 
good results also for some non i.i.d, null hypotheses (1.11), see Janssen (1997) for a 
discussion of the Behrens-Fisher problem. Of course permuta t ion  tests  do not work for 
the one-sample problem discussed in part  (a). Here various boots t rap  procedures can be 
recommended.  
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In the next section we will derive very general results about CCLT for resampling 
statistics. At this stage two important special cases are mentioned first, the boots t rap 
and the double bootstrap. The m(n) out of k(n) bootstrap denotes as usually resampling 
with replacement from the data of size m(n). 

The m(n)-double bootstrap applies two bootstrap step. Draw first a re(n) out of 
k(n)-bootstrap sample and take then a m(n)-boots t rap sample from the new variables. 

We will see that the CCLT works under very weak assumptions. One important 
condition will be: 

(1.12) max (Xn,i - Xn)  2 --* 0 in probability. 
l < i < k ( n )  Eki . . (nl)(Xn,  i __ Xn)2  

THEOREM 1.1. (a) Suppose that the condition (1.12) holds. Then the CCLT holds 
for the rn(n) out of k(n)-bootstrap if 

re(n) 
(1.13) lim__,inf ~ > 0 holds. 

(b) If in addition to (1.13) the assumption 

re(n) 
(1.14) limsupn__.~ ~ < cc 

holds then condition (1.12) is also necessary for the bootstrap CCLT. 
(c) (High resampling frequency) The CCLT always holds for the re(n) out of k(n)- 

bootstrap if limn--,~ m(n)/k(n) = c~. 
(d) Under the additional condition 

(1.15) re(n)2 * 0 
k(n) 3 

the assertions (a) and (c) remain true for the m(n)-double bootstrap. 

We see that  in case (1.4) high resampling frequency makes the bootstrap statistic t n 
automatically normal without any further assumptions. However, such a design can not 
approximate the true underlying finite sample size statistic in general. The reason for 
this result can be explained by the series expansion for the limits of resampling statistics 

�9 given in the next section, where all terms of the series become normal. 

Remark 1. The additional assumption (1.4) together with the CCLT implies the 
CLT. It is easy to see that  conditional convergence implies unconditional convergence, 
see also the Appendix of Janssen and Pauls (2003). 

Example 2. Let Xn# denote an array of rowwise independent random variables 
which are infinitesimal, i.e. 

(1.16) max P(lXn,il >_ ~) --~ 0 for each e > 0. 
l < i < k ( n )  

v,k(n) Let the suitably centered partial sum Z-~i=l X n , i  - an, an E ]~, be convergent in distri- 
bution to some non-constant infinitely divisible random variable {. Suppose that  (1.13) 
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and (1.14) hold. As consequence of Theorem 1.1 we have: The CCLT holds for the re(n) 
out of k(n) bootstrap iff ~ is a normal random variable. In this case also (1.4) holds and 
the CLT is valid. To see this recall that  the central limit theorem for triangular arrays 
implies (1.4) and (1.12), see Araujo and Gin6 (1980) for details. 

Conversely, let the CCLT be true. Then it is easy to see that the condition (1.12) 
implies 

max ]Xn,il ---+ 0 
l<i<k(n) 

in probability. This corresponds to the case when the L~vy-measure of ~ vanishes. Since 
is not constant ~ must be normal. This result was earlier proved by Mason and 

Shao (2001) for i.i.d, variables X~ and schemes 5n Y~i~=l X~ - a n . The analogue for the 
numerator of (1.2), the non-studentized version, is due to Janssen and Pauls (2003). 

2. Weighted resampling statistics 

Up to some constants the numerator of t~ given by (1.2) can be written as weighted 
resampling statistic and it can be handled by the results of Janssen and Pauls (2003). 
However, the main results of that  paper rely on the crucial assumption of the L2- 
convergence of the weights which is sometimes hard to verify, for instance for the double 
bootstrap. Throughout, we like to present a device how to substi tute the L2-convergence 
by simpler conditions which are only based on distributional convergence of the weights. 

Introduce a triangular array of random weights Wn,i : (~, .4, P)  --* ]~ for 1 < i < 
k(n). We will introduce the following conditions: 

(2.1) (Wn,1,.. . ,  Wn,k(n)) is exchangeable, 

(2.2) max IWn# - Wn I -~ 0 in t5 _ probability, 
l < i < k ( n )  

k ( n )  

(2.3) E (Wn,{ - Wn) 2 --* 1 in /5  _ probability. 
i = l  

We will show that the L2-convergence used in Janssen and Pauls (2003) can be substi- 
tuted by the following condition. The weights 

(2.4) k(n)l/2(Wn,1 - W~) ---* ZI 

are convergent in distribution to some limit variable with E(Z1) = 0 and Var(Z1) = 1. 
x-~k(n) Xn# is then The resampling statistic corresponding to z_~=l 

(2.5) Tn = k(n)l/2 E Wn#(Xn,i - --Xn). 
i=1 

Weighted resampling statistics of this kind were first studied by Mason and Newton 
(1992). 

Example 3. 

(2.6) 

(a) The re(n) out of k(n)-bootstrap weights are 

(m--~n) 1 ) W~# = re(n) 1/2 M~# k(n) 
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given by a muttinomial distributed random variable (M~ , I , . . . ,  Mn,k(~)) with sample size 

re(n) X-'k(") M~ ~ and equal success probability. The conditions (2.1)-(2.4) are valid = A..~i=l 
whenever l i m n - ~  rn(n)/k(n) = c E (0, ec] exists. For c = oc the limit Z1 is standard 

normal and for c < oc it is equal in distribution to Z1 v_ c_1/2( X _ c) where X is a 
Poisson random variable with mean c. The details of the proof are given in Janssen and 
Pauls ((2003), (8.37)-(8.46)). 

(b) The m(n)-double bootstrap can be described by the weights 

(2.7) W n , i -  m(n) l /~  1 , 

' M '  Here (M~,I , . . .  , n,k(n)) d e n o t e s  a conditional multinomial distributed variable with 

sample size re(n) V'k(n) = z-~i=l M'n# and success probability Mn#/m(n)  for the i-th cell given 
by the first step (a). The condition m(n) /k (n )  --* c > 0 together with assumption (1.15) 
implies that  the conditions (2.1)-(2.4) hold with Var(Z~) = 1. Details are discussed in 
Lemma 6.2. 

The weight functions are always independent from the data. For these reasons let 
the corresponding random variables Zi, Zj, Z (~) : ~ ~ N of Theorem 2.1 be first specified 
on ~ for fixed w C ~ whereas (i, ~j, Y~,i, II are random variables on ~t with II(w) := w. 
All random variables can be defined in an obvious manner via projections on the joint 
probability space (Q x ~ , .4  | ~ , P  |  Let Xl:k(n) ~ X2:k(n) ~ "'" < Xk(n):k(n ) 
denote the order statistics of the array X~#, 1 < i < k(n), and set Xi:k(~) = 0 whenever 
i r {1 , . . . , k (n )} .  

THEOREM 2.1. Suppose that the conditions (2.1)-(2.4) hold for the weights. 
Choose two jointly independent copies (Zi/~eN, (Zj)jeN of the limit variable of (2.4). 
Let X n  ~ 0 holds in probability and suppose that we have distributional convergence 

(2.8) /'k(n) _ "n)2 ) 1/2) 
(Xi:k(n))iEN'(Xk(n)+X-j:k(n))jEN' ~i~=1 (xn,i 

( 

of the joint distributions on N N x N~ • N. Then 

(2.9) d(E(T* I In))  0 

holds in P-probability, where To is given by 

i=1 j=l 

and Z(~) is a centered normal random variable with variance 

i=1 j=l 
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which is independent of all other variables. 

Example 4. (Bayesian bootstrap, Rubin (1981), Mason and Newton (1992)) Con- 
sider a sequence (~i)ieN of i.i.d, standard exponential distributed random variables with 
E(~i) = 1. The Bayesian bootstrap is given by the weights 

(2.10) Wn,i = k(n)l /2 ( ~i 1 )  
kT ) k ( n )  " 

If k(n) ---* oc it is easy to see that  the conditions (2.1)-(2.4) hold with Z1 ~ (7/1 - 1). 
More general weights of this type are discussed in Pauls (2002). 

Remark 2. (a) A weaker version of the crucial assumption (2.4) may also be used 
to classify the limit distributions of resampling statistics and to reconsider Theorems 1 
and 2 of Janssen and Pauls (2003). Let (2.4) hold with Var(Z1) _< 1. Notice that  
according to Lemma 2 of Janssen and Pauls (2003) weak convergence of (2.4) already 
implies E(Z1) = 0. The weak accumulation points in Theorems 1 and 2 of that  paper are 
then also given by independent copies Zi and Zj of Z1. The proof follows from Lemma 
6.1. Notice that in case of Var(Z1) < 1  the additional variable Z (n) may be much more 
complicated than in Theorem 2.1. 

(b) The present paper benefits from the approach of Mason and Newton (1992). 
Bootstrap limit theorems for partial sums, similar to the numerator of (1.2), can also be 
found in del Barrio et al. (1999, 2002) and del Barrio and MatrOn (2000). 

3. t-statistics with one-sample 

In this section general t-type statistics given by weights are resampled. The present 
approach has the advantage that  various different resampling procedures like the ordi- 
nary, the double, and the Bayesian bootstrap can be treated simultaneously. Suppose 
that there exist further weight functions Writ# with 

m(n)l/2 
(3.1) Wn,i ~- Wtn,i k(Tt) ' W n  : O. 

As in the first section let rn(n) be an additional sequence which can be viewed as the 
resampling sample size. By definition let then 

k(n) 1/2 v'k(~) Wn#X~# Z..~i= ] 
(3.2) t~,w := 1/2 

m(n)v  m(n)l/  W'#Xn# 

denote the weighted resampling t-statistic. 
The (double) bootstrap t-statistics are special forms of (3.2). 

procedure is given by resampling variables X~, 1 < i < k(n), and if 
If the resampling 

(3.3) 

k(~) .~(~) 

w:#xn# -- re(n) x ; ,  
i=1 i=1 

Wn,iXn,i  
i=l 

= m(n) -U2 ~ X .2 
i=1 
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holds then t n of (1.2) can be expressed by 

( m ( n )  ~ l ) 1/2 
(3.4) t~ = \ rn(n) t~'w" 

In case of the Bayesian bootstrap we set rn(n) = k(n) and consider just (3.2) since 
(3.3) is not defined. 

THEOREM 3.1. Suppose that the conditions (2.1)-(2.4), (3.1) and (1.13) hold. 
Then 

(a) The condition (1.12) implies the CCLT for t * w .  
(b) I f  the limit variable Z1 of (2.4) is standard normal and l im~_~  m(n) /k (n)  = oc 

holds then the CCLT always holds for t*,w also when (1.12) is violated. 

4. Two-sample t-statistics 

Let X 1 , . . . ,  Xnl and Y1,..., Yn~ denote random variables from two different samples. 
Then two-sample t-type statistics are given by 

nln2 )1/2-Xnl - g n 2  
(4.1) tn,II = nl + n2 gn 1/2 

and suitable variance estimators V~ where tn,II = t~ , I I (X1 , . . . ,  X n l , g l , . . . ,  gn2). The 
choice of Vn depends on the underlying statistical problem. For instance, if the variances 
are assumed to be the same for both groups under some underlying null hypothesis then 
the variance estimator is V~ = V~,I with 

(4.2) Vn,l := (nl + n2 - 2) -1 (Xi ----Xnl)2 W E ( Y i  -- Yn2) . 
i=l 

If the variances are not homogeneous the choice of the estimator Vn = V~,2 leads to a 
Welch-type statistics by (4.1) which is of interest for Behrens-Fisher type problems, see 
Janssen (1997) for further references and applications in statistics. In this case we define 

(4.3) Vn,2 -- - -  
nl rt2 

nl + n2 

1 n l  

n l ( n l -  1) E ( X i -  Xnl)2 + 
i=1 

1 n2 

n2(n2- 1) y. )2 
i=1 

In this section tn,II is resampled where again the X- and Y-variables are given by 
triangular arrays where the second index is suppressed. The treatment is again based 
on the previous results where now k(n) := nl + n2 denotes the total sample size and 

(4.4) Xn,i :---- Xi for i < nl and Xn,nl+i : =  Y/ for i < n2. 

In addition to the bootstrap type resampling procedures permutation statistics are of 
strong interest. They are based on random uniformly distributed permutations a ---- 
(a(i))L<k(n) of the index set {1 , . . . ,  k(n)} which are mutually independent of the X's.  
The permutation resampling variables of (4.4) are now 

(4.5) X* = Xn,a(i) 1 < i < k(n) 
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and the permutation statistic is now 

(4.6) t*  i i, p = tn , I  I (  ( X n , a (  i) )i <_k(n) ). 

Throughout, we will always assume that  

(4.7)  0 < l iminf n l  _< limsup n l  < 0r l im k ( n )  = oo, 
n2 n2 n~cc 

holds. For convenience let P(V~ > 0) ~ 1 always hold in any case which implies 1in -~ 1 
in probability. 

THEOREM 4.1. Under the conditions (1.12) and (4.7) the CCLT holds for the per- 
mutation statistic t*,i1, p for both variance estimators Vn,1 and Vna. 

Theorem 4.1 generalizes parts of Janssen ((1997), Section 3). The present two- 
sample permutation distributions are typically used to adjust conditional critical values 
for the test statistic t n , I I  at the null hypothesis 

(4.8) E(X1) = E(Y1), 

see Janssen (1997) for further details and statistical applications. Other authors like 
Beran (1988) proposed the bootstrap or double bootstrap for two-sample statistics. If 
we have (4.8) in mind the bootstrap version of tn,H has a slightly different form than 
(4.6). Consider nl bootstrap or double bootstrap variables X~', X* of the X's  " ' ' '  nl 
and similarly YI*,-..,Y*2 (double) bootstrap variables of the other group where the 
resampling sample size always coincides with the underlying sample size. The two- 
sample (double) bootstrap statistic is then given by 

(4.9) 
( nl__n2 x 1/2 ( X : l  - -  Z n , )  - -  ( Y : ,  - -  Y n , )  

t*'II'b = \ n l  + n27 V1 /2(X; ,  . . . ,  X*,u, YP," ..,K'n2) " 

Again our choice will be Vn = Vn,1 or V. = Vn,2. 

THEOREM 4.2. Suppose that the conditions (4.7) and (1.12) hold for the pooled 
sample. Then the CCLT holds as well for the two-sample bootstrap as for the two-sample 
double bootstrap under the following conditions: 

* 1/-1/2 (a) For tn,ii,b with denominator Vn 1/2 -- " n,2 " 
* 1/-1/2 (b) For tn,iY,b with denominator Kin/2 = "n,1 whenever ( )2 

1 nl 1 nl 
- -  E i = l  X .#  - E j = l X n d  

(4.10) n l  n l  2 - + 1  ) & E i = I  X n , n l +  i -- X n , n l + J  n2 n2 j = l  

in P-probability. 

Remark 3. (a) Theorem 4.2 does not require the assumption (4.8). 
(b) Condition (4.10) reflects the variance homogeneity which is used to motivate 

the denominator v l /2  Vn~J_ �9 
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5. Applications to resampling tests 

The CCLT applies to the general testing problems stated in Example 1. First 
of all let us recall the meaning of the studentization given by the denominator of the 
statistics for resampling, see also Janssen (1997) for a discussion of the concrete Behrens- 
Fisher problem. Under the present heterogeneous null hypotheses (1.6) and (1.11) the 
numerator of (1.1) alone (i.e. the means or the difference of the means, respectively) may 
have the wrong conditional resampling variance. In case of the two-sample permutation 
statistic the numerator of (4.1) has the wrong permutation variance in general. This gap 
is corrected by taking studentized statistics into account where the denominator is also 
resampled. This procedure stands into accordance with general guidelines for bootstrap 
testing, see Hall and Wilson (1991) and Beran (1997). 

Throughout, we will use the notation of Example 1 of Section 1. We will compare 
the t-type tests ~n of asymptotic level a with their conditional counterparts ~ under 

the null hypotheses 7)0(1) and 7)0(2). Observe that  the CCLT under each P E 7)0() implies 

(5.1) Ep(I~ - qOnl) ~ 0 as n ~ ~, 

which follows from Janssen and Pauls ((2003), Lemma 1). Note whenever (5.1) holds 
the conditional tests ~* can be recommended and 

7)0(./ �9 the asymptotic level of the resampling test p* is c~ under P C , 
�9 ~ and ~* have the same asymptotic power under local alternatives. 
It is well known that resampling procedures like ~* may have some advantages 

at finite sample size. For instance the bootstrap produces a bias reduction. In order to 
discuss the advantages of ~ in comparision with ~ we will first consider the two-sample 
problem. 

Example 5. (Example l(b) continued) For the two-sample problem with 7)o (2) of 
(1.11) the test statistic tn,II of Section 4 with variance estimators (4.2) or (4.3) are 
adequate. Their conditional distributions of t*ji ,p given by (4.6) are called the per- 
mutation distribution of tn,II. The corresponding resampling test p* of (1.9) is the so 
called permutation test. 

(a) Suppose for a moment that 7)(2) is a restricted null hypothesis so that  Xn,1 , . . . ,  
Xn,k(n) are exchangeable, i.e. with invariant joint distributions under any permutation of 
the indices. By a proper randomization the permutation test qD n can then be made finite 

sample distribution free under 7)(2) of exact level c~ whereas ~n will not be distribution 

free and we have no control about the level of ~n on the composite null hypothesis 7)(2) 
at finite sample size in general. Together with (5.1) these facts suggest the choice of 
permutation tests. Finite sample Monte Carlo studies also confirm the quality of per- 
mutation tests for various null hypotheses which are larger than that of exchangeability, 
see Janssen (1997). 

(b) Suppose that  the conditions of Theorem 4.1 hold under the null hypothesis 

7)0 (2). Then (1.10) holds for the permutation tests ~* and they work well. 

(c) Suppose that  under 7)0(2) the variable Xn,1 , . . . ,  X~,k(n) are as in Example 2 row- 
n l  n wise independent and infinitesimal, i.e. (1.16) holds. Let ~-2~i=1 X~,i and ~i=n~+l  X~# 

be asymptotically normal for both samples. Then it is easy to see that  tn,u with the 
variance estimator Vn,2 of (4.3) is asymptotically standard normal. This follows from 
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Raikov's theorem, see Janssen and Pauls ((2003), Lemma 7). As explained in Example 2 
our Theorem 4.1 can be applied if condition (4.7) holds. Thus (1.10) follows. 

If the distributions are homogeneous under :p(2) then the denominator V~,2 can also 
be replaced by V~,I of (4.2). 

�9 As conclusion we remark that the present permutation tests are asymptotically 
equivalent to their unconditional counterparts whenever the CLT holds for both partial 
sums of rowwise independent variables. 

(d) Under the conditions of Theorem 4.2 the two-sample (double) boots t rap also 
works well. However, personally I prefer permutation tests for two-sample problems since 
they are finite sample distribution free for exchangeable variables, see (a). Monte Carlo 
simulations also support the permutation tests, see Janssen (1997) and Janssen and Pauls 
(2004). Bootstrap tests do not have here exact level a in general. The null hypothesis 

of exchangeability is often the core of some wider nonparametric null hypotheses P0 (2) . 

Example 6. (Example l(a) continued) (a) Recall that  permutation tests have no 

power when we are testing P0 (1) against one-sample alternatives given by exchangeable 
distributions. At this stage bootstrap tests can be helpful and different kind of boot- 
strap procedures will be discussed. Again bootstrap tests work well, i.e. (1.10) holds 
whenever tn of (1.1) and t* are asymptotically standard normal. Sufficient conditions 
were discussed in Sections 1 and 3. 

(b) A special case is that  of rowwise independent variables X~# under P0 (1). 
Roughly speaking the same assertions hold as in Example 5(c): 

~-~k(n) �9 Under the unconditional CLT of the partial sums z_,i=l X~,i the bootstrap tests 
work well. 

(c) Throughout different bootstrap procedures will be compared. The main as- 
sumption is condition (1.12). 

If (1.13) and (1.14) hold the re(n) out of k(n) bootstrap can be recommended 
where typically re(n) = k(n) are equal. For computational reasons m(n) and k(n) 
may be different (for instance m(n) < k(n)), but the high resampling frequency with 
m(n)/k(n) ~ cc should be avoided. In this case t* will be always asymptotically normal 
which can not reflect the finite sample distribution of t~. 

Beran (1988) pointed out that  the double bootstrap leads to some improvements 
for prepivoted test statistics. Under our conditions the double bootstrap tests also work 
well. Other authors prefer the Bayesian bootstrap, see Example 4. It is shown that the 
general CCLT can here also be applied. 

So far the discussion is concerned with a general scheme of random variables. A 
specific example is the case of heteroscedastic random variables X~,i which include the 
nonparametric extension of the Behrens-Fisher problem, confer Janssen (1997). 

Suppose that  under the null hypothesis Tn#, 1 < i <_ k(n), denote rowwise i.i.d. 
random variables with finite mean. Let an# > 0 be an array of standard deviations. 
Then 

(5.2) Xn,i := an,iTn,i 

fits into the present framework and we are again testing the means under inhomogeneous 
standard deviations. One-sample alternatives may be specified by positive means of the 
Tn,i. For two-sample alternatives the Tn# may be devided in two different groups of i.i.d. 
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variables with different means. Again the core of the model consists of equal a~,i within 
the row but the statistician can often not be sure that this assumption is satisfied. 

As pointed out above the resampling tests work well for (5.2) whenever the uncon- 
ditional CLT holds for the partial sums of (5.2). 

6. Technical results and proofs 

The present results rely on Theorem 2.1 which extends Theorem 3 of Janssen and 
Pauls (2003). The next lemma clarifies the meaning of assumption (2.4). Recall from 
Janssen and Pauls (2003) that the subspace 

(6.1) S := {qo e L2(0, 1): ~ nondecreasing, 11~112 1} 

of nondecreasing functions on the unit interval becomes a metric space (S, ]l" ]11) or 
(S, I]" 112) if the metric is induced by the L~- or L2-norm given by the uniform distribu- 
tion. By Lemma 2 of Janssen and Pauls (2003) the metric space (S, ][. 111) is compact. 
Let r : ft --* S and U : ft -~ (0, 1) be independent random variables where U is uniformly 
distributed. Then w ~-* r V(w)), briefly r  defines a new mean zero random vari- 
able with Var(r  _< 1. The random weights (2.1)-(2.4) define random step functions 

(6.2) 
( k ( n )  -- 1) 1/2 W n )  

~ n ( ' ,  U) := (2ki..(=nl)(Wn,i __ W n ) 2 ) l / 2  (Wl+[k(n)u]:k(n)  --  

via the order statistics Wl:k(n) ~_ W2:k(n) ~_ ' ' .  ~ Wk(n):k(n ) of the weights and the entire 
function [.] for u e (0, 1). The crucial assumptions of the L2-convergence for the random 
functions (~o~)~eN can be discussed again in the light of the following lemma. 

LEMMA 6.1. Let ~ : (0, 1) -~ IR be some function, qo E S, and let U be a uniform 
distributed random variable. 

(a) For each scheme of weights with (2.1)-(2.3) the following conditions are equiv- 
alent: 

(i) k(n)U2(Wn,1 - Wn) ~ ~(U) in distribution. 
(ii) For each distributional accumulation point r  ~ --* S of (Fn)n~N in (S, I[" ][1) 

the equality in distribution ~2(U) ~ ~(U) holds. 
(b) In addition to (i) let Var(~(U)) -- 1 hold. Then every subsequence of (~n)~cN 

has a further distributional convergent subsequence in (S, I1" 112). 

PROOF. The proof is based on the results of Janssen and Pauls ((2003), Section 7). 
Let Wn = 0 hold without further restrictions. 

__ X "~k(n) ( X n ,  i - X n )  2 - (a) (i) ==> (ii). Consider Xn# -- 1{1}(i) for i < k(n). Then z~i=l 
k ( n ) - l ( k ( n ) -  1)holds and the statistics Sn of (7.8)of  Janssen and Pauls (2003) 

(6.3) k(n)l/2Wn'l --* ~(U) 
& - - 

is convergent by assumption (i). On the other hand S n c a n  be treated by the methods of 
Section 7 there. Since (S, ]l" [] 1) is compact we may consider distributional accumulation 
points ~ --~ ~ in (S, [[. H1) along subsequences. Define Cnl : 1 - -  ] g ( n )  - 1  and c~i = 
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--k(n) -1 otherwise. Then the special construction (7.13) of Janssen and Pauls (2003) 
for suitable i.i.d, uniformly distributed random variables Un# proves 

(6.4) - Z 0 
i=l 

in probability. The weak law of large numbers implies 

1 k(n) 

k(n) - '  0 
i=1 

in probability. Thus Sn - ~n(U~,l) --* 0 holds in probability and (6.3) implies ~(U) ~= 
r 

(ii) =~ (i). In addition to Wn -- 0 we may assume without restriction that  

i=1 W~# = 1 holds. Define now the random variable 

k(n) 

(6.5) Vn = k(n) 1/2 E Wi:k(n)l((i-1)/k(n),i/k(n)] (U) 
i=1  

given by the step function (6.2). Due to the exchangeability of the weights we have 

(6.6) Vn ~ k(n)l/Uw~,l. 

On the other hand we have distributional convergence along subsequences 

(]g(m) z 1 )  1/2 
(6.7)  m(u) = \ k(m) Um - -  

where the limit distribution s is always the same by assumption (ii). This fact 
proves statement (i). 

(b) is a consequence of part (a) and the compactness of (S, I1" II1) and Lemma 3 of 
Janssen and Pauls (2003). 

PROOF OF THEOREM 2.1. We will apply Lemma 6.1(b) above and Theorem 3 of 
Janssen and Pauls (2003). Under condition (2.4) we have for each subsequence a further 
subsequence {m} C N such that ~m --* r in (S, II" 112) for some limit variable r : 12 --* S. 

By Lemma 6.1 we have ZI ~ ~(U). Along the present subsequence the statement of 
Theorem 2.1 is proved in Theorem 3 of Janssen and Pauls (2003). However, the limit 
variable only depends on the distribution r and it is the same for all convergent 
subsequences. This implies the convergence. 

This method of proof also applies to further cases, see Remark 2 above. 

LEMMA 6.2. Under the assumptions (1.15) and limn-~oz m(n)/k(n) -- c c (0, c~] 
the conditions (2.1)-(2.4) hold for the double bootstrap weights given by (2.7). The limit 
variable Z1 of (2.4) can be specified as follows. 
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(a) Consider for 0 < c < c~ independent Poisson random variables V and 
V1, V2,..., with E(Vi) = 1 for all i E N and E(V)  = c. Then 

holds with E(Z1) = 0 and Var(Z1) = 1. 
(b) For c = c~ the limit variable Z1 is standard normal. 

PROOF. The verification for the conditions (2.1)-(2.3) is straight forward. For 
re(n) = k(n) we refer to Praestgaard and Wellner (1993). The general case can be 
outlined as follows. For details see also Pauls (2002). The condition (2.3) follows from 
the weak law of large numbers 

rn(n) M~'i k(n) ---* 2. 

To prove this it is enough to verify the conditions 

n,1 k(n) ~ 2 

( (  m(n)~2 ( re(n))  2) 
(6.10) Coy M~, 1 k(n) ] ' Mn,: k(n) < 0 

(6.11) k(n) ( ( M '  re(n) '~ 2 ) 
re(n) 2 Var n,1 k - ~  ] -~ 0 

since the variables (M~n#- re(n))2 are exchangeable. The condition (2.3) obviously follows k(n) 
from k(n) ( (  )4) 

P ( max IWn#[ > e)  < 4m(n)-2s -4 E E 1~' re(n) \l<i<_k(n) -- -- i=1  n,i k(n) 

where the upper bound asymptotically vanishes which is shown below. 
The proof of (6.10) is similar to Prmstgaard and Wellner (1993). The convergence 

of (6.9) can be proved by taking conditional expectations w.r.t. Mn,1. Observe that here 

E ( ( M  In,1 m(n)~2~ 
k(n) ,] ] 

= E((M�88 - E(M;,1 I Mn,1)) 2) + E E(MPn,1 I Mn,1) - k(n---~ 

= E((M~, 1 - Mn,1) 2) + Var(M~,l) 

holds. If we multiply with k(n) /m(n)  then both terms converge to one. 
The condition (6.11) can be verified by the calculation of fourth moments of condi- 

tional binomial distributed variables. For details we refer to Pauls (2002). Recall that if 
Y is a binomial random variable with n degrees of freedom and parameter p then 

(6.12) E(Y 4) < n p  + 7n2p 2 + 6n3p 3 + n4p 4 
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holds. 
An upper bound of (6.11) is given by 

re(n)2 E n,1 k(n) 

k(n) [E M '4"~ (m(n) .~2 (re(n)"~ 4] 
<- rn(n)2 ( n,1] "~-6Z(Mn2,,) ~ ~(n) ] "~ ~ k(n) ] J" 

We will see that  each term is of the order rn(n)2/k(n) 3 which vanishes as n --~ oo. To 
see this we will take conditional expectations w.r.t. M~,I where s 1 I Mn,1) is a 
m(n)-binomial random variable with parameter p = Mn,1/m(n). Thus 

'2 '2 (re(n) re(n) 2 ) 
E(Mn,1 I M.,1) _< 2Mn2,1 and E(Mn,1) ~ 2 ~ k - - ~  -I- k(rt)----- ~ _  . 

The fourth moment can be treated similarly. Observe that  

E(M;11 I Mn,O < 15M,4,1 

holds and thus 

E(M4,) = O \ k(n) ] ) 

follows from (6.12). These arguments establish (6.7) under condition (1.15). 
Thus we may restrict ourselves to the proof of (2.8) which is done separately for 

c < c~ and c =  c~. 
(a) By Poisson's limit law we have M,,1 --~ V in distribution. On a suitably chosen 

probability space we have Mn,l(W) --* V(w) a.e. Thus we may study the behaviour of 
the second resampling step under the condition Mn,1 = k for k k 0. For this purpose 
let (Nn,1, . . . ,  Nn,m(n)) be new multinomial variables with re(n) degrees of freedom and 
success probability 1/m(n) which are independent of the other variables. 

Under the condition MnA = k we have again by Poisson's limit law 

M~n,1 ~= N.,1 "]-"'+ Nn,k ~ Vl + "'" + Vk 

in distribution. This fact implies the unconditional convergence 

V 
M ~ , I - - ~ E V / = :  ~. 

i=1 

It is well known that  E(~) = c and Var(~) -- 2c holds. 
(b) Suppose now that  m(n)/k(n) ~ c<) holds. Then Mn,1 is binomial distributed 

with rn(n) degrees of freedom and parameter Pn = 1/k(n). The central limit theorem of 
Lindeberg and Feller for binomial random variables yields 

Mn'l k(n) 

(6.13) /re(n) ( 1 k(n)) --~, 
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where ~1 is standard normal. In addition 

k(n) 
(6.14) ~(n) Mn,1 ~ 1 

holds in probability. 
In order to describe the second bootstrap step let ~n,l,~n,2,.-. denote an i.i.d. 

sequence of uniformly distributed random variables on [0, rn(n)] mutually independent 
to the previous variables. The variable M~, 1 has the representation 

re(n) ~ (~(~_1) ) ( 
(6.15) Mnl'l  k(n) --  l[0,Mn 1](Tin,i) -- Mn,1  + M n : l  m(n) ~ 

' k(n) ]" 

Without restrictions we may assume that  (6.14) is a.e. convergent. Either we may 
take subsequences or the probability space is changed. On a set of probability one the 
following conditional central limit theorem given Mn,1 holds. There exists a standard 
normal random variable ~2 independent of ~1 with 

(6.16) Em(~ ) l[o,M,,,q (r/n#) - Mn,1 ~ ~2 

I r n ( n ) ~  ( 1 m(n)) Mn,, 

in distribution. This statement follows by the same arguments used in (6.13) for binomial 
random variables. Obviously, we also have unconditional convergence in (6.16) and thus 

(6.17) E'~=(~ ) l[o,M,m](~ln,i) - Mn,1 --~ ~2 

converges in distribution. By (6.14) and (6.17) we then obtain 

k(n)l/2Wn,1 --' --~(~1 + ~2) 

in distribution which establishes the result for the double bootstrap for c = e~. 

PROOF OF THEOREM 3.1. By the subsequence principle it is enough to prove that  
for each subsequence there exists a further subsequence which converges to the same 
limit. After selecting a subsequence we may assume that  m(n)/k(n) ~ c holds for some 
c > 0. The proof runs parallel for both cases. Below we will indicate where are the 
differences under assumption (a) or (b). 

Without restrictions we may assume that  ~(~)= (Xn~i- ~ ) 2  = 1 and X~ -- 0 hold 
on the set In since the resampling statistic is homogeneous according to our assumptions. 
This can be seen as follows. Consider first for variables X~n# = Xn# --Xn. Since 

- -  ~-~k(n) W n , i Z n , i  ~'~k(n) ! Wk(n) = 0 holds the numerator z__~i=l = z...,i=l Wn#Xn# does not change. 
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Careful calculations show that the denominator does not change also 

2 

E W ~ y ' 2  1 " n,i--n,i- re(n)1~ 4 E Wtn,iXtn, i 
i=1 i=1 

2 ( ) E ~ 2 1 : Wn,iXn, i -- m ( n ) l / 4  E Wn, ixn,i  
i=1 i=1 

V,k(~) 
The verification of that  equality relies on the equations A. . J i= I  Wn,i =m(n) 1/2 and 

k(n) k(n) k(~) 

i=1 i=1 i=1 

In a first step we will treat the numerator of t*,w. Under assumption (1.12) we 
have by Theorem 2.1 the conditional central limit theorem 

(6.18) d s k(n) 1/~ E Wn'iXn,i I Xn ' s  I Xn) -~ o 
i=1 

in probability. Here we may turn to distributional convergent subsequences of 1i~ which 
is enough to prove (6.18). Under assumption (b) the same result holds since the series has 
also a normal distribution when Z1 is standard normal. By tightness we may again turn 
to distributional convergent subsequences of (2.8) which always lead to the same type of 
limit variable. In the next step we will s tudy the denominator. Recall that X~ = 0 holds 
without restrictions. Consider now the new array Y~# -- (k(n)/m(n))l/2X~# which is 
resampled throughout. We will prove that 

k(n) 

( 6 . 1 9 )  k(n)]/2 E Wn,iYn,i ~ 0 
i=l 

in probability. Again Theorem 2.1 can be applied. We have 

(6.20) 
k(n) 

r%nj 2 2 
E(Y'~ ' i  - 7k(~))2 <- ~(n) i<_k(n)max Xn,i E Xn,~ -~ O 
i=1 i=1 

since either (1.12) or k(n)/m(n) -~ 0 holds. 
rewritten as follows: 

Thus (6.20) yields (6.19) which can be 

 n(n)l/2 k(n) ) 
(6.21) k(n)l/2 W~n'iYn# k(n) E Yn,i 

i=1 

(6.22) k(n) k(n) Wn#Xi _ k(n)E 2 -- X n # .  
i=1 i=1 
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Under  X n  = 0 we have V'k(n) X 2 = 1 on In and (6.19) implies Z-~i= 1 n,i 

(6.23) 
k(n) ~(n) 
m(n) E X*2 - 1i, ~ 0 

i=1 

in probability.  For centered X ' s  the second te rm of the  denominator  asymptot ica l ly  
vanishes since 

k(n) ( 1 
m(n)l/2 re(n)1/4 

k ,2( )2 
- -  E Wtn , iXn ' i~  ---- k ( n ) U 2  k(~) 

i=l / re(n)1~2 Ei=I W n ' i X n ' i  

converges to zero. Thus  the result follows from (6.18) and (6.23). 

PROOF OF THEOREM 1.1. The assertion (a), (c), and (d) are special cases of 
Theorem 3.1. Only the converse result (b) requires some more effort. We show that  
(1.12) is also necessary for the CCLT. As above we may assume that  Xn = 0 and 

i=1 Xn,i = lln hold. Passing several t imes to subsequences,  denoted again by k(n),  
we may  assume tha t  m(n)/k(n) --~ ~ �9 (0, oc) holds and (2.8) is dis tr ibut ional  convergent 
on [0, 1] N x [0, 1] N x [0, 1] according to tightness. As in Janssen and Pauls  (2003) we may 
change the probabi l i ty  space (f~, A, P )  so tha t  (2.8) converges almost surely. Thus  the  
boo ts t rap  statist ics (2.5) with weights (2.6) has the conditional limit laws s I I I  = w) 
(2.9) with 

Z i = , ,~- l /2(N i - / ~ ) ,  Z j  = ~ - l / 2 ( j ~ j  _ ~), 

given by mutual ly  independent  Poisson random variables Ni, Nj with mean A, see Janssen 
and eau l s  ((2003), (8.39) if). 

In the  next s tep joint  conditional convergence given Xn of the  numera tor  and de- 
nominator  is established. First  it will be proved that  

(6.24) s (T~, k(n) m(n) ) 
m(n) ~ x*2 I s 

i=1 

- - - ~  ro,)~ -1 Z 2 Z j ~  2 + 5  -2 02 i~i + ( ~ ) l n  = 
\ i = l  j = l  

holds for fixed w, where #2(w) is as in Theorem 2.1. Notice tha t  ~0(w) is always zero or 
one. Since (2.8) is almost surely convergent by our special construct ion we may restrict  

x"~k(n) X 2  • .~ ourselves to the  case ~o(w) = 1. Then we have finally ?--~i=1 n#bZ) = 1 and by (3.3): 

(6.25) 
k(,~) re(n) ) 

T;, re(n) E X; 2 
i=1 

= k(n) 1/2 ~ Wn#Xn,i, k(n)l/2 k(n) 1/2 2 m---~-)72 W~,iXn,i + 1 . 
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Statement (6.24) is treated via deterministic coefficients Cni : :  Xi:k(n)(~d) where finally 

~k(n) 2 = 1 holds. For each coordinate of (6.25) now the substitution of the kind of i=l Cni 
(6.4) by rowwise independent variables can be applied and we have 

k(n) 

(6.26) Z~ -- E Cni~3n(Vn'i) ---'+ 0 
i=1 

k(n) 1/2 k(n)l /2  2 (6.27) Wn#X # - E 0 
i----1 i=l 

both in probability for fixed w. The details are figured out in Janssen and Pauls ((2003), 
(7.11)-(7.19)). The function ~n is defined in (6.2). Up to convergent constants it is now 
enough to establish the limit variable of 

( ~  k(n) ) 
(6.28) c~i~n(Un#), E C2ni~3n(Un'i) 

i=l 

in order to treat (6.25). The special construction of Janssen and Pauls (2003) allows to 
treat the extremes of (6.28) simultaneously for powers k = 1, 2. For each i , j  we have 
convergence in probability 

Ckni~n(Un,i) -"+ ~k(o.2)Zi and 
(6.29) 

Ckn(n+l_j)~n(Un,n+l_j)  ~ ~k(~)gj,  k = 1,2. 

Thus for each r E N we have joint distributional convergence of 

i=1 j=l 

It is easy to show that the middle part of the second quadratic component of (6.28) 
vanishes for n ~ oc, cf. Janssen and Pauls (2003), for related arguments. For this 
purpose consider sequences rn T ec, s~ T cx~. Then 

(6.31) Var C~n(Un#  < 4 Cni 
\ i=rn "= 

< m a x { c ~ i : r : n  < i < k(n) - 8n} ---+ 0 

V'k(n) 2 < 1. since i H Cni is increasing and z..,i=l Cni - 
Thus (6.30) and (6.31) together with standard arguments of Billingsley (1968), The- 

orem 4.2, prove that (6.28) converge in distribution to (2?0, R) where 

o~ o~ 
(6.32) R = E ~ ( w ) Z i  + E ~y(w)2j 

i=1 j=l 
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= + - + . 

Now we may combine (6.25)-(6.26) and (6.24) is proved. At this stage the proof follows 
the lines of Mason and Shao (2001). We have 

(6.33) s I Zn(CX))) "--+ ~" k()k--l(V~~ Zi~(w)  + Ej~= 1 2j~2(w)) + ~2((M))1/2 

in distribution. Observe that  the second component of (6.24), the sum of the squares, is 
the leading term of the denominator. Similar arguments are carried out in the proof of 
Theorem 3.1 below (6.23). On the other hand s ] Xn(w)) is standard normal when 
~0(w) = 1 holds. The case ~0(w) = 0 is a trivial case which corresponds to 0 = o. Now 
Proposition 2.2 of Mason and Shao (2001) implies that  the limit law (6.33) can only 
standard normal if ~l(W) = ~l(w) = 0 holds. By tightness of (2.8) this holds for all 
cluster points of (2.8). This implies condition (1.12). 

PROOF OF THEOREM 4.1. Assume first that  n l / k (n )  ~ ~ C (0, 1) converges as 
n --~ oc. Again we may assume that X n  = 0 and V'k(n) 2 z-~=l Xn,~ = 1 hold on the set {Vn > 0} 
since the resampling procedure (4.5), (4.6) is compatible with respect to normalization. 
The numerator of t n j / h a s  now the form 

k(~) 

(6.34) Tn = E cn~Xn# 
i=l 

given by the two-sample regression coefficients 

i n i n 2 ~  1/2 
= - n2 l{nl<i<k(~)}]. (6.35) Cni k k(r~) ] [n111{i~<nl } -1 _ 

As in Janssen and Pauls (2003), Example 2, we may choose the weights Wn,i = cn~(i). 
, k(,~l/2 V,k(n) v k(n)l/2 V,k(n) , The resampling form of Tn is now T,~ = v~j z..,i=l c~,7(i)Xn# = z--.,i=l cniXi �9 

Under the condition (1.12) our Theorem 2.1 implies 

(6.36) d(L(T* I s  ~ (Z  ] ,Yn)) ----* 0 

in probability. In the next step let us resample the denominator k(n)V~,l. As in (6.20) 

we have Z...~=l~"~k(n)(x2k n,i -- ~ 1  Z--,j=lX-'k(n) X2~,3j~2 __~ 0 and the squares will be resampled first. 

The following convergence is understood as conditional convergence given X~. For the 
squares Theorem 2.1 yields degenerate limit laws. Thus 

(6.37) k(n)l/2 E 2 cniXn,~(i) --~ 0 
i=O 

holds. This statistic can be rewritten as 

(6.38) k(n) ~ (  nl ) 2 
(nln2)l/2 l{i<--k(n)} k(n) Xn,a(i) ----+ O. 
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v-k(n) 2 Since nl /k (n)  z...,i=l Xn,~,(i) = n l /k (n)  holds we have 

n l  
2 k(n) Z X~,o(i) ~ ~" 

(6.39) k(--~) = 2 i=1  

It is easy to see that  nl(1/n l  nl ~ = 1  X~,~(i)) 2 ~ 0 holds. The second term of Vn,1 can be 
treated similarly. Thus 

(6.40) k(n)Vn, l (X~, . . . ,  X;(n) ) ---* ~ + (1 --/3) = 1. 

The same assertion holds for Vn,2. However, we have 

n l  
(6.41) nln2 i ~  1 1 nl . . . .  Xn,a(j) ~ 1 - nl (nl - 1) "= Xn'a(i) n l  j = l  

and the second term of this type now tends to t3. These arguments complete the proof 
when nl /k (n)  ~ ~. The general case follows by the consideration of convergent subse- 
quences of (4.7). Since the limit is always the same the statement then also holds. 

PROOF OF THEOREM 4.2. This proof combines the arguments of the one-sample 
(double) bootstrap proof used in Theorem 3.1 and the treatment of the two-sample case 
of Theorem 4.1. Also we like to remind the reader to the following subsequence principle. 
Convergence of (1.3) in probability holds iff for each subsequence there exists a further 
subsequence such that (1.3) holds almost surely. 

The present t-statistics (4.1) are homogenous with respect to affine transformations. 
Hence, we may assume that 

nl n2 k(n) 
(6.42) Z Xn'i = O, Z Xn'nlWi : 0 and Z X~# = 1 

i = l  i=1  i=1  

holds on a set of asymptotic probability one. Assume also that  nl /k (n)  ~ / 3  for some 
Z �9 (0,1). 

(b) Define random variables 

Under (4.10) we have by (6.42) 

(6.43) 2 1/2 O'n, 1 and 2 an, 2 --* 1/2 

in probability. Let now ~1 and ~2 denote two independent standard normal random 
variables. Then by (1.12) 

(6.44) d (Z. ( ni~=l X* I Zk(n)) ,t~((Tn,l~l Ilk(n)))---->0 
and 
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hold both in probability. Since the bootstrap procedures of the X- and Y-groups are 
conditionally independent given Xk(n) we have 

(6.46) d n2 1/2 nl 1/2 
Xi - 5* I)(k(n) , 

i=1  i----1 

( ( n 2 )  1/2 ( n l ~  1/2 ) )  
~11 o ' n ' l ~ l  + - -  0-n,2~2 [ Z k ( n )  --~ 0 

\ n 2  / 

in P-probability. By (6.43) we have 

(6.47) n2o'n,1 + nlo-n,2 § 1 
nl  n2 

in probability and we have the CCLT in (6.46). The denominator has to be multiplied 
by k(n) 1/2. Writing again 

T~ I nl 

Z ( x ;  -* X y -  --Xnl) ~ n l  ( X : l )  2 
i=1  i=1  

we see that  ~"~nl X,2 is the leading term. A..~i= 1 i 
As in the proof of Theorem 3.1 we have 

n l  
(6.48) ~ X.2 2 z..., ~ - an,l -~ O and 

i = l  

in probability. Thus 

n2 
 5.2 2 

- -  O ' n ,  2 

i=1  

nl n2 
(6.49) ~ X .2 + ~ 5  .2 --* 1 

i=1  i=1  

follows which proves the result. 
(a) This proof is much the same as above. Assume first that  O'n, 1 and o-n,2 converge 

almost surely. In contrast to (6.47) the conditional limit (6.46) has now the asymptotic 
variance 

(6.50) lim (n20"2n1 nlo'2n'2 - - +  = :p .  
nl n2 ] 

Next k ( n ) V n , 2 ( X ~ , . . . ,  X*  1, YI*,- ' ' ,  Y*2) will be treated similarly. The leading terms are 

n l  n2 
(6.51) n_22 ~ X .  2 + n__1_1 ~-,  ~.2 __. p 

nl A.~ ~ n2 A.~ 
i=1  i=1  

which converge in probability by (6.48). Now we can take ratios which implies the CCLT 
for the t*-statistic. 

The general case can be treated again by subsequence arguments. By (6.42) the 
sequence (o'n,1, o'n,2) is tight. Thus we may choose distributional convergent subsequences 
and then almost surely convergent versions of these random variables along the present 
subsequences. At this stage the first step of the proof applies and the result follows. 
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