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Abstract. In this paper, we introduce the star-shape models, where the precision
matrix € (the inverse of the covariance matrix) is structured by the special condi-
tional independence. We want to estimate the precision matrix under entropy loss
and symmetric loss. We show that the maximal likelihood estimator (MLE) of the
precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We
consider a type of Cholesky decomposition of €2, in the sense that 2 = ¥'®, where
¥ is a lower triangular matrix with positive diagonal elements. A special group G,
which is a subgroup of the group consisting all lower triangular matrices, is intro-
duced. General forms of equivariant estimates of the covariance matrix and precision
matrix are obtained. The invariant Haar measures on G, the reference prior, and the
Jeffreys prior of ¥ are also discussed. We also introduce a class of priors of ¥, which
includes all the priors described above. The posterior properties are discussed and
the closed forms of Bayesian estimators are derived under either the entropy loss or
the symmetric loss. We also show that the best equivariant estimators with respect
to G is the special case of Bayesian estimators. Consequently, the MLE of the preci-
sion matrix is inadmissible under either entropy or symmetric loss. The closed form
of risks of equivariant estimators are obtained. Some numerical results are given for
illustration.

Key words and phrases: Star-shape model, maximum likelihood estimator, precision
matrix, covariance matrix, Jeffreys prior, reference prior, invariant Haar measure,
Bayesian estimator, entropy loss, symmetric loss, inadmissibility.

1. Introduction

Multivariate normal distributions play an important role in multivariate statistical
analysis. There is a large literature on estimating the covariance matrix and precision
matrix in the saturated multivariate normal distribution, that is, with no restriction to
the covariance matrix except assuming to be positive definite. See Haff (1980), Sinha
and Ghosh (1987), Krishnamoorthy and Gupta (1989), Pal (1993), Yang and Berger
(1994), and others. However, as the number of variables p in a multivariate distribution
increases, the number of parameters p(p + 1)/2 to be estimated increases fast. Unless
the number of observations, n, is very large, estimation is often inefficient, and models
with many parameters are, in general, difficult to interpret. In many practical situations,
there will be some manifest inter-relationships among several variables. One important
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case uses several pair variables that are conditionally independent given other remaining
variables. For multivariate normal distribution, this will correspond to some zeros among
the entries of the precision matrix. See Dempster (1972), Whittaker (1990), or Lauritzen
(1996). Bayesian model selection of detecting zeros in precision matrix can be found in
Wong et al. (2003).

Assume that X ~ N,(0,X). The vector X is partitioned into k groups, that is,
X = (X}, X5,...,X}), where X; is p;-dimensional and 3> | p; = p. We assume that
for giving X ;, the other subvectors X5, ..., X are mutually conditionally independent.
From Whittaker (1990) and Lauritzen (1996), the precision matrix £ = 27! has the
following special structure:

Q1 9 Q93 - Qg

Q1 Qo 0 s 0
(1.1) Q=1 0 Q33 --- 0

Q1 0 0 - Qg

Now we state several examples in statistics and other fields.

Ezample 1. Let X; be the prime interest rate, which is a global variable, and
X3, ..., X be the medium house prices in k — 1 cities in different states, which are local
variables. Then X», ..., X} are often conditionally independent given X; and normally
distributed. Hence the precision matrix of (Xj,..., Xy) would have the structure (1.1).

Example 2. Conditional independence assumption is very common in graphical
models. The case of k = 3 is considered in detail by Whittaker (1990) and is called a
“butterfly model.” For general k > 3, we call a normal model with precision matrix (1.1)
a star-shape model because the graphical shape of the relationship among the variables
when k > 4 looks like a star. The cases when k = 3,4, 7 are illustrated in Fig. 1.

Ezample 3. Balanced one-way random effect model. Suppose that Y;; follow the
one-way random effect model,

Yvij=ai+61;j, j=1...,J, i=1,...,n,

where ay,...,a, are iid N(u,72), and e;; are iid N(0,02). In the case, a; are often
treated as unobserved latent variables. Clearly the joint distribution of (a;, Yi1, ..., Y:is)
follow a star-shape model with ¥ = J + 1. (Considering latent variable is common in
Bayesian context since latent variable is often used in computation.)

The star-shape model is a special case of lattice conditional independence models
introduced by Andersson and Perlman (1993). Although star-shaped models or gen-
eral graphical models have been used widely, as far as we know, fewer theoretic results
are obtained on estimating the covariance matrix and the precision matrix in lattice
conditional independence models. Andersson and Perlman (1993) gave the form of the
maximal likelihood estimator (MLE) of the covariance matrix X. Konno (2001) consid-
ered the estimation of the covariance matrix under the Stein loss

(1.2) Ly, ) = tr(2X7Y) —log |EE7Y —p



ESTIMATING PRECISION AND COVARIANCE MATRICES 457

(a)
()

X\

(¢

Fig. 1. Several graphs of conditional independence: (a) k=3, (b) k =4, and (¢) k= T.

and proved that the MLE of X is inadmissible.
The Stein loss for estimating the covariance matrix X is equivalent to the following
loss for estimating the precision matrix = £~

(1.3) Lo(£2,92) = tr(Q712) — log 2702 — p.

Of course, the Stein loss is related to the commonly used entropy loss. See Robert (1994).
In this paper, we will consider the estimation of the precision matrix and the covariance
matrix in the star-shape model under two loss functions. Let f(x | ) be the density of
X under . The entropy loss for € is

(1.4) L@, Q) = 2/log {%} F(X | Q)dX

= tr(2071) — log |QQ7}| — p.

The Stein loss is obtained from the entropy loss by switching the role of two arguments,
€ and Q. The loss function Ly is typical entropy loss and has been studied by many
authors such as Sinha and Ghosh (1987), Krishnamoorthy and Gupta (1989), and others
for various contexts.

Note that because neither Lo nor L, is symmetric, we could consider a symmetric
version by adding the Stein loss Ly and entropy loss Ly:

(1.5) Ly(2, Q) = Lo(£2, ) + L1 (Q, Q) = tr(QQ71) + tr(Q71Q) — 2p.

The symmetric loss Ly for € introduced by Kubokawa and Konno (1990) and Gupta
and Ofori-Nyarko (1995), can be seen as estimating the covariance matrix and the preci-
sion matrix simultaneously. The corresponding entropy loss and symmetric loss for the
covariance X can be obtained by replacing 2! by ¥ and 27! by . We will focus
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on estimation of the precision matrix €2 because the results for X can be derived as
corollaries of the corresponding results for €2.

The remainder of this paper is organized as follows. In Section 2, we give the MLE
of the precision matrix in the star-shape model and prove that it is not unbiased. Based
on the MLE, an unbiased estimate of the precision matrix is given. In Section 3, we first
consider a type of Cholesky decomposition of the precision matrix, that is, 2 = ¥/,
where W is a lower triangular matrix with positive diagonal elements and then get the
special group G of lower-triangular block matrices. Interestingly, the problem is invariant
under the matrix operation from G, instead of traditional Cholesky decomposition. The
invariant Haar measures of this group are given, and we also prove that the Jeffreys prior
of ¥ matrix is exactly the same as the right invariant Haar measure on the group G. A
reference prior is obtained by using the algorithm in Berger and Bernardo (1992). The
closed form of equivariant estimators of §2 also is derived.

In Section 4, we introduce a class of priors of ¥, which includes all priors such as the
left and right Haar measures and the reference prior as special cases. Some properties
on the posterior under such class of priors are discussed. In Section 5, the closed form of
Bayesian estimators with respect to such a class of priors is obtained under the entropy
loss. We find that these Bayesian estimators include a lot of usual estimators such as
the MLE, the best equivariant estimates under the group G. From this, we also know
that the MLE of € is inadmissible under the entropy loss. Results on the symmetric loss
are shown in Section 6. The risks of equivariant estimators are given in Section 7. The
results on estimating covariance matrix are given in Section 8. Finally, some numerical
results also are given in Section 9.

2. The MLE and unbiased estimator

Let Y1,Y,..., Y, be arandom sample from N,(0,271), where Q satisfies (1.1).
Let S =50, Y,Y, Assumen > p+ 1 throughout this paper. Then § is a sufficient
statistic of £ or  and has a Wishart distribution with parameters n and Q1. Write
S = (8,;), where S;; is the p; x p; sub-matrix. Whittaker (1990) gives the expression
of MLE of the covariance matrix 3 for k = 3. For general k, it is easy to show that the
MLE of ¥ has the expression

S11 S12 Si3 Sk
S21 52:; 501871813 -+ SuSiSuk
(2.1) S = 1185 831851 S S33 - 83187 Sw
Sk1 SkiS1S12 Sr1S1'Siz - Skk
Define
(22) Sii-l =Sii_Si1‘Sl_11'S’z'17 122,,k

By (2.1), the MLE £ of the precision matrix € can be obtained by

AM QM M
W1 N - Qg
AM  AM

21 2 -+ 0

-
g
[

(2.3)
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where

k
QN =nS3 +n ) S11 8181 Sa ST

i=2
A M -1 -1

Qq; = -—n817 518,70,

AM _ -1 .

Q' =nS;5., 1=2,...,k

The following proposition shows that 32 is an unbiased estimate of 3 while £, is not
an unbiased estimate of €2.

PROPOSITION 2.1. Consider the star-shape model.
(a) The MLE X in (2.1) is an unbiased estimate of X;
(b) The MLE S in (2.3) is not an unbiased estimate of 2.

PrOOF. It is well-known that E(S;;) = nX;;, i,j = 1,2,...,k because § ~
Wy(n, X). For (a), we need to prove

(24) E(SﬂSl_llSlj) = 77,21'12;1121]', 2<i <j <k.

We will prove (2.4) for the case when (¢, 5) = (2,3) only. Other cases are similar.
For convenience, let

(25) i1 =X — 2“21—11211', 1=2,---,k.

By
S11 Si2 Si3 Zn X2 i3
S21 S22 Soz | ~Wpitpstps | 1 | Ban bIPY I s
831 Sz Sa3 5 EaIEe 333

and using the property of the marginal and conditional distributions for Wishart distri-
bution (see Theorem 3.3.9 of Gupta and Nagar (2000)), we have

S I -1 3991 0
(2.6) (531> | $11 ~ Npytps,m ((231)211 Si1, ( 0 Sy, ® Su ).

Here we exploit the notation for matrix variate normal distribution given by Defini-
tion 2.2.1 of Gupta and Nagar (2000), that is, X pxn ~ Npn(Mpxn, X Q@ ¥) if and only
if vec(X') ~ Npn(vec(M’),2®¥). Applying Theorem 2.3.5 of Gupta and Nagar (2000),
it follows that

E(821811'S13 | S11) = (Ip, O)E{(szi)sul (S;i) } <I )
P3

Because E(S11) = nXq;, we get E(SmSﬁlSlg) = n¥91 X7 X13. Thus (2.4) holds for
(4,7) = (2,3). For (b}, because

Sll Sli 211 211’
(2.7) (Sil Sii) ~ Wp1+pi (n’ (Zil 22’1‘ )) ’
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we have
(28) 811 NWPI(TL,EH), Sii~1 NWpi(n—pl,Zii.l), 1= 2,...,](}.
Thus
E(STH = _ 1 5o E(S;}) = T T Sy
11 n_pl_l 11> 2i-1 n—pl'—pz_l 241 LA

The proof is completed.

Based on the MLE € in (2.3), we create an unbiased estimate of  in Proposi-
tion 2.2.

PROPOSITION 2.2. Under the star-shape model, an unbiased estimate of §2 is

ap af .oy
R Q¥ Qv ... 0
(2.9) au=| 2 ,
QL o - O
where

k
Qi =(n-p- 1)51_11 + E(n —P1—pi— I)Sfllslzsu 1511511 i

1=2
OV = —(n—p1 —p; — 1)S1 81:5;}

13-1

=(n-p1—-pi— 1855, i=2...,k

Proor. First, note that the following relationships between Q = £7! and X,

k
Q= 21_11 + Z 21_11212211 122121_11§

i=2
Qq; = —X7; 211 ) 1,
Q; —-2;1, i=2,....k
From (2.7), we have
(2.10) Si1 | S11 ~ Np, p, (i1 =11 811, Ziie1 ® S11),

and (S;1, 811) is independent of S;;.1, where S;;.1 is defined by (2.2). Therefore, we get

E(87{' 81854 | S11) = ST E(S1: | S11)E(S5h)
1
= msu (SuZp'Su) - B34
1
B n*Pl—pi—lzl r

ul

and
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1
E(S1)' 8185188y | Su) = mSnlE(Su aaSi | S1)ST
_.__—pi___sﬁl
n—p—pi—1

DI Rt ) Yo

it-1

+——._—_
n—pr—pi—1

So we get
E(Qifl):(n p—1+Zp1> E(3111)+Zz DI IRD NP

Because E(ST!) = =7}/(n — p1 — 1), we have E(QY,) = 0y, Fori=2,...,k,

E(Qu) —(”—pl pl—l)E(S Slz ul)‘_zl 21121_11—9117
EQY)=(n—p —pi - DESZ)) = Z55 = Q.

The proof is completed.
3. Cholesky decomposition and noninformative priors

3.1 The role of group invariance

It is well known that group invariance plays an important role in finding better
estimates of the covariance and the precision matrices in multivariate normal models.
With an appropriate group &G, if the model is invariant under the transformation using the
element from the group to the data, we can restrict our attention to a class of equivariant
estimators obtained by the group invariance principle. This class often includes the MLE
under some mild conditions. Then a frequentist method may be applied to get the best
equivariant estimator in this class. The procedure is to characterize the functional form
of any equivariant estimator with respect to G. The best equivariant estimator can be
obtained by minimizing the risk of an equivariant estimator with respect to the given loss
function. The best equivariant estimator is often superior to the MLE. See for example,
James and Stein (1961), Olkin and Selliah (1977), Sharma and Krishnamoorthy (1983),
etc.

Two drawbacks exist with this frequentist method. One drawback is that it might
be difficult to get the closed form of equivariant estimators with respect to the group.
Furthermore, it could be more difficult to calculate risks for an equivariant estimator.
Alternatively, a Bayesian method may be considered. Eaton (1989) showed that under
some conditions, the best equivariant estimator will be a Bayesian estimator if we take
the right Haar measure on the group as a prior. See Chapter 6 of Eaton (1989) for details.
With the Bayesian method, Eaton (1970) successfully obtained the best equivariant es-
timator of the covariance matrix with respect to the group of lower triangular matrices
in multivariate normal distribution with missing data under the Stein loss Lg(f), ¥) al-
though the general form of equivariant estimators is not derived because of complication.
Konno (2001) got a similar result in lattice conditional independence models introduced
by Andersson and Perlman (1993).

Note that to exploit the frequentist method or the Bayesian method described above,
it is crucial to choose an appropriate group that makes the model invariant. It could
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be difficult to get an appropriate group when the precision matrix or the covariance
matrix is structured. Fortunately, such a group does exist under the star-shape model
by Andersson and Perlman (1993). We will describe this group in detail for our statistical
inference.

3.2 Cholesky decomposition X

We now consider how to get better estimators over the MLE €7 and the unbiased
estimator €2y of the precision matrix under the entropy loss L; and the symmetric loss
L. First, we decompose the precision matrix or the covariance matrix as

(3.1) Q=9'F or X=AA/

where both ¥ and A are p by p lower-triangular matrices with positive diagonal entries.
For convenience, A will be viewed as the Cholesky decomposition of ¥. From the
structure of €2 given by (1.1), it is easy to show that ¥ has the following block structure:

¥y, 0 0 0

@21 ‘P22 0 R 0
(3.2) =% 0 W3 --- O ,

‘Pkl 0 0 v @kk

where W;; is a p; X p; lower-triangular matrix. Note that there is no restriction on ¥;
(¢ > j) except requiring that all diagonal elements of ¥,; are positive. Define

(3.3) G = {A € RP*? | A has a structure as (3.2)}.

We have the following result:

LEMMA 3.1. (a) G is a group with respect to matriz multiplication. (b) For any
Ac G, A has the expression,

ALl 0 0o -~ O

—A2’21A21A1‘11 A} 01 w0

(3.4) Al=| A3 And; 0 Ay - 0
~AlAWAT O 0 - Ay

PROOF. Note that G is a subset of the group of all p x p lower triangular matrices.
The results then follow from Andersson and Perlman (1993) or can be verified directly.

Note that the star-shape model is invariant under the group G and so are the entropy
loss Ly and the symmetric loss Ly. In the following subsection, we will give the general
form of equivariant estimators of £2 or ¥ with respect to the group G.
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3.3 The general forms of equivariant estimates of % and €2
An estimate 3(S) of X is called equivariant under the group G if and only if for
any A € G,

(3.5) 3(ASA) = A%(8)A'.

For estimating the precision matrix €2, Q(S’) is equivariant under the group G if and
only if

(3.6) Q(ASA) = (A)1Q(s)A™!

for any A € G.

For the star-shape model, it is easy to show that S11, S12,..., 81k, S22,..., Skk are
sufficient statistics for £ (see (4.2) and (4.3) for details). Then § = n¥yp is also a
sufficient statistic for 3. Thus we can easily see that for any equivariant estimate f)( S)
satisfying (3.5), there will be 3¢(8) = 2(8S) a.s. such that

(3.7) 30(A8A") = AS((S)A.

Let $11.1 = §11 for convenience. Define

T, 0 0 0
S21(T1H)™r T2 0 -+ 0
(3.8) T=|Su(THy)™ 0 Tz -~ 0 |
Skl(Tlll)_l 0 0 Tkk

where T'; is Cholesky decomposition of §y;.1,% = 1,2, ..., k. Then S =TT and Teg.
Putting A = T~! in (3.7) gives 30(8) = TEo(I)T' = TW T’, where W = 34(I)
is a constant matrix that can be expressed as PP for a P € G. In addition, for any
P € G, the estimate Xo(S) = T PP’ T’ satisfies (3.7) obviously. Hence the general form
of equivariant estimates of X is

(3.9) 3(S)=TPP'T,
where T is defined by (3.8) and P € G is a constant matrix.
Let
T 0 0 --- 0
~TpSnSy Ty O - 0
(3.10) R=T'=|-T3SnSy 0 T3z - O
~T!SuST O 0o - Ty}

Thus the general form of equivariant estimates of €2 is
(3.11) Q(S)= R'Q'QR,

where @ € G is a constant matrix.
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Remark 1. Both the MLE Q »m and the unbiased estimator QU obtained in Propo-
sition 2.2 are equivariant with respect to G. In detail, the MLE of €2 given by (2.3) can
be expressed as

(3.12) Qy =nR'R.

And the unbiased estimate of Q given by (2.9) can be expressed as
(3.13) Qy = R'UR,

where

(3.14) U =diag{(n—p~-1Ip,(n—p1 —p2— VIp,,....,(n —p1 —px — DI, }

Remark 2. By (3.11), any estimator that has the following expression
(3.15) Q=R QR

will be a G-equivariant estimator of Q, where @ is an arbitrary diagonal matrix with
constant positive diagonal entries. This is an important class because we will show later
that each of them is a Bayesian estimator under either Ly or L.

3.4 Invariant Haar measures and noninformative priors

Now we discuss the invariant Haar measures on the group G and some other nonin-
formative priors.

Foranyi=1,2,...,k, let

Yi11 0 0

Yio1  Yizz - 0
(3.16) U= . o .

wipil "/)ipﬂ e wipipi
And for i =2,...,k, let

b1 Pz - ¢ilp1

bi21 iz - P2
(3.17) W, = : S A
¢ipi1 ¢im2 e ¢ipip1

Similar to Example 1.14 of Eaton (1989), we have the lemma.

LEMMA 3.2. The left invariant Haar measure on G is
dw
AT IRY ) WP § T
while the right invariant Haar measure on G is
d¥

P1 p—ji+l 1Tk Ps pi—j+1°
j=1 u)ljj Hi=2 j=1 ¥ijj

(3.18) Vg (d¥) =

(3.19) V5 (d®) =
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Remark 3. For A = ¥~! we can readily verify that v3(d®) = v§(dA) and
vg(d®) = v5(dA).

The invariant Haar measures plays a crucial role in finding a better estimator of the
precision matrix or the covariance matrix (see Eaton (1989) for details). The following
proposition will give other two noninformative priors of ¥ in the star-shape model.

ProrosITION 3.1. Consider the star-shape model.

(a) The Jeffreys prior w;(¥) of W is the same as the right invariant Haar measure
of G given by (3.19).

(b) The reference prior of ¥ for the ordered group {111, (Y121, ¥122)s- - (W1py1s
.- 77/)1171171)7 (¢2117 s ,¢21p1,¢211), EER (¢kpk17 s a¢kpkp1awkpkla s 7'¢'kpkpk)} is gwen by

(3.20) Tr(d¥) o —k—d‘f——
Hi:l j=1 Vi

PROOF. Let 8 = (Y111,%121, Y1225+ -, Vipi1, - - -» Vipipy D211, - -+ P21py» Y2115 - - -
Okpy1s- -+ Phprprs Vhkpls - - - » Whpyp ) and I; be the 4 x i identity matrix and e; be the
i X 1 vector with the i-th element 1 and others 0. Because the likelihood function of ¥
is

f(X | @) x |[&'®|V/2exp (-%X’@’@X) ,

the log-likelihood is then

k
log f = const + Zlog | ¥ |
i=1
WA k k
-5 <Z XW, 0, X, +2) X W, X+ X’l‘pglwuxl> :
i=1 i=2 i=2

The Fisher information matrix of 0 is
02 log f
3.21 = -F|——=
= dia'g(A117 s 7A1p1,A211 s 7A2p27 s 7Ak:17 e 7Akpk)7

where
1
A1p1 = Va‘r(Xl) + T3 €py 6;11;
1/)1171171
1
Alj = (IJ 0) Var(Xl)(Ij 0), + ’l,bTejeJl? ] = 1725 »P1 ]-a
155

X1 1
Aiy =V ey ipe . i=2.. k
*Pi ar (Xz) + wizpipi €p1+p: €p1+p; L » Yy

X1\ (Ips
Ay = sy 0)Var (51) (757

1 . .
+Tepl+je;71+j’ i=12,...,p;—1, i=2,...,k
wijj
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Because & = Q7! = (¥'¥)~1 we get Var(X;) = (¥};¥1;)" ! and for i = 2,...,k,

-1 ~1
Var X1 —(¥u O v, ¥
X; Ty Wy 0 v '
Thus using |B + aa’| = |B|(1 + a’B 'a), where B is invertible and a is a vector, we
can easily show that

(3.22) |Am—4II , 1<j<py;
wltt

(3.23) A = sz sz , 1<j<p, 2<i<k
1tt g1 "iss

Hence the Jeffreys prior of ¥ (or 8) is |A(8)|'/2, which is proportional to that in
(3.19). Based on (3.21), (3.22), and (3.23), the reference prior of ¥ for the ordered

group {9111, (Y121, %122)5 -+ (P1pa1s - s Vipips )s (D211, - - o, P21py, W211), - - - (PR1L, - - s

Phprprs Ckpls - - - » Vkpep )} 18 €asy to obtain as (3.20) according to the algorithm in Berger
and Bernardo (1992).

4. Properties of posterior of ¥ under a class of priors

In this section, we consider a class of priors of ¥

k  pi

(4.1) p(®) o [] T w2 exp(=Bi4%;),

=1 j=1

where 3;; > 0,5 = 1,...,p;, i = 1,...,k. This class includes the left Haar invariant
measure v;(¥), the right Haar invariant measure v (%) (the Jeffreys prior 7;(¥)), and
the reference prior mg(¥). We have the following posterior properties:

THEOREM 4.1. For the star-shape model, the posterior p(¥ | S) under the prior
p(®) in (4.1) has the following properties:

(a) p(® | 8) is proper if and only if n+ o +1>0,5=1,...,p;,, i =1,...,k.

(b) ¥, (W1, ¥2),..., (P, Pir) are mutually independent;

(¢) For i = 2, ...,k, conditional distribution of W, given ¥, is
Np, p, (= ‘I’wszlsul,Im ® S11);

(d) Fori=1,...,k,

1 P y
‘I’ii | S ~ exp {—5 tI‘(‘I’”S“]_‘I’;Z)} H ’(/)?jja” exp(——ﬁiﬂ/)?jj).
=1

Proor. Because the likelihood function of ¥ is

(4.2) (S| ¥) x | ®|"/2exp {——;—tr(‘ll’\IlS)},
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then the posterior of ¥ under the prior p(¥) in (4.1) is

k p’l.

(¥ | 8) x | ¥'®|™2exp {——tr(\Il \IIS)} H ng’; exp(—ﬂij'w?jj).

i=1j=1

Because | ¥/ ®|"/2 = Hle |W|™ and

k
(43)  tr(TSY) = tr(; 85 P,)

i=1

k
+ Ztr{(\l’il + 0,81 87811 (P + ;8,87 }

=2

Hence it follows

Tk
1 _
p(‘Il | S) X Hexp ':——5 tr{(‘I’il + \IliiSilSl—ll)Sn(‘Ilu + \I’iiSﬂSul)’}

i=2
Pi o

X Hexp {—— tr(W,;;8. 1\1121)} H Q/J?jj 4 exp(—ﬂijz/}fjj).
Jj=1

Thus we proves parts (b), (c), and (d). For part (a), it is easy to show that p(¥ | S) is
proper if and only if the marginal posterior p(¥;; | S) is proper, i = 1,...,k. By taking
the transformation ¥;; — ©;; = ¥;; T;;, we will readily get that p(¥,; | S) is proper if
andonly if n +a;; +1>0,5=1,...,p;, ¢ =1,...,k. Hence (a) holds.

From Theorem 4.1, each of the posteriors under the left Haar invariant measure
v (®), the right Haar invariant measure v3(¥) (the Jeffreys prior m;(¥)), and the
reference prior 7g(¥) will be proper. Specifically, the posterior under the left Haar
invariant measure vg (%) is related to Wishart distribution as shown below.

COROLLARY 4.1. If we take the left invariant Haar measure of the group G, Vlg(d‘I’)
as a prior, then the posterior distribution of W has the following properties:
(a) ¥11,(P21,P22),...,(Pr1, Tir) are mutually independent,
(b) L 2F Sll\I’lll ~ WP1 (’I’L, Ipl);
(C) Fori= 2, ey k, \IlnSnl\Il;z ~ sz(n - P, Ipi);
(d) For i = 2,..., k, conditional distribution of ¥;; given Wy s
PuPl( ‘I’uszlsll 7IZ71 &® Sll )

5. Bayesian estimators of £2 under the entropy loss

To find the Bayesian estimate of  with respect to the prior p(¥) under the entropy
loss L,, we need the following two lemmas.

LEMMA 5.1. Let A be a constant positive definite matriz and B = (b;j)mxm be
its Cholesky decomposition. Assume that Z = (2;j)mxm i a randomly lower-triangular
with positive diagonal elements whase distribution follows

1 m
(5.1) Z ~ exp {—5 tr(ZAZ’)} H 2% exp(—Bi22).

i=1
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(a) If; >0, 3, >0,i=1,...,m, then
(5.2) E(Z'Z) = (B')"'diag(6:,...,6m)B?,

where 6; = (a; + 1)/(1+28:b;2) + m—i,i=1,...,m.
(b Ifa; > 1, 3; >20,i=1,...,m, then

(5.3) E(Z'Z)"' = Bdiag(n,...,nm)B’,

where M = u1, nj = Uj sz—ll(l + ’U,l'), j=2,...,m with u; = (1 + 2,611);;2)/(041 - 1),
1=1,...,m.

PRrROOF. Letting Y = ZB, then Y = (y,;) is still lower-triangular and

1 T _
(5.4) Y ~ exp {—5 tr(Y Y’)} H Y exp(—Bib;2v3).

=1

From above, we know that all y;;, 1 < j < i < m are independent and

yij ~ N(0,1), 1<j<i<m

—2
Yii ~ Y5y’ exp (—%—yi) , 1<i<m.
Ifa; >0,68;>0,i=1,...,m, then y2 ~ I'((a; +1)/2, (1+25ib;2)/2) and E(y2) exists, |
i =1,...,m. Thus it is straightforward to get (5.2). For (5.3), we just need to show
E(Y'Y)™! = diag(m,...,7m). Under the condition a; > 1, §; > 0, E(y;;?) exists and
is equal to u;, i = 1,...,m. Thus we can get the result by using the same procedure in
the Appendix on p. 1648 of Eaton and Olkin (1987).

For A=1I,a;,=n, 06=0i=1,...,m, ZZ follows Wishart distribution with
parameters n and I.,, and in this special case (5.3) was first obtained by Eaton and
Olkin (1987). We also note that é;,7; in Lemma 5.1 are independent of A if and only if
,Bi=0,i= 1,...,m.

LEMMA 5.2. Let A = {B € RP*P | B is lower-triangular with positive diagonal
elements}. If A > 0, then

gleiﬁ{tr(BAB,) —log|BB'|} =p+log|A|
is achieved at B = E71, where E is Cholesky decomposition of A.

Note that any positive definite matrix has a unique Cholesky decomposition, and
the proof of the above lemma is directly obtained by applying Lemma 2.1 in Eaton and
Olkin (1987).

THEOREM 5.1. Suppose that n +a;; —1>0,i=1,...,k, j = 1,...,p;. Then
under the entropy loss Ly, the Bayesian estimator of € with respect to the prior p(¥)
in (4.1) is given by

(5.5) } = R'B7'R,
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where R is given by (3.10), B = diag(B1, By, ..., Bx) and B; = diag(bi1, ..., bip,) with

i—1
(5.6) bii = w11, by :uljjl_[(1+u1t), j=2,...,m
and -
(5.7) bi1 = {1+ tr(By)}ui1,
(5.8) bi; ={1+tr(Bl)}uijﬁ(1+uit), j=2,...,p;, i=2,... k.
t=1

Here u;; = (1 +2ﬂi]‘ti_j§)/(n+aij -1),7=1,...,p;,i=1,...,k with t;j; being the j-th
diagonal element of T;;.

PROOF. The Bayesian estimator of €2 under the entropy loss L; will be produced
by minimizing the posterior risk

bi(§) = / [t (€T %) — log [T T)| - plp( | §)d,

where p(W¥ | 8) is described in Theorem 4.1. Let £ = $'¥, where ¥ € G and has the
similar block partition as in (3.2). The question is then how to minimize

g (¥) = / e { (BT ) (B }p(F | §)dT — log ||,

So we need to calculate the posterior expectation of tr{(¥®~1)(¥¥-1)'}. By (3.4), it
follows

(5.9) ol
'i,ll\Ill—ll 0 0 . 0
(T — WUy Uo) W) T ¥y 0 e 0
= | (P31 — O3305,) W3 P 1} 0 Wy Wo) - 0 :
(‘i’kl — \i/kk‘]:’;kl‘l’kl)‘lll_ll 0 0 ot ‘i’kk‘I’]_C—kl
and therefore
(5.10)  tr{(P@H) (LY}
k
= Ztr{‘i’ii(q’;iq’ii)—l\i’;i}
=1
k ~
+ 3 tr{(Fa - 0 W) (8, W00) 7 (B — B0 )
=2

From Theorem 4.1(d) and (5.3) in Lemma 5.1, it follows that

E{(¥},¥,,)" ' |8} = T11B, T},
E{(¥, W)t |8} =TyuB;T,;/{l +tx(By)}, i=2,....k
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because of the condition n +a;; —1 > 0,¢=1,...,k, j = 1,...,p;. In addition, by
Theorem 4.1(a)(d) and Theorem 2.3.5 of Gupta and Nagar (2000),

Eltr{(¥a — W, 05 0;))(87,%1) (i — $,9;'9,)'} | S]
= tr[B{(¥i — U0 1) (T — 0,0, 1) | S}E{(P},¥11) 71 | S}
= tr{(‘i’il + ‘i’iisnsﬁl)'(‘i’u + ‘i’iiS“Sﬁl) T1.B.T};}
+tr(By) tr(¥y; T B T3 %41") /{1 + tr(B1)}-

Thus we have
(5.11)  Er{(T® ) (FT-1)} | S)

k
= Ztl‘(‘ilii T B; T}, %)

i=1

k
+ Ztr{(‘i’u + ‘i’z‘z‘silsl_ll)l(‘i’il + ‘i’iisilsﬁl) T11B:1T},}.

i=2
Hence,

k
g1(®) = Y {tr(¥;; Ty; B; T3, W) — log W), [}

i=1

k
+ Ztr{(‘i’il + 9,887 (¥, + ‘i’iisilsﬁl) TiB: T}
=2

Because T'1; B T}; > 0, then by Lemma 5.2, we can readily see that g, (¥) is minimized
at i’@'i = Bz_l/QT,Zl fori= 1,2, . .,;C and ‘i’jl = —'i/jjsj'lsl_ll fOI‘j = 2, 3, e ,k?. Thus
the proof is completed.

From Theorem 5.1, the Bayesian estimator Q is equivariant with respect to the
group G if and only if all 8;; = 0, j = 1,...,p;, ¢ = 1,...,k. In this case, Q will
have the form (3.15), which includes the MLE Q) and the unbiased estimator €.
Conversely, we can show that any estimator having the form (3.15) will be the Bayesian
estimator of €2 with respect to the prior p(¥) by taking §;; = 0 and some appropriate
a;s. A similar result will hold for the symmetric loss Lo discussed in the following section.

As a corollary of Theorem 5.1, we get the Bayesian estimator of €2 under the entropy
loss Li with respect to the left Haar invariant measure y"’g(\Il) This estimator will be
shown the best equivariant estimator under the group G. Bayesian estimators of §2 with
respect to the right Haar invariant measure v;(¥) (the Jeffreys prior 7;(¥)) and the
reference prior mr(¥) will be given in Corollary 5.2.

COROLLARY 5.1.  Under the entropy loss Ly, the besl G-equivariant estimator of
Q is the same as the Bayesian estimator with respect to the left Haar invariant measure
vs () and is given by

(5.12) Q.5 = R'B3'R,
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where R is given by (3.10), Bp = diag(B1p, B2s, ..., Bis) and B;p = diag(bap, ...,
bip,»B) with

n_l . s .
=D =) if 1=1,j=1,...,p1,

1 , . -
(n—p1—j21)(n—p1—j)’ if 1=2,...k j=1,...,pi

(5.13) bip =

PROOF. Suppose X = AA’, where A € G. By Theorem 6.5 in Eaton (1989),
the best equivariant estimator of X with respect to the group G will be the Bayesian
estimator if we take a right invariant Haar measure ?(dA) on the group G as a prior.
Because 2 = ¥'¥ = (A')"'A! and v5(dA) = v5(d¥®), thus the best equivariant
estimator of £ with respect to the group g will be the Bayesian estimator if we take the
left invariant Haar measure v5(d®) on the group G as a prior. So this completes the
proof by taking ay; = —jif 1 < j<p, o= -p1—Jif1 <j<p;,2<i<kand
Bi; =0,1<3<p;, 1 <i<kin Theorem 5.1.

Remark 4. It is well-known that the group of lower-triangular matrices is solvable
and thus its subgroup G is also solvable (see Bondar and Milnes (1981) for a survey).
By Kiefer (1957), the best G-equivariant estimator 2 5 is also minimax with respect to
the entropy loss L;.

COROLLARY 5.2. Under the entropy loss Ly, the Bayesian estimator Q. of §2
with respect to the Jeffreys prior w;(¥) is

(5.14) ;= R'B;'R,
where By has the form

diag( 1 I n—p+p —1 n—p+p —1 )
—p—=1"" (n-p-1)(n-—pa—1) p”""(n—p—l)(n—:ﬂk—l)

The Bayesian estimator 21 g with respect to the reference prior mr(®) under the entropy
loss L1 is

(5.15) ur=R'B:'R,

where BR = diag(BlR, B2R, ey BkR) and BiR = diag(bilR,bzgR, .- -:bipiR) with

n—1)7"1 ,
(5.16) bUR=((—:)QT, J=12. . p
1y
(517)  byr = {1+ tr(Bi)} Y F=1,2,. . ,ps i=2,...,k.

(n—2)7

6. Bayesian estimators of £2 under the symmetric loss

Similarly to Lemma 5.2, we need the following lemma, which is a direct corollary of
Lemma 2.2 in Eaton and Olkin (1987).
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LEMMA 6.1. Suppose that A is defined in Lemma 5.2. If A and A are both diag-
onal with known positive diagonal elements, then

Bmeir)‘[tr(BAB’) +tr{(B)"'AB'}] = 2tr(A/2A1/?)

is achieved at B = (A~1/2AV2)1/2 = A—1/4A1/4,

THEOREM 6.1. Suppose thatn+a;;—1>0,i=1,...,k,j=1,...,p;. Under the
symmetric loss Ly, the Bayesian estimator of Q2 with respect to the prior p(¥) in (4.1)
s given by

(6.1) Q) = RH 'R,

where R is given by (3.10), H = BY2C~1? with B being defined in Theorem 5.1 and
C =diag(C,,..., Cy). Here C; = diag(ci, ..., Cip,),

n+a13+1 .
Clj = ———— + , =1,,p,
YT 14280 P=3 L

n+a; +1 . .
Cij = ————5 + ) =1,...,p, 1 =2,...,k.
1] 1+2ﬂ1]t1__7§ pi — .7 J ’ ¥4 )

and t;;; is the j-th diagonal element of T ;.

ProOOF. Under the symmetric loss Lo, the Bayesian estimator of £ with respect
to the prior p(¥) will be produced by minimizing the posterior risk

ba(€2) = / (e { QT W) 1} + tr{ Q1 (BT} — 2p]p(T | §)dD.
Similarly to the proof of Theorem 5.1, by setting £ = ¥'¥, we just need to minimize
0(¥) = /[tr{(\Il\Il_l)(\Il\Il_l) } 4+ r{(TE ) (TE Y p(W | S)dT
in terms of . With the condition n + o —1>0,¢=1,...,k, j = 1,...,p;, the

posterior expectation of tr{(¥¥~1)(¥¥~1Y} is shown by (5.11). We now calculate the
posterior expectation of tr{(¥W¥~1)(¥W~1Y}. Similar to (5.10), it follows

(6.2) tr{(\Iﬂi’"l)(\Il\il“l)’}

—Ztr(\ll'l’\ll’ w0t
k
+ ) tr{(Way — WU ) B Y (B - B 8 )
=2

By (5.2) in Lemma 5.1, we have
E(W, ¥, | S)=(T,)"'D;T;", i=1,...,k,
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where D; is p; X p; diagonal with the j-th diagonal element

1
n+a”+—1+pz_ Js J=12,...,p;, 1=1,.. k.
]-‘|'2/Bl] i3]

Moreover, by Theorem 4.1(d) and applying Theorem 2.3.5 in Gupta and Nagar (2000),
we have
E{(¥; — ‘I’ii‘i’i_,-l‘i’il)(‘i’/n‘i’ll)_l(q’i1 - ‘I’ii‘ili_il‘i’il), | S}
= tr{(‘i’/u‘i’ll)_lsﬂl}Im
+ E{0;(8n S + ¥ W) (8], 1) N (S ST + 91 8, W, | S)
Thus,

(63) Efr{(¥T~H)(TE )} S

VA
k R k ) .
= e {(¥)THT5) T DT L ) e {(W5,%0,) 7 ST Y ()
i=1 1=2
k ~
Z (S ST+ W ) e oY

x (Sa S + ‘i’ﬁl‘i’il)l(Tgi)_lDi T;'}

k
=Y tr{(¥},) "N(Ti) " C T G
k A~ A
+ ) tr{(Su ST + ¥ )b oY
i=2
x (Sa ST + ;' a) (T5,) 7' D T}
Combining (5.11) and (6.3), we get

k k
(64)  g2(®) = Y tr(Wi Ty B T3, W5) + > or{(W,) " (T5,) 7' C. T !

k
1 - -
P Y t ‘I’, ‘I’S S_l !
* 1+tr(B1); P+ FaSaSi)
X (\Illl + ‘I’"Sllsll )TuB; T,z}
+ Ztr{(s VST 4 Wy )Y
X (5115111 + ‘i’_l‘i’il), ,—IDT,L_ll}
k
> Ztr(\iluT B, T, ‘I"z)—%Ztr{(\I‘ YT O T Y,
and the equality holds if we take
‘i’u:*‘i’iisnsﬁl, 1=2,3,...,k.
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Also, by Lemma 6.1, we can easily see that the right hand of (6.4) attaches minimum at
‘ilii = (B'il/zc’i_l/z)—l/z T;I = Hi_l/2 Ti_il’ 1= 1’ 2, RS ky

which completes the proof.

Similar to Corollaries 5.1 and 5.2, we give the corresponding results for the sym-
metric loss Ly without proofs.

COROLLARY 6.1. Under the symmetric loss Lo, the best G-equivariant estimator of
€ is the same as the Bayesian estimator with respect to the left Haar invariant measure
v (d®) and is given by

(6.5) %5 = RHZ'R,
where R is given by (3.10), Hpg = diag(H 15, H>p,...,Hip). Here H,p = diag(hi B,

.. hip,B) and

n—1 1/2
hiip = - - - , i=12,...,p1;
B {(n—J—l)(n—J)(n+p—2J+1)} h

n—1 1/2
hijp = . - . ,
B {(n—pl—J—l)(n—pl—J)(n—p1+pi—'23+1)}

F=1,2,...,p;; i=2,... k.

_ Remark 5. Similar to Remark 1, both the MLE Q » and the unbiased estimator
€1y are also inadmissible under the symmetric loss L.

Remark 6. Similar to Remark 4, the best G-equivariant estimators flg is also min-
imax with respect to the symmetric loss L.

COROLLARY 6.2. Under the symmetric loss Lo, the Bayesian estimator Slpy of
with respect to the Jeffreys prior n;(¥) is

(6.6) ;= R'H;'R,

where

1 1/2 n—p+p—1 1/2
H, = di — = U
y dlag<{n(n—p—1)} p“{n(n—p—l)(n—pz—l)} Toar s
n—pt+p—1 1/21
nn—p-1)(n-px—1) A

The Bayesian estimator $dap with respect to the reference prior mr(®) under the sym-
metric loss Ly is

(6.7) $r = R'HZ'R,
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where HR = diag(HlR, HQR, ey HkR) and HiR = diag(him, hi2R, ey himR) with
—1)/-1 . - .
—n=D /20 i i=1, 5=1,...,p,

{ {n+p—j)(n—2)

I n-1)7"1 ~1)771?
hijr {1+, ((n_)z)j }1/2{(7;-{-(1)7:—-’}'%(”_2)3 32,

if i=2....k j=1,...,p.

7. Risks of equivariant estimators of {2

In this section, we will calculate the risks of equivariant estimators defined by (3.11)
under the entropy loss L; and the symmetric loss L.

THEOREM T7.1. Suppose that Q is in the group G and has a similar block partition

of ¥ as in (3.2). Then under the entropy loss L, the risk of the equivariant estimator
Q=R Q QR is given by

k k
(71)  Ri(Q,9) = Z{tr(QiiBiB Qi) —log|Q;; Qil — pi} + Ztr(QuBlB Qi)

i=1 1=2
p1 k  Dpi

+Y E(logxn_je1) + DY EQog Xy —ji1)s
j=1 i=2 j=1

where B;g, i = 1,...,k were defined in Corollary 5.1 and X2, stands for the central
Chi-square distribution with m degrees of freedom.

PROOF. Because the risk of any G-equivariant estimator will not depend on €2,
without loss of generality, we assume that £ = I,,. For R defined in (3.10), we have

k
(7.2) tr(R'Q'QR) = Y tr{Q,(T}; Ti) ™' Q};}
=1

k
+ Ztr{ Q:;;T;'SuSTi ST S1:(T5) ™ Qy}

=2

k
-+ Ztr{ Qzl(Tlll Tll)_l Q;l}

=2
k
- Ztr{ Qi T1y 811 S1:(Th) 1 Q-
i=2

From (2.8), it follows
E(T};Tu)™' = Bis,

—p—1
B(T};To) ™" = 2

B;g, 1i=2,...,k.
n-1
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In addition, by (2.10) and the independence between (S.1, S11) and S;;.1, we get

E{T7 81 81:(T;;) "} = E{T1{' ST} E(S1: | Su1)}E(T;;)" " =0,
E{Ti_ilsilslllslllsll( n) 1} E{TulE(Sllslllslllsll | Sll (T ) }
= E{tr( Sll )}E(Tz‘i Tn) =p1B;g/(n—1).

The last equality holds because E(S7j') = I, /(n — p; — 1). Therefore,
k k
E{tr(R'Q'QR)} = > tr(Q:uBin Q) + Y tr(Qu B1s Qiy).
i=1 =2

Moreover,
E(log|R' Q' QRI)

k k k
=log|Q'Q|+E <1ogH |S;».11|> = Zloglczil — " E(log|Ss1)
4 i=1

=1
k pi
—Zlongu il - ZE(logxn i) = D) E(log X p,j11)-
i=1 i=2 j=1

This implies (7.1).
If @ is diagonal, we have the following corollary.

COROLLARY 7.1. Define W = diag(W,, W,..., W), where W, = diag(wi,
. Wip, ), ¢ = 1,... k. Under the entropy loss L1, the risk of the equivariant estimator
Q=R WR is

k  ps
(7.3) Ri(Q,9) = > (bijpwi; — logw;; — 1)
=1 j=1
ks
+ZE(logxn 1)+ DD E(ogxa_p i),
1=2 j=1

where b;;p is defined by (5.13) in Corollary 5.1.

By (7.1), the risk Rl(fl, 2) consists of two parts, namely,

k

k
Ry = Z{tr(Qn‘Bz‘B Qi) —log|Q;; Qyl — pi} + Ztr(QilBlB Qi1);

=1 =2

p1 k  p;
= 3" Bl 1)+ 337 o)

j=1 =2 j=1

where the second part Rjs is independent of @ and just depends on n and (p1,p2, - - -, Dk)-
The best equivariant estimator €215 also can be derived by minimizing (7.1) or Ry;.
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From Remark 4, the best G-equivariant estimator €, 5 is minimax and thus we get
the minimax risk in the following:

Remark 7. Under the entropy loss L., the minimax risk is given by

k

(74) Zzlogbng + EE(IOan 3+1) + Z Z E IOgXR 371"3+1)

=1 j3=1 =2 j=1

where b;;p is defined by (5.13) in Corollary 5.1.

Based on (7.3), we can easily get the risk expressmns for the MLE €24, the unbiased
estimator QU, and the Bayesian estimators Q” and Ql r under the entropy loss Lj.
Some numerical results will be given in next section.

We now give the frequentist risks of a general class of equivariant estimators under
the symmetric loss Ls. The derivation of the risks is similar to that under the entropy
loss and is omitted.

THEOREM 7.2. Let G = diag(Gh,..., Gx) and G; = diag(gi1,- .., gip,) with

n+p—25+1, if i=1,7=1,...,p1,
(7.5) 9ij = . e .
n—-p+p;—2i+1, if i=2,....k j=1,...,p

Then for any Q@ € G in Theorem 7.1, the risk of the G-equivariant estimator Q =
R' Q' QR under the symmetric loss Ly is

k

(7.6) R2(§2’ Q) = Z[tr(Qu‘BiB Q)+ tr{(Qii)_l GiQi—il}] —2p

i=1

k
+) [tr(QuB1s Qi)

=2
+tr{Q5' Qi1 (Q11 Q1) ' Qi (Q%) T Gi}l,
where B;p is defined by (5.13) in Corollary 5.1, i=1,...,k.

COROLLARY 7.2. Suppose that W is the same as in Corollary 7.1. Under the
symmetric loss Lo, the risk of the equivariant estimator 2 = R' W R is

ki
(77) RQ(Q, Q) = Z Z(biijij + w{jlgij - 1),

i=1 j=1

where bi;p and gi; are defined by (5.13) and (7.5), respectively.

Remark 8. Under the symmetric loss L, the minimax risk is given by

p1 . 1/2
j=1

(n—Jj—1)(n—17)

(n-Dm-pi+p-2+H\"/*
+222{n Pl—]_l)(n_pl_J)} 2.

=2 j=1
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8. Estimating the covariance matrix X

As immediate corollaries of our results on estimating the precision matrix, we now
list the results for estimating covariance matrix under the star-shape model.
For estimating the covariance matrix, the entropy loss and the symmetric loss are

(8.1) LI, ) =tr(27'8) —log |71 - p
and
(8.2) Ly, 2) = LY, ) + LI(E, D) = tr(BZ 7Y + tr(B1%) — 2p.

THEOREM 8.1. Under the entropy loss L], the Bayesian estimator of 3 with re-
spect to the prior p(¥) in (4.1) is given by

(8.3) 3, =TBT,
where T is given by (3.8) and B is defined in Theorem 5.1.

THEOREM 8.2. Suppose that P is in the group G and has a similar block partition
of ¥ as in (3.2). Then, under the entropy loss L, the risk of the equivariant estimator
3 = TPP'T' is given by

k
(8.4) Ri(E,%) = Y [e{P;'Bip(P};) ™"} — log | P (P},) ™! - pi]

i=1

k
+ > tr{P;' P, P{{ B1g(P;' P P1}')'}
=2
P1

+> E(logx2_;.1)

j=1
k  pi
+ Z Z E(log X?L—pl—j—t—l)v
=2 j=1

where B;p, i = 1,...,k were defined in Corollary 5.1 and x2, stands for the central
Chi-square distribution with m degrees of freedom.

COROLLARY 8.1. Under the entropy loss L}, the best G-equivariant estimate of X
s given by

(8.5) $.5=TBsT,

where T is given by (3.8) and Bp is shown in Corollary 5.1. Furthermore, $1p is
minimaz and its minimax risk is given by (7.4).

THEOREM 8.3. Under the symmetric loss L3, the Bayesian estimator of X with
respect to the prior p(¥) in (4.1) is given by

(8.6) $,=THT,
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where T is given by (3.8) and H is defined in Theorem 6.1.

THECREM 8.4. Under the symmet’rw loss L3, then, for any P € G, the risk of the
G -equivariant estimator S=TPP'T is

k
(8.7) R3y(£,%) = Y [tr{P;'Bip(Py) "'} + tr(P}; GiPy))
=1
k
+ > [tr{P;;' Py P} Byp(P;' P P1!)'} + tr(P:y P, Gy)] — 2p,

=2

where B;p is defined by (5.13) in Corollary 5.1,i=1,...,k and G = diag(G1, ..., Gi)
s given tn Theorem 7.2.

COROLLARY 8.2. Under the symmetric loss L}, the best G-equivariant estimator
of ¥ is given by

(8.8) 35=THgpT,

where T is gwen by (3.8) and Hp is shown in Corollary 6.1. Also, Eop is minimaz
and its minimaz risk is given by (7.8).

9. Numerical results

9.1 Numerical computation

In this subsection, we will compare the risks of MLE Q,, the unbiased estima-
tor QU, the best equivariant estimator QlB, the Bayesian estimator Q, J, and the
Bayesian estimator {13 under the entropy loss L;. Each risk will be denoted as
Rypr, Ry, Rip, Ry and Rjp, respectively. We also will compare the risks of MLE
9] M, the unbiased estimator QU, the best equivariant estimator fb B, the Bayesian es-
timator QQ 7, and the Bayesian estimator QQR under the symmetric loss Lo, denoting
each risk as Rops, Rov, Rop, Ray and Rap.

For the entropy loss L;, we will denote each first part on the right hand of (7.3) as
Riipm, Riy, RuiB, Ri1g, Riig respectively and the common second term as Ri3. Note
that Rjp will just depend on n and (p1,ps,...,pr). Because there is no explicit form
for the expectation of natural logarithm of chi-square distribution, we use Monte Carlo
method to get the value for the common second part Rj5. Some simulation results are
given in Table 1. From the simulation study, we found that the improvements over the
risk of €2 M by ﬂl B are significant. Of course, the best equivariant estimator Ql B is
the best among five estimators. Simulation study also shows that these five estimators
have the following relationship, ﬂl B = Ql R = Ql J = QU < M, where “<” stands for
“better than”. Another interesting thing is that except the best equivariant estimator
5, the Bayesian estimator 2;r with respect to the reference prior will be the best
one because the power of each 1, is always one.

For the symmetric loss Ly, we can compare their risks by (7.7) directly. The
improvements over the risk of Q M by ﬂg B are also 51gn1ﬁcant Some s1mulat10n re-
sults are given in Table 2. The _relationship among Q M, QU, 923, Qz 7, QQR will be
QQB < QgR < 92 7 =< QM < QU The Bayesian estimator 923 with respect to the
reference prior is still the best one except the best equivariant estimator 2o5.
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Table 1. Risks of Qps, Qpr, Q15, Q17 and ;5 under L.

p pis n Ry Ry R Ry Rip
4 (2,1, 1) 7 49099 2.6100 1.9938 - 2.4746 2.3896
12 1.4941 1.0497 0.9384 1.0381 1.0030
17  0.8502 0.6658 0.6201 0.6628 0.6454
22 0.5825 0.4819 0.4571 0.4807 0.4705
(1,2, 1) T 3.7287 2.1356  1.7018 2.0869 1.9399
12 1.2322 0.9032 0.8200 0.8979 0.8609
17  0.7197 0.5803 0.5457 0.5789  0.5620
22 0.4998 0.4231 0.4042 0.4225 0.4129
(1,1,1,1) 7  2.5475 1.7791 1.4097 1.7260 1.4903
12 0.9704 0.7724 0.7017 0.7653 0.7189
17  0.5891 0.5008 0.4713 0.4988 0.4786
5 (2,2,1) 8 6.4323 3.3930 2.4771 3.2286 3.1270
13 2.0997 1.4432 1.2561 1.4242  1.3747
18 1.2126 0.9301 0.8503 0.9248 0.8983
(1,2, 2) 8 4.0314 2.5236 1.9599 2.4751 2.2137
13 1.5492 1.1543 1.0303 1.1458 1.0865
18 0.9387 0.7602 0.7061 0.7577 0.7301
3,1,1) 8 80801 3.8673 2.7691 3.6136 3.7236
13 2.4282 1.5897 1.3744 1.5661 1.5366
18 1.3681 1.0156  0.9247 1.0092 0.9888
(1,3,1) 8 5.6792 2.9447 2.2519 2.8989 2.8103
13 1.8777 1.2975 1.1486 1.2909 1.2484
18 1.0942 0.8448 0.7805 0.8429 0.8207
(2,1,1,1) 8 47844 3.0364 2.1851 2.8495 2.5304
13 1.7712 1.3124 1.1377 1.2866 1.2127
18 1.0572 0.8506 0.7759 0.8431 0.8077
(1,2,1, 1) 8 3.2783 2.2576 1.7348 2.2130 1.8970
13 1.3273 1.0368 0.9228 1.0271 0.9603
18 0.8203 0.6859 0.6362 0.6829 0.6525

One thing should be mentioned if there is §8;; # 0, then the risk of the Bayesian
estimator with respect to the prior p(¥) under either L, or Lo is very complicated.
It is not clear whether there is such a Bayesian estimator that will be better than the
maximal likelihood estimator or the best equivariant estimator in theoretical view. We
will explore this point in the future.

9.2 Analysis of a real example

We now analyze a data set from Mardia et al. (1979). It consists of the examina-
tion marks of 88 students in five subjects: algebra, mechanics, vectors, analysis, and
statistics. Mechanics and vectors were closed book examinations and the reminders were
open book. Whittaker (1990) shows that given algebra, mechanics, and vectors are con-
ditionally independent with analysis and statistics. Because the mean of the population
distribution is unknown, we will have § = Y50 (Y; — Y)(Y; — Y, which follows
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Table 2. Risks of Qps, Qp7, 25, €227 and o under Lo.

p pis n Ronm Ryy Rop Raj Rar
4 (2,1,1) 7 6.5000 8.3333 4.2514 5.2553 4.9304
12 2.3333 2.5000 1.9146 2.1139 2.0319
17 1.4176 1.4744 1.2449 1.3296 1.2921
22 1.0175 1.0458 0.9236 0.9704 0.9490
(1,2,1) 7 5.1000 6.5000 3.5723 4.3461  3.9833
12 1.9667 2.1151 1.6627 1.8155 1.7374
17 1.2183 1.2711 1.0905 1.1556 1.1210
22 0.8825 0.9092 0.8122 0.8483 0.8288
(1,1,1,1) 7 3.7000 5.5000 2.8783 3.4947 3.0219
12 1.6000 1.8095 1.4065 1.5308 1.4387
17 1.0190 1.0952 0.9340 0.9879 0.9479
5 (2,2,1) 8 8.4667 11.5000 5.3279 6.8967 6.4342
13 3.2333 3.56437 2.5787 2.9161 2.7916
18 1.9956 2.1044 1.7154 1.8636 1.8040
(1,2,2) 8 5.6667 8.0000 4.0900 5.1135 4.5328
13 2.4848 2.7619 2.0941 2.3209 2.1970
18 1.5893 1.6905 1.4142 1.5153 1.4592
(3,1,1) 8 10.3333 13.3333 6.0614 7.8943 7.6748
13 3.6667 3.9286 2.8418 3.2311 3.1309
18 2.2198 2.3077 1.8746 2.0439 1.9924
(1,3,1) 8 7.5333 9.4000 4.8289 6.1593 5.7772
13 2.9182 3.1286 2.3581 2.6396 2.5371
18 1.8135 1.8897 1.5737 1.6965 1.6478
(2,1,1,1) 8 6.6000 10.5000 4.5783 5.9182 5.1794
13 2.8000 3.2381 2.3111  2.6100 2.4481
18 1.7714 1.9286  1.5542 1.6881 1.6137
(1,2,1,1) 8 4.7333 7.3000 3.5713 4.5048 3.8566
13 2.1697 2.4952 1.8668 2.0712 1.9359
18 1.4071 1.5286 1.2691 1.3605  1.2997

Ws(87, %) with

211 22 213
¥ = 221 222 2212;11213 9
Y3 X3 21_11212 33

where X1, 39y, X33 are 1 by 1, 2 by 2 and 2 by 2, respectively. From the data, we get
the maximum likelihood estimates of the covariance matrix ¥ and the precision matrix
Q = X! as follows,

112.8860 101.5794 85.1573 112.1134 121.8706
101.5794 305.7680 127.2226 100.8842 109.6641
85.1573 127.2226 172.8422 84.5744  91.9349
112.1134 100.8842 84.5744 220.3804 155.5355
121.8706 109.6641 91.9349 155.5355 297.7554

(Wil
g
I
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and
0.0285
X —-0.0029
Qy = | —0.0056
—0.0075
—0.0049

—0.0029
0.0052
—0.0024
0
0

—0.0056
—0.0024
0.0103
0
0
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—0.0075
0
0
0.0098
—0.0020

—0.0049
0
0
—0.0020
0.0064

According to Corollary 5.1 and Corollary 8.1, the best equivariant estimates of X
and © = X! under the entropy loss are

115.5421
103.9695
87.1610
114.7513
124.7381

YiB=

and
0.0272

—0.0028
—0.0052
—0.0072
—0.0046

Similarly, we can get the best
symmetric loss

111.6681
100.4835
84.2385

110.9038
120.5557

3o =

and
0.0280

—0.0028
—0.0053
—0.0074
—0.0047

Qyp =

103.9695
318.1865
131.4490
103.2579
112.2444

—0.0028
0.0050
—0.0023
0
0

87.1610
131.4490
181.9965
86.5644
94.0981

—0.0052
—0.0023
0.0096
0
0

114.7513
103.2579
86.5644
228.2229
160.0359

—0.0072
0
0
0.0094
—0.0019

124.7381
112.2444
94.0981
160.0359
312.7319

—0.0046
0
0
—0.0019
0.0060

equivariant estimates of ¥ and @ = X~! under the

100.4835
309.8557
127.5934
99.7958
108.4810

—0.0028
0.0051
—0.0023
0
0

84.2385
127.5934
177.0760
83.6620
90.9431

—0.0053
—0.0023
0.0099
0
0

110.9038
99.7958
83.6620
221.7599
155.0463

—0.0074
0
0
0.0096
—0.0019

120.5557
108.4810
90.9431
155.0463
304.0543

—0.0047
0
0
—0.0019
0.0061

For the entropy loss L, the posterior risks of Q M O B, Ql 7 Ql g are given in Table 3.
By comparing the posterior risks, we find that the maximum likelihood estimator of
) is always the worst one among the given four estimators under any of three usual priors,

Table 3. Posterior risks of QM, fllB, ﬂu, QlR under Lj and Lo.

L, La
vg(®) vz (¥)  wr(¥) vg(®) v (¥) wg(P)
Q.5 01299 01339 0.1295 Q.5  0.2599 0.2678  0.2590
Q,; 01316 0.1322 0.1301 Q,; 02632 0.2645 0.2602
Qir  0.1306 0.1335 0.1288 Q.r  0.2613 02670 0.2576
Q) 01375  0.1394  0.1394 €y 0.2656  0.2681  0.2591
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vs (), v (®), 7r(¥). For example, under the left Haar invariant measure vg(¥), the

MLE €2 will be improved by the best equivariant estimator 2, 5 for about 5.5 percent.
The posterior risks of Qps, Qop, 227, 22k under the symmetric loss Ly are also given in
the above table and the similar comparing results can be obtained.
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