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A b s t r a c t .  This  pape r  in t roduces  a profile empir ica l  l ikel ihood and a profile con- 
d i t ional ly  empir ical  l ikel ihood to e s t ima te  the  p a r a m e t e r  of in teres t  in the  presence 
of nuisance pa rame te r s  respect ively for the  pa rame t r i c  and  semipa ramet r i c  models.  
I t  is proven tha t  these me thods  propose  some efficient e s t ima tors  of pa r a me te r s  of 
interest  in the  sense of least-favorable  efficiency. Par t icular ly ,  for the  decomposab le  
semiparamet r i c  models,  an explici t  r epresen ta t ion  for the  e s t ima to r  of p a r a m e t e r  of 
in teres t  is derived from the  p roposed  nonpa rame t r i c  method .  These  new es t imat ions  
are different from and more efficient t han  the exist ing es t imat ions .  Some examples  
and s imula t ion  s tudies  are given to i l lus t ra te  the  theore t ica l  results.  

Key words and phrases: Profile l ikelihood, empir ica l  l ikelihood, efficiency, pa rame t -  
ric and  semiparamet r ic  models.  

i .  Introduction 

Profile likelihood has received much attention in the literature. Severini and Wong 
(1992) outlined the general profile likelihood and proposed a profile conditional likelihood 
to estimate the parameter of interest under the condition that  the data  come from a 
known class of distributions. These methods are based on the idea of estimating a one- 
dimensional subproblem of the original problem so that  the obtained estimator is least- 
favorable in the sense of Stein (1956). Severini (1998, 1999, 2002) constructed some 
modified profile likelihood functions, or some approximations to the modified profile 
likelihood functions through known distribution of data, which yield some estimating 
functions for the parameter of interest satisfying approximate unbiasedness. Small and 
McLeish (1994) in Chapter 5 of their book summed up some Hilbert space methods to 
obtain the estimating function for the parameter of interest, which are based on the 
version of parameter orthogonality and use the projection of an estimating function 
for full parameters onto the E-ancillary subspace of estimating functions to make the 
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estimating function insensitive to the change in the nuisance parameter. Motivated by 
Severini and Wong (1992), Lin and Zhang (2002) proposed a profile quasi likelihood for 
the parametric models under the condition that  the information about  distribution of 
data relates only to the first two moments and the obtained estimator of parameter of 
interest is least-favorable efficient. 

In this paper, we assume that the information about the distribution is available 
in the form of functionally independent unbiased estimating functions. The main put- 
pose of this paper is to estimate the parameters of interest under this general condition 
of data. The basic goal is to estimate parameters of interest efficiently in the sense 
of least-favorable eff• for the parametric and semiparametric models. By extend- 
ing the profile likelihood and profile quasi likelihood to empirical likelihood, this pc- 
per introduces a profile empirical likelihood to estimate the parameters of interest in 
the presence of finite-dimensional nuisance parameter. When the nuisance parameter 
is infinite-dimensional, an empirical form of score function for the nuisance parameter 
is constructed and then a profile conditionally empirical likelihood for the parameter of 
interest is obtained. In the decomposable semiparametric models, the proposed nonpara- 
metric method leads to some explicit representations for the estimators of parameter of 
interest and the nonparametric component. These new explicit representations are very 
different from the existing estimations and are useful tools for statistical inference in 
the decomposable semiparametric models. Theoretical and simulation results show that 
these estimations are more efficient than the existing estimations. 

2. Profile empirical likelihood for parametric models 

In this section we first introduce a criterion, called the empirical Fisher information, 
to assess the empirical likelihood for parametric models and then construct a profile 
empirical likelihood for the parameter of interest. The obtained estimator of parameter 
of interest is asymptotically optimal under this criterion. Another goal of this section 
is to motivate some basic versions for profile empirical likelihood, which will be used in 
the next section. 

In order to define a profile empirical likelihood for parametric models, we now out- 
line the original empirical likelihood as proposed by Owen (1988, 1990), Qin and Lawless 
(1994) and so on. Let Yl , . . . ,  YN be independent observations with an unknown d-variate 
distribution F(y ,  0), where 0 is a p-dimensional column vector of unknown parameters. 
We assume that the information about F(y ,  0) is available in the form of unbiased es- 
timating function u(y,O) = ( u l ( y , O ) , . . .  ,ur(y,O)) ' ,  r >_ p, i.e., known function vector 
u(y, 0) satisfies E(u(y, 0)) = 0. In this case the empirical likelihood function is defined 
a s  

L(0) = sup log N pi  
i=1  

N 

i = 1  

= 1,pi _> 0, i ---- 1 , . . . , N ,  E p i u ( y i , 0  ) = 0 . 
i = 1  

By Lagrange multipliers, the empirical likelihood function can be expressed as 

N 

(2.1) L(0) -- E log(1 + t '(O)u(yi, 0)), 
i = l  
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where t(O) = (tl(O),..., t~(O))' satisfies 

N 

--N ~.= 1 + t'(O)u(yi, O) u(yi' 8) = O. 

N 1 ~ 1 E ,=I(p4  1 ) : ,  On the other hand, if ogl-I/=l pi is replaced by Euclidean distance - 7  
the empirical Euclidean likelihood function is expressed as 

(2.2) LE(O) = sup -- E ( N p 4 - 1 )  2 
4=1 

N 

E P4 = 1,pi _> 0, i = 1,. .  ,N,  
4=1 

p4~(y~, o) = o 
4=1 

By Lagrange multipliers, the empirical Euclidean likelihood function has the form of 

(2.3) LE (8) = - N~t(0)S-I(0)~(O),  
z 

where ~(0) -~ EN=I u(yi, O), S(O) -~ N = = E4=, (u(y~ ,  8) - ~(0))(u(y4,  8) - ~(e)) ' .  
The two empirical likelihood functions L(O) and LE(O) have the same asymptotic 

behaviours such as L(O) = LE(O) + op( l )  (Owen (1990)). So, in what follows we focus 
only on the empirical Euclidean likelihood function LE(O). 

We use 0 to denote the empirical Euclidean likelihood estimator obtained from the 
empirical Euclidean likelihood (2.3), i.e., 0 = argsup0co LE(O). Under the usual kinds 

of limiting conditions (Qin and Lawless (1994), Luo (1994)), x/-N(0 - 80) ~ N(0, i~1), 

where the asymptotic covariance matrix of ~ is 

(2.4) 

V(O) = Eo(u(y, Oo)u'(y, 80)) and the subscript 0 denotes the evaluation at the true state. 
The version of equation (2.3) is similar to that  of the Generalized Method of Moments 
(GMM). According to GMM, i~ 1 provides a lower bound to the asymptotic covariances 
of all regularity estimators of 0 (Chamberlain (1987)). Then, in this paper, we call ie 
the empirical Fisher information for 0. 

We now introduce profile empirical likelihood. In this paper, parameter vector 
is decomposed as 0 = (a, ~P)~ and then the parameter space O is also decomposed as 
O = ,4 x B, in which a E ,4 is a real-valued parameter of interest and/3 C B is a (p - 1)- 
dimensional column vector of nuisance parameters, and O, r and B are all open sets. 
To estimate the parameter a of interest, as mentioned by Severini and Wong (1992) and 
Lin and Zhang (2002), we assume that there is a curve in the parameter space such as 

H (a, ~ )~  with t3a o --/30. The empirical Fisher information for estimating ~ along 
the subproblem defined by this curve is given by 

E0 k a s  + u v - l ( ~ ' 3 ~ ) f ~  k b ~  + u , 
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where U = o,~(y,s,Z~)dZ~ The minimum empirical Fisher information for a over all 
0 t ~ '  " d s  " 

possible subproblems are given by 

(2.5) 
.) oo  =oo 

= inf Eo Ou( ,Zs)  + U  V-I (a ' /~a )E~ \ Oa + U  
U6~" 

where U = span{~ and U* - Ou(y,s,~)on, dZ~da �9 It can be verified that  

U* - la=so is the projection of au(y,s,~) [~=~o onto 9 v based on the inner product defined 0c~ 
by 

<A, B) = E o ( A ' ) V - I ( a ,  t3s)Eo(A) Is=so �9 

It follows immediately from the previous characterization that  

(2.6) is = E0 \ as  + u* V-l(~,Zs)E0 \ b~ + u* 

provides another useful interpretation of is as the minimum empirical Fisher information 
over all possible smooth one-dimensional subproblems. Then we call is  the empirical 
Fisher information (EFI) for a. Note that  EFI for a associated with a curve a 

(a, (/3*)')' depends on the curve only through the tangent vector ~ at the true value 
point so. Similar to the terminology used in recent literature (Severini and Wong (1992), 
Lin and Zhang (2002)), in this paper, we call such a curve a ~ (a, (1~*)')' the empirical 

least-favorable curve (ELFC), call the tangent vector ~ the empirical least-favorable 
direction (ELFD), and then call 

(2.7) 
N ! = Z~)s (~,Zs)~(~,Zs) LE(a,19*) ---~s (a, * -1 �9 - �9 

the empirical least-favorable Euclidean likelihood. 
Suppose that  we are able to identify some curves a ~-* (a, ~'~)' for a e (a, b) sat- 

isfying Bso -- /3o. A least-favorable-efficient selection for empirical likelihood of c~ is 
LE(C~, ~ )  as defined in (2.7). Of course in practice such a likelihood is not available 
because t3" depends on unknown expectation E0 and unknown parameter a0 and then 
LE(a,/3*) depends on them as well. However, if we are able to obtain a suitable esti- 
mator/~s of a ELFC/3*, we may then obtain an estimate of a by solving a substitute 

equation OLE(s'~c~) : O. 
Oa 

From the characterization of U* as a projection, it follows immediately that  a nec- 

essary and sufficient condition for to be ELFD is that  

i 
! 

(2.s) E0 \ b~ + 0Z' \ - ~ J )  
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According to the orthogonality as defined above, an estimator ~a is said to be consistent 
estimator of a ELFC, if/~a converges in probability to a constant j3a and satisfies that 

(2.9) ~(OqU(O~'~a)OqO~ q- OqU(Oe' ~a)09' S-1(O~'/~a) (O~U(~ ~a) ) a:ao =OP(I)" 

To carry out this approach, we need to construct a consistent estimator of a ELFC. 
For any fixed a, let/~ = arg supo LE (a, 9), equivalently,/~ satisfies 

(2.10) OLE(a,O9, 9) e=a~= O. 

Then from this estimator we can obtain an estimator & by maximizing LE(Oe,/~a), equiv- 
alently, & satisfies 

(2.11) OLE(a,3~) = O. 
Oq~ a=& 

The following condition helps us get the asymptotic properties of/3~: 
(B1) In the parametric model, 

OEo(u(~, 9)u'(~, 9)) OEo(~(~, ~)) = Eo ( &(~' 9) , 
an \ ~ 09 

Let 

= E~ (O(u(~' Z)u'(~'/~)))  " 09  

r 9) = Eo(u'(~, 9))(E0(u(~, Z)u'(~, Z))) - lE0(u(~,  9)) 
and 9~ denote a solution to the equation O~(a, 9) /09  = 0 with respect to 9 for fixed a. 
Assume that/~a is unique and that for any c > 0 there exists a 5 > 0 such that 

sup 0<(a,/3a) _~ 5 
03 

implies 
sup I~a - /3a  ] _< g. 

LEMMA 2.1. 
(B1) hold. 

(2.12) 

(2.13) 

and 

(2.14) 

Assume that Condition (A1) listed in the Appendix and Condition 
^ 

Then 9a, the root of the equation (2.10), satisfies 

sup I~- - 9.1 = op(1), 

~o - 9o = Op(N :~/2) 

-- Op(N-1/2). 



490 LU LIN ET AL. 

Remark 2.1. Lemma 2.1 shows that  /3~ is a consistent estimator of ELFC. The 
approach to constructing the estimator r of ELFC is of course common; in fact, for 
fixed a, /3~ is exactly the empirical likelihood estimator. This fact is similar to that, 
for fixed a, the maximum likelihood estimator of/3 is a consistent estimator of a least- 
favorable curve when the distribution F(y, O) of y is known (Severini and Wong (1992)). 
Furthermore the result (2.14) implies (2.9), both describing the asymptotic orthogonality 
of the direction d ~ / d a .  On the other hand, the proof of this lemma motivates an idea 
to construct an empirical form of score function for the nonparametric component of the 
semiparametric model (for detail see the next section). 

THEOREM 2.1. If Condition (A1) listed in the Appendix and Condition (B1) hold, 
then &, the root of the equation (2.11), satisfies that 

v/-N(& - So) ~ N(O, (i,~)-1), 

where ia is defined in (2.6). 

Remark 2.2. The theorem shows that  the estimator & obtained by (2.11) is asymp- 
totically least-favorable efficient. 

3. Profile empirical likelihood for semiparametric models 

Generally, the semiparametric model is parameterized by a parameter of interest 
taking values in a finite-dimensional space and a nuisance parameter taking values in 
an infinite-dimensional space. As mentioned previously, when the nuisance parameter 
is finite-dimensional, the profile empirical likelihood estimator & obtained by (2.11) is 
asymptotically least-favorable efficient. However, if the nuisance parameter is infinite- 
dimensional, we are unable to get a root from the equation (2.10) and then we are unable 
to get an estimator of a by profile empirical likelihood as presented before. 

3.1 Semiparametric regression model 
In this subsection, we introduce a profile conditionally empirical likelihood for the 

following semiparametric regression model: 

(3.1) E(y I x, z) = h(a,/3, z), 

where h(a,/3, z) C R is a known function of a,  /3 and z, parameter /3  depends on the 
value of x in the sense of/3 = ,k(x) for some unknown smooth function ,~. The model 
(3.1) can be rewritten as 

E(y t x, z) = A(x), z). 
For simplicity, we assume that x C [0, 1] and z E [0, 1]. The model contains both 
parametric and nonparametric components, the nonparametric component A(x) playing a 
role of nuisance parameter. This model is generally semiparametric regression, including 
semiparametric linear regression, semiparametric nonlinear regression, semiparametric 
generalized linear regression and so on. 

Similar to Severini and Wong (1992), we can easily obtain the partial derivative of 
h(a,  )~(x), z) with respect to function ~(x) as that,  for any continuous function v(x) on 
[0,1], 

h(a,o_~A(x), z) (v) - h(a,0/3/3, z) ~=~(x) v(x), 
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which can be regarded as a linear t ransformat ion on the tangent  space of the  space of 
possible A. By the idea of Section 2, for given x and z, here we regard /3  as a function 
of a ,  denoted by t3 = /3s, and consequent ly  A(x) is also a function of c~, denoted  by 
A(x) = As(x).  The first inference problem changes to be the subproblem of construct ing 
suitable es t imator  of A(x) in the class {As(x) : c~ E ,4}. In this case, the  unbiased 
est imating function of ct along the curve c~ H (c~, As(x))  is 

u(y, ~,  As(x) ,  z) = y - h(~ ,  As(x) ,  z). 

With  the similar argument  as in the previous section and Severini and Wong (1992), 
we call tha t  a curve A*(x) is a condit ionally empirical least-favorable curve (CELFC) ,  
equivalently, OA*(x)/Oc~ is a condit ionally empirical least-favorable direction (CELFD)  
if and only if 

1 (Oh(o~o, Ao(x),z) 
(3.2) Eo ~--fi(x, z) \ -0-~- 

+ Oh(o~o,/3,Z)o/3 ~=~,o(x) dA;~ (X))d~ Oh(~o,/3,Z)o/3 ~=~o(x)v(x)} 
---- 0 for any continuous function v(x) on [0, 1], 

where a2(x, z) = Eo(y - h(c~0, Ao(X), z) I x, z) 2. Similar to (2.6), for given x and z, the  
empirical Fisher information (EFI) for c~ is defined by 

] (3.3) i s  = E0 \ 0 ~  + U~ ~2(x,  z) , 

Oh(so,13,z) where U~ = oZ i/3=,ko(x) d.k*Qds(X) 
In order to carry out  an es t imat ion procedure,  an es t imator  of A*(x) must  be  avail- 

able. Since Aa(x) is a function of x, the  equat ion (2.10) in Section 2 can not  be used to 
get the es t imator  of A*(x). So a new design is desired. 

From the proof  of Lemma 2.1, fortunately,  we can see that ,  if/3 is a parameter ,  the  
main par t  of score function OLE(Ct,/3)/0/3 for /3 is (N/2)(Ogt'/O/3)S-lft. Motiva ted  by 
this fact and the empirical method,  for fixed c~, here we consider an empirical form of 
score function for/3 as 

N 
o (3.4)  q~(c~,/3, X, Z) ~-~ -~  i=1 

_ N ~ Oh(o~,/3, zi) (Yi - h(o~,/3, zi))KNi(X, z) 
2 i=1 0/3 

where Kgi(x,  z) ---- Kgi((x, z); (xl ,  z l ) , . . . ,  (XN, ZN)) are weight functions satisfying the 
following conditions: 

(i) KNi(X, z) > 0 for x, z e [0, 1]. 
(ii) N }-~-i=l KNi(X, z) = 1 for  x ,  z @ [0, 1]. 

(iii) limN__+~ supx,zc[0,1 ] Y~N_ 1 KNi(X, z)I(ll(xi, zi) -- (x, z)l I > 5) = 0 for any 5 > 0, 
where I(S) is an indicator function of set S. 



492 LU LIN ET AL. 

(iv) supz,zc[0,1] ~-'~iN1 K2i(x ,  z) ---- O ( n  - 1 )  for  x,  z C [0, 1]. 
For fixed a, x and z, from the equation 

(3.5) qZ(c~,/3, x, z) = 0 

with respect to /3, we get a solution denoted by ~a. Note that, given ( x l , z l ) , . . . ,  
(XN, ZN), weights KNi(X, z) are the functions of x and z, which are different from the 
existing weights that are the functions of x only (Severini and Staniswalis (1994), Shi 
(2001)). As a result the solution ~a is also a function of x and z: ~a = ~a(x, z). The 
following Lemmas 3.1 and 3.2 will show that, at the true state, ~ o  (x, z) tends to CELFC 
in probability. This is a new idea of using a function of 2-variables to approximate a 
function of single variable. Although this method is different from that of Severini and 
Staniswalis (1994), it is coincident with that  of Severini and Wong (1992) in the sense 
of that  the estimator of nonparametric component depends on all design variables. The 
purpose of this special construction is to make ~a0(x, z) to be a consistent estimator 
of CELFC as described in the following Lemmas 3.1 and 3.2. On the other hand, our 
method here is somewhat different from the smoothed empirical likelihood. Although 
the two methods are based on smoothing technique, the former uses smoothing technique 
to construct estimating equation for CELFC and then solves a nonparametric problem, 
the latter employs smoothing technique to estimate full parameters and then solves a 
parametric problem. 

For understanding how to construct ~a(x, z) and & by the equation (3.5) and the 
empirical likelihood, we first consider the following examples. 

Example 1. Consider a common semiparametric regression model, in which 
h(a, A(x), z) has the decomposable form of 

(3.6) h(a,A(x),z) = g(a ,z )  +A(x)  

for a known function g(a, z) and an unknown function/k(x). In the case we can verify 
that the solution obtained from the equation (3.5) has a explicit representation as 

N 

(3.7) ~ ( x ,  z) = E ( y i  - g(a, zi))Kni(X, z). 
i=1 

Obviously, it is a common kernel method except that the weights are the functions 
of 2-variables. From this estimator, we can obtain an estimator & by minimizing 
LE(a, ~a(X, Z)), or & satisfies 

X (x, z)) 
(3.8) = o. 

Particularly, in the decomposable model (3.6), if g(a, z) is a linear function of a, i.e., 
g(c~, z) = az, then we can get a conditionally empirical likelihood estimator & of a by 
equation (3.8). The estimator has an explicit representation 

(3.9) & = 
~_,iNl(yi - ~_,N_ 1KNj(Xi, zi)y3)(Zi - EN=i KNj(Xi, Zi)Zj) 

E ~ - - l ( Z i -  EY=I KNj(Xi, Zi)ZJ) 2 
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and then, when c~ = &, the solution As(x, z) also has an explicit representation 

N 

(3.10) J~a(x, z) = E KNi(x,  z)(yi - &zi). 
i=1  

Example 2. Consider the following semiparametric generalized linear model: 

E(y I x, z) = exp{az + A(x)}. 

From the equation (3.5), fixed a, we get a solution as 

In this case, however, we can not get an explicit representation for a and then, for solving 
the equation OLE(O~, ~ ( x ,  z ) ) / 0 a  = 0, a numerical solution is necessary. 

Let 

~(~,/3, x ,z)  = Eo (OU(Y'-o~/3'Z) u(y,c~,/3, z) , x , z )  , 

which equals Oh(~,z)(h(ao, )~o (x), z ) -  h((~,/3, z)) in the semiparametric regression model 
(3.1). Since ~(c~0,/30, x, z) = 0, we give the following regularity condition: 

(B2) In the semiparametric model, let /~s(x, z) denote a solution to the equation 
~((~,/3, x, z) = 0 with respect to/3 for fixed a and (x, z). Assume that  As(x, z) is unique 
and that  for any e > 0 there exists a 5 > 0 such that  

sup sup l~(c~,~(z , z ) ,x , z ) l  <_ 
(x,~) 

implies that  
sup sup li~(x, z) - As(x, z)l < ~. 

s (x,~) 

LEMMA 3.1. For the semiparamtric regression model (3.1), given x and z, in ad- 
dition to Conditions (A2) listed in the Appendix, if Condition (B2) holds, then 

(3.11) 

(3.12) 
and 

(3.13) 

sup sup I~s(x, z) - As(x, z) I = oR(l), 
(x,z) 

~o(X, z) - ~o(~) = o P ( g  -'/~) 

d~ Sda(X, z) s = so 

E~-I Oh(~o,/3,z~) 
0/3 

,=~o(x) Oh(so,O~o(X), z~) K ~ ( z ,  z) 
+ op(1) 
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Ou(Yi,oflSo, /3, zi) ~=~o(x) Ou(yi, So, )~O(X), zi) KNi(X, Z) 
Os 

+ op (1). 

2 

KNi (X, Z) 

LEMMA 3.2. For the semiparamtric regression model (3.1), if the conditions of 
Lemma 3.1 hold, then, 

(3.14) (O~_~ + _6_fiO~ Z=~o(x) ds c~=c~ol S--l(so~)~o(X))~ fl=)~o(X) v(x) 

= Op(1) for any continuous function v(x) on [0, 1], 

where 

O~t _ 1 ~ Ou(yi, So, Ao(xi), zi) 
Os N Os i=1 

0k f l=~o(~)d~(x ,z)  a=ao = N 0/3 ds 
and 

N 
1 E(u(yi,so,)~o(Xi),zi) _ g)2. S ( s o ,  = 

i----1 

Ok 1 G Ou(yi, So,/3, zi) 

' 0/3 ~=~o(x) N i=1 0/3 ~=~o(x~)' 2_, 

~ Ou(yi, So,/3, zi) dfla(xi, zi) 
i=1 0/3 ~=~o(~) ds  ( ~ ( ~ 0  

Remark 3.1. The lemmas above imply that A~o(X,Z) is just a CELFC with 
/~ao(x, z) = s s is a consistent estimator of this curve. Furthermore, the 
direction d~a(x,z)/dsla=~o of CELFD has an approximately explicit representation 
(3.13) and the equation (3.14) describes the asymptotic orthogonality of the direction 
d~(x,  z)/ds, which just gives an empirical form of (3.2). 

THEOREM 3.1. If the conditions in Lemma 3.2 holds, then 

X / ~ ( ~  -- S0) --~ N(0 ,  ( i a ) - l ) ,  

where is is defined in (3.3). 

Remark 3.2. The theorem shows that the estimator & obtained by (3.8) is least- 
favorable efficient. If we use the existing nonparametric method to estimate nonpara- 
metric component A(x) (Severini and Staniswalis (1994), Shi (2000)), the estimator is 
a function of univariable x only. For example, in the decomposable model (3.6), the 
estimator is 

N 

= Z - g ( s ,  
i=l  
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where/~Ni(x) = [(Ni(X; x l , . . . ,  XN) are weight functions depending only on univariable 
x. This results in the estimators of c~ and ~(x) respectively as 

(3.15) 
E i = I  ( z i  -- E N : I  K N j  (X i )Z j )2  

and 
N 

(3.16) ~a(x) = E [(gi(x)(yi -- g(&, zi)). 
i=l 

& =  

However, ~a(x) is not a consistent estimator of a CELFC because o~(x) has not the 0a 
orthogonality as described by Lemma 3.2 and then & is not a least-efficient estimation. 
The simulations in Section 4 also support this theory because the variance of x/~& is 
significantly smaller than that of x/~&. 

3.2 Generalized semiparametric models 
In this subsection we consider the generalized semiparametric model defined by the 

general unbiased estimating function u(y, c~, ~, z), which satisfies 

(3.17) E(u(y ,  Z, z) I x, z) = 0 

and/~ depends on the value of x in the sense of ~ = )~(x) for some function A. This 
model includes the semiparametric regression defined in previous subsection as a special 
case. As noted previously, the key problem is how to construct the score function for ~. 
Motivated by (3.4), fixed a, the score function for ~ is defined by 

(3.1s) 
qz(a ,~ ,x , z )  = -~ i=1 OZ 

In the definition above, however, expectation M(c~,/3, z) = E(~ '~'~) I z) may be 
unknown and then a consistent estimator is desired. An efficient method is designed by 
the empirical notion as follows: 

(3.19) 
N 

MN(a, ~, z) = E Ou(yj, a, ~, zj) wNj(z), 
j = l  

where the weight functions WNj (Z) : WNj (Z; Z l , . . . ,  ZN) satisfy the regularity conditions 
as (i)-(iv) in Subsection 3.1 if z and zi take the places respectively of (x, z) and (xi, zi). 
For example, the condition (iii) becomes what follows: 

(iii)' limn--~cc supze[0,i ] ~-~N= 1 WNj(Z)I([zj -- Z I > 6) • 0 for any 5 > 0. 

LEMMA 3.3. If  maxj W2j  (z)N log log N -~ 0 uniformly for z �9 [0, 1], 

E(~ I z) is a continuous function of z �9 [0,1], and Condition (A2) of the ap 
Appendix holds, then 
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From Lemma 3.3 we can ensure that 

N N 
(3.20) 0Z(a,/3, x,z)  = ~ E MN((~,/3, z~)u(yi, a,/3, z i )Kx i (x , z )  

i= l  

is an efficient approximation to the score function defined by (3.18). The approximate 
score function above is asymptotically unbiased. An solution, denoted by Aa(x, z), can 
be obtained from the equation ~Z(a,/3, x, z) = 0 with respect to/3, and then maximizing 

LE(o~, ~a(x, z)) yields an estimator of a denoted by &. 

THEOREM 3.2. For the generalized semiparamtrie regression model (3.17), if the 
conditions in Lemmas 3.1 and 3.3 hold, then 

v/-N(~ - o~0) ~ N(0, (ic~)-l), 

where i~ is defined in (3.3) with h((~,/3, z) being replaced by u(y, a, ~, z). 

Remark 3.3. The theorem indicates that the estimator & is least-favorable efficient 
for generalized semiparametric models. 

Example 3. This example seems to be artificial, but it can show how to construct 
~a (x, z) and & in the generalized semiparametric models. In this example, the unbiased 
function has the form of u(y, a, A(x), z) = y2 _ o~z - yzA(x). Then 

N 

j = l  

From the equation ~ (a , / 3 ,  x, z) = 0 with respect to/3, we get 

~c,(X,Z) = E N = I  E ; = I  YJZJ(Y 2 --OlZi)gNi(X'Z)WNj(Zi) 

EN=I E N : I  yjzjYiZiKNi(X,Z)WNj(Zi) 

By maximizing nE(a,  ~c~(x, z)) we get an estimator of (~ as 

N 2 _  N Ek=l(Yk ykz  E =I E -I  jzjy KN (xk, zk)WN (z )/sk) 
5 =  N 

E =l(Z  - y, 
N 

where sk ---- E i = I  E N = I  YjZJyiZiI~Ni(Xk'Zk)WNj(Zi)" 

4. Simulations 

We now carry out some simulation studies to illustrate the efficiency of the proposed 
method and compare the difference between the proposed method and existing method. 
Consider the following model: 

Yi --- 10zi + asin(bxi) + ei, i = 1,. . . ,N ,  
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Table 1. a = l ,  b----3. 
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n mean of & mean of & variance of v ~ &  variance of v/-n& mean of R mean of R 

100 9.987 9.985 0.099 0.103 0.090 0.091 

200 10.000 10.002 0.062 0.071 0.094 0.094 

300 9.999 9.995 0.033 0.037 0.084 0.084 

400 9.998 10.000 0.032 0.035 0.078 0.078 

500 9.994 9.997 0.031 0.036 0.076 0.076 

Table 2. a = 2 ,  b = 3 .  

n mean of & mean of & variance of v/-n& variance of v ~ &  mean of R mean of / : /  

100 9.975 9.970 0.314 0.332 0.303 0.304 

200 10.004 10.008 0.175 0.222 0.302 0.305 

300 9.998 9.991 0.096 0.123 0.261 0.262 

400 9.999 10.001 0.042 0.104 0.247 0.247 

500 9.990 9.995 0.041 0.100 0.238 0.239 

Table 3. a = 3 ,  b = 2 .  

n mean of & mean of & variance of v ~ &  variance of x/~& mean of l~ mean of R 

100 9.986 9.971 0.154 0.235 0.413 0.414 

200 10.001 10.006 0.140 0.144 0.305 0.306 

300 9.997 9.994 0.124 0.075 0.255 0.259 

400 9.995 10.001 0.123 0.062 0.260 0.257 

500 10.001 9.996 0.121 0.053 0.228 0.228 

Table 4. a = 3 ,  b = 3 .  

n mean of & mean of ~ variance of v ~ &  variance of x/~& mean of/~/ mean of R 

100 9.962 9.955 0.667 0.710 0.661 0.662 

200 10.008 10.014 0.367 0.463 0.647 0.654 

300 9.997 9.987 0.207 0.267 0.554 0.557 

400 9.998 10.002 0.164 0.216 0.529 0.528 

500 9.987 9.993 0.158 0.203 0.507 0.509 

w h e r e  (x i ,  z i )  a n d  ei  a r e  i n d e p e n d e n t  w i t h  ( x i ,  z i )  '~ U[0,  1] 2 a n d  ei ~ U [ - 0 . 2 5 ,  0.25],  a 

a n d  b a r e  c o n s t a n t s .  O b v i o u s l y  a a n d  b c a n  r e o r g a n i z e  r e s p e c t i v e l y  t h e  n o n p a r a m e t r i c  

a n d  n o n l i n e a r  i n f l u e n c e s  b e c a u s e  t h e  l a r g e r  lal is, t h e  m o r e  n o n p a r a m e t r i c  i n f l u e n c e  t h e r e  

is, a n d  t h e  l a r g e r  Ibl is, t h e  m o r e  n o n l i n e a r  i n f l u e n c e  t h e r e  is in  t h i s  m o d e l .  

T o  c o n s t r u c t  t h e  e s t i m a t o r s  p r o p o s e d  b y  (3.9)  a n d  (3 .10) ,  t h e  w e i g h  f u n c t i o n s  a r e  

c h o s e n  as  
C((x, z), (xi, zi)) 

Kni(x, z) = E _I a((x, z), (xj, 
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where 
1 { ( x - x i )  2 ( z - z i )  2} 

C((x ,  z), - hlh2v  exp 2h1  ' 

where hi and h2 are bandwidth satisfying hi, h2 = O(N-1/6). In the classical estimators 
of (3.15) and (3.16), the weigh functions are chosen as 

where 

Kni(x) = H(x, xi) 
EN=IH(X, Xj) ' 

H(x, xi) - 1  { (x - xi)2 } 
h 3 v / ~  exp 2h~ ' 

where h3 is bandwidth satisfying h3 = 0(N-1/5). 
Tables 1-4 report the simulated values of estimators & and &, where & is the pro- 

posed estimator based on weight functions KNi(X, z) and & is the classical estimator 
based on weight functions [(Ni(X). These results are the average of total 200 simula- 
tions, the sample size n is ranged from 100 to 500. According to the numerical results, 
we can see that, the variance of v/-n& is significantly smaller than that  of x/~& for the 
models with larger a and b. This implies that, to induce the variance, if the model has 
strongly nonparametric and nonlinear influences, the proposed method is better than the 
existing method. At the same time, I&-  101 and/~ are respectively smaller than I&-  101 
and /~  slightly, where/~  and J~ are the residual sums of squares caused respectively by 
& and &. These results are expected in our theory. 
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Appendix 

Theorem 1 and Theorem 2 need respectively the following conditions. 
(A1) In parametric model, Eo(u(y, Oo)u'(y, Oo)) is a positive definite matrix, 

03u(y,O)/O03 is continuous in a neighborhood of 00, IlOu(y,O)/O011 and Ilu(y,0)ll 3 
are bounded by some integrable function G(y) in the neighborhood, the rank of 
E(Ou(y, 0)/00) is p. Furthermore, the following integrations exist: 

E(O (y, 

(A2) In the semiparametric model, the condition is the same as (A1) if all expecta- 
tions above are replaced by conditional expectations given x and z. 

PROOF OF LEMMA 2.1. For simplicity, we assume that  /3 is one-dimensional pa- 
rameter. By Condition (A1), we can verify that  

sup = op(1). 
(~,~) N 0/3 0/3 
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Then under Condition (B1), for any E > 0, there exists a 5 > 0 such that  

P {supl/~ - r~l _> ~} _ < P { sup 

= p {s 7 
< P { sup 

(~,#) 

= o ( 1 ) ,  

a;(,~,3~) > ~ 
0fl J 

2 OLE(~,fl~) 0<:(~, 3~) 
N Off or  

2 OLE(a,r) Or fl) 
N Off Off 

implying (2.12). 
OLE(ao,flc~ 0 ) Expanding off = 0 at rio, we get 

OUt 1 OS _ 1 k tS_  1 Ok 
(A.1) 0 : ~- f iS-  ~ -k 'S - l~ - - /~S  - k +  O--fl 

f 01t t--- lOS --1- Ok' - l O k  

+ u +  o r  

Ok' o - 1 0 S  ,.-~-1 - ! 1 Os 1 1 Os 1 ! 1 0 2 S -  1 ~ ~o ~+2~s- ~s- s- ~s- k-kS- ySs- 

0S --1 0k 02k } 
- -  2k ts - l -~ f i  s ~-~ -~- ks-l~-fi~ (flao -- riO) -~- op(l13~o - roll), 

/ 

where all terms are valued at (so, rio). I t  follows from Condition (A1) and Eo(u)  = 0 

that  

(A.2) 

k = Op(N-1/2), S = Op(1), --Ok _-- Op(1), 
off 

OS 02~ 02S 
o r  - op(1) ,  o r  2 = OR(l) ,  o r  2 - op(1) .  

By comparing the convergence orders of all terms in (A.1), we can get (2.13). 
Furthermore, from (2.11), we get 

as~ { OLE(a, fla) =~ = O, 
O t ~ O z  0 

i.e., 

(A.3) 
02~l ~U! - 10S  - 1 -  Okl - l  OU Ou! - 10S  -1 ~--~flS-lk- ---~S G S  u -F 2--~S Ool G S --~S k 

! 1 lOS 1 c~S 1 -t,.~-i 02S ,~-1 - t 10S 10u 
+ 2~ s- G s -  -~s- ~- ~ s- ~ s -  

u ~  ~ E r  ~ u -  a s  

_ ~ , s - I O k ' s - 1 0 ~  ~,S-1 02~ ' 
as  ~ + oao-----~ - o, 
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where all terms are valued at /3 = / ~  and s = s0. Similar to (A.2), 

Oe~ 02S 
(A.4) c9/30s - Op(1), a/3as - Op(1). 

By above result, (A.2) and comparing the convergence orders of all terms in (A.3), we 
have 

0 k / S - 1  07~ Jr- 0"~! - 10"~ Op(N-1/2), 
a /3 ~ -5~ ~'- 

i.e., 

( ) (A.5) Off Ok d/~  S _  1 0k Op(N_l/2) ' 
+ aT d--J aT = 

implying (2.14). The proof is completed. 

and 

PROOF OF THEOREM 2.1. It suffices to prove that as N ~ cxD, 

1 OLE(s,j~)~=~o = 1 OLE(s,/3~)~=~o+Op(1) 
v ~  as v ~  as 

sup 
1 02LE(a, ~ )  1 02LE(a,/3~) 

N Os 2 N Os 2 = op(1). 

By Taylor expansion, (A.2) and (A.4), 

1 0 L E ( a , ~ a )  a=c~o 1 OLE(S,/3a)c~=ao 
Oa v~  Oa 

- - 1  { 02LE(a'13~)} ( ~ o - ~ O ) + o p ( l )  
4-~ a/30s ~=so 

{( ) } - 2 N + o-~ d---J ~ (~o  -/30) + op(1). 
OL=Gt 0 

From the result above, Lemma 2.1 and (A.5) it follows that the first term in right-hand 
side of above expression is asymptotically zero in probability. Then the first result holds. 
By (2.12) and the same methods above we can prove the second result. The proof is 
completed. 

PROOF OF LEMMA 3.1. By the weight conditions (i)-(iv), we can prove that 

--2q~(a,/3, x, z) sup sup x, z) - ~(a,/3, = OF(l). 
(~,~) (x,z) IV 

Then under Condition (B2), for any ~ > 0, there exists a 6 > 0 such that 

P { sup sup , ~ (  x, z) - ~c~(x, z), >_ c 
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<_ P lsupsup f~(ot, Aa(x,z),z)l >_ 6} 
I,  ~ (~ , z )  

= P  s u p s u p  (~ ,~(z , z ) , z , z ) -~(oq~,~(z , z ) , z )  >_6 
L ~ (x,z) 

_ -~qf l (a ,  fl, x,z) - ~(~, fl, x, _ 
I. ~ (x,z) 

= o ( 1 ) ,  

implying (3.11). 
Expanding qn(ao, A~o(X, z)) = 0 at Ao(x), we get 

(A.6) N Oh(c~o, fl, zi) fl=M(x) (Yi - h(e~o,)~o(X), zi))KNi(X, z) 
o = ~ off 

i=1 

Y { 02h(~o,fl, z~) ~=~o(~) 
+ ~ K ~ ( x ,  z) o ~  (y~ - h(~o, ~o(~), zO) 

i = l  

+ rN,  

where the convergence order of rN is smaller than  that  of the other terms in the right- 
hand side of (A.6). It can be verified that ,  given (x, z), 

and 

N Oh(c~o, fl, zi) ~=~o(~) (Yi - h(ao, Ao(X), z~))KNi(X, z) 
i=1 

Eo ---  (y - h(~o, ~o(X), z)) I x, z 

= 0  

Var~176 Z=~o(z)(Yi-h(a~176 I 

= 0  K i(x,z �9 
\i=i I 

Then 

(A.7) N Oh(~o, ~, z~). ,=~o(~) (y~ - h(~o, ~o(x), z~))KN~(X, z) }2 o9 
i=1 

,I 'j') = Op K2Ni(X, z ---- Op(N-1/2). 
\ k i = l  I 
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Similarly, 

N a2h(ao,/3, z~) Z=~o(~) (y~ - h(ao, ),o(x), z~))KN~(X, z) = O p ( N - 1 / 2 ) .  
032 

i=1 

However, 

E - - '  KNi(X,Z) = OR(l). 
i=1 

By comparing the convergence orders of all terms in (A.6), we can ensure that  (3.12) 
holds. 

Furthermore, expanding Oq#  (a, j~  (x, z))]~=~o 
same argument as proving (A.7), we get 

0 
o = ~ q , ( ~ ,  J.(x,  z)) I-=-o 

= ~ {~176 ~:~o(~) = \ o~oz 

= 0 at Ao(x), by (3.12) and the 

02h(ao,/3, zi) ~=~o(~) 
-+ 0/32 

x (y~ - h(~o, ao(X), z,))KN~(x, z) 

N 0h(o~o ' /3 ,  zi ) j3--Ao(x) 
- ~ 0/3 i=1 

• (oh(,~o,~(x),z~) oh(~o,/3,z~) ~=~o(~) 
\ o~ + 0/3 

+ op(1) 

N Oh(ao,/3, zi) Z=~o(x) 
= - ~ 0/3 i----1 

{oh(~o,~o(x),z~) oh(~o,/3,z~) ,=~o(x) 
x \ ao~ + a/3 

+ Op(1), 

di~ (x, z) 
da ,~=~,o ] 

dA,(X,da z) ,=,~o) KNi(X,Z) 

dA~(X,da z) ,~:,~o) Kgi(x,z) 

implying (3.13). 

PROOF OF LEMMA 3.2. Under the weight conditions, for any ~ > 0, when n is 
large enough, there is a 6 > 0 such that  

g Ou(yj ,aO,/3 ,  Zj) f~=~o(X~) 
- ~ 0/3 j = l  

x Ou(yj, ao,oaAo(xi), zj) Ou(yj,o/3ao,/3, zj) ~=)~o(x~) 

2 

gnj  (xi, zi) 

gnj(x~, z~) 
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--<~=10u(yi'sO')~O(xi)~Zi)(Ou(yj'sO'~'Zj)Os ~k 0/~ /3=.~o (xi) ) 

-- COu(yj' So' /~' ZJ ~=.ko(x,) 

x Ou(yj, so,0s.~o (x~), zj) Ou(yj, OZs~ Z, zj) ~=~,o(x,) 

• gnj(Xi, z~)l(ll(x, z~) - (xj, zj)ll > 5) 
2 

~=10u(yi's~176 (Ou(yj's~ ~=Ao(X~)) 
+ as  \ aZ 

_ Ou(yj,o/~SO, Z, zj) Z=)~o(xi) 

&,(yj, so, ~o(x~), zj) a~(yj, so, 9, zj) ~=~,o(~.) 
x as 0/3 
x K,~j(~, z~)Z(ll(x~, z~) - (xj, zj)ll _< 5) 

< C2e sup cOu(y, so,)~o(x),z) (Ou(y, so,/~,z) +C2c. 
-- x,zE[0,1] C~S ~ 0~ f~=Ao(X) 

By the result above and Lemma 3.1, we get that,  for any continuous function v(x) on 
[0, 1], 

( Ozt OfZ =~o(x) d~c~(X'Z) ~Ozt =),o(x) v(x) 0-~ ds S-1 (S0'/~0(X)) v~. 
O t ~ O t  O 

= N i=1 

= o p ( 1 ) .  

\ 
EN=I Ou(yj,so,)~o(X~),Zy) Ou(yj,so,~,zj) ~=~,o(x,) I~nj(Xi'Zi) I 

x Os O~ 

) 
1 (972 ~=~o(x) • s -  (so, Z o ( x ) ) ~  v(x) + op(1) 

The proof is completed. 

PROOF OF THEOREM 3.1. The note after Lemma 3.1 shows that ,~a(x,z) is a 
conditionally least-favorable curve. Then, to prove the Theorem 3.1, it is sufficient to 
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verify that 

10LE(a,A~(x,z)) ~=~o = 1 0 L E ( a ,  As(x,z)) s=so +OF(l). 
(A.8) v / ~  Oc~ ~ Oc~ 

and 

(A.9) sup 
s E s  

10LE(O~, As(x, z)) s=~o 10LE(O~, As(x, z)) = OR(l). 
N Oa N Oa s=so 

In fact, by Lemma 3.1, Lemma 3.2, Aso(X, z) = A0(x) and a similar argument to proof 
of Lemma 2.1, the Taylor expansion leads to 

(A.10) x/~l OLE(a,O_~Aa(x, z)) a :ao ~10LE(O~,Oc~As(X, Z)) s=ao 

_ ~10LE(aO,/3)O/3 fl:s176176176 

l ( O~t O~t =)~o(z) dAs(X,Z) a=so) 1 OU fl=Ao(X ) = s -  (,~o, 9 o ( x ) ) ~  

• ( ~ o ( X ,  z) - A0(x)) + op(1)  
= OF(l), 

which implies (A.8). By (3.11) and the same methods above we can prove (A.9). 

PROOF OF LEMMA 3.3. Denote E ( ~  [ z) by M(c~,/3, z). For any c > 0, 
when N is large enough, there is a 5 > 0 such that 

sup IE(MN(a,/3, z) I z, zj)-- M(a,/3, z)[ 
z,z~ ~ [0,1] 

N 

< sup EWNj(z)[M(a,/3, zj) -M(c~, /3 , z ) lZ( Iz j  - z l  > 5) 
z,zj  e[0,1] j = l  

N 

+ sup EWuy(z)[M(c~,/3, zj) - M(a, /3 ,  z)lI(Iza - zl < 6) 
z,z~ E[0,1] j=l 

= 2  sup IM(~,/3, z ) l e + e .  
ze[O,1] 

Then 

(A.11) lim sup IE(MN(O~,fl, z) I z, zi) -- M(c~,/3, z)l = O. 
N---* ~ z ,z j  E[0,1] 

Furthermore, by the law of iterated logarithm, we have 

(A.12) [E(MN(~,/3, z) I z, zO - MN(a,/3, z)[ 

= O ( (sup K2ui(X, z)N log log N)  1/2) 

--+0. 
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Therefore (A.11) and (A.12) ensure that 

MN(a,~,z) ~:~" E ( Ou(y'a'~'z)O~ z) . 

This finishes the proof. 

PROOF OF THEOREM 3.2. It is similar to the proof of Theorem 2. 
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