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A b s t r a c t .  In this paper, we introduce the star-shape models, where the precision 
matrix ~t (the inverse of the covariance matrix) is structured by the special condi- 
tional independence. We want to estimate the precision matrix under entropy loss 
and symmetric loss. We show that the maximal likelihood estimator (MLE) of the 
precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We 
consider a type of Cholesky decomposition of Ft, in the sense that Ft = @~@, where 

is a lower triangular matrix with positive diagonal elements. A special group G, 
which is a subgroup of the group consisting all lower triangular matrices, is intro- 
duced. General forms of equivariant estimates of the covariance matrix and precision 
matrix are obtained. The invariant Haar measures on G, the reference prior, and the 
Jeffreys prior of @ are also discussed. We also introduce a class of priors of @, which 
includes all the priors described above. The posterior properties are discussed and 
the closed forms of Bayesian estimators are derived under either the entropy loss or 
the symmetric loss. We also show that the best equivariant estimators with respect 
to G is the special case of Bayesian estimators. Consequently, the MLE of the preci- 
sion matrix is inadmissible under either entropy or symmetric loss. The closed form 
of risks of equivariant estimators are obtained. Some numerical results are given for 
illustration. 

Key words and phrases: Star-shape model, maximum likelihood estimator, precision 
matrix, covariance matrix, Jeffreys prior, reference prior, invariant Haar measure, 
Bayesian estimator, entropy loss, symmetric loss, inadmissibility. 

1. Introduction 

Multivariate normal distributions play an important role in multivariate statistical 
analysis. There is a large literature on estimating the covariance matrix and precision 
matrix in the saturated multivariate normal distribution, that  is, with no restriction to 
the covariance matrix except assuming to be positive definite. See Haft (1980), Sinha 
and Ghosh (1987), Zrishnamoorthy and Gupta  (1989), Pal (1993), Yang and Berger 
(1994), and others. However, as the number of variables p in a multivariate distribution 
increases, the number of parameters p(p + 1)/2 to be estimated increases fast. Unless 
the number of observations, n, is very large, estimation is often inefficient, and models 
with many parameters are, in general, difficult to interpret. In many practical situations, 
there will be some manifest inter-relationships among several variables. One important 
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case uses several pair variables that  are conditionally independent given other remaining 
variables. For multivariate normal distribution, this will correspond to some zeros among 
the entries of the precision matrix. See Dempster (1972), Whittaker (1990), or Lauritzen 
(1996). Bayesian model selection of detecting zeros in precision matrix can be found in 
Wong et al. (2003). 

Assume that  X ~ Np(O, ]E). The vector X is partitioned into k groups, that  is, 
t i k X = (X~, X~, . . . ,  Xk)  , where Xi  is pi-dimensional and ~-~i=1Pi -- P. We assume that  

for giving X1, the other subvectors X 2 , . . . ,  Xk are mutually conditionally independent. 
From Whittaker (1990) and Lauritzen (1996), the precision matrix ~t ---- ]E -1 has the 
following special structure: 

(1.1) f~ = 

~-~21 ~'~22 0 �9 "" 0 

~"~31_ 0 ~"~33 �9 ' '  0 . 
. . . . . .  �9 

\ f 4 1  0 0 . . .  ftkk 

Now we state several examples in statistics and other fields. 

Example 1. Let X1 be the prime interest rate, which is a global variable, and 
X~ , . . . ,  Xk be the medium house prices in k - 1 cities in different states, which are local 
variables. Then X 2 , . . . ,  Xk are often conditionally independent given X1 and normally 
distributed. Hence the precision matrix of (X1 , . . . ,  Xk) would have the structure (1.1). 

Example 2. Conditional independence assumption is very common in graphical 
models. The case of k = 3 is considered in detail by Whittaker (1990) and is called a 
"butterfly model." For general k > 3, we call a normal model with precision matrix (1.1) 
a star-shape model because the graphical shape of the relationship among the variables 
when k > 4 looks like a star. The cases when k -- 3, 4, 7 are illustrated in Fig. 1. 

Example 3. Balanced one-way random effect model. Suppose that  Yij follow the 
one-way random effect model, 

Y i j = a i W e i j ,  j = 1 , . . . , J ,  i = 1 , . . . , n ,  

where a l , . . . ,  an are iid N(#, T2), and eij are iid N(0, a2). In the case, ai are often 
treated as unobserved latent variables. Clearly the joint distribution of (hi, Y i l , . . . ,  YiJ) 
follow a star-shape model with k = J + 1. (Considering latent variable is common in 
Bayesian context since latent variable is often used in computation.) 

The star-shape model is a special case of lattice conditional independence models 
introduced by Andersson and Perlman (1993). Although star-shaped models or gen- 
eral graphical models have been used widely, as far as we know, fewer theoretic results 
are obtained on estimating the covariance matrix and the precision matrix in lattice 
conditional independence models. Andersson and Perlman (1993) gave the form of the 
maximal likelihood estimator (MLE) of the covariance matrix E. Zonno (2001) consid- 
ered the estimation of the covariance matrix under the Stein loss 

Lo(E , E) -- t r ( E E  -1) - log I~-']~-]" 11 - -  p (1.2) * ^ 
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Fig. 1. 

((') 

Several  g r a p h s  of  c o n d i t i o n a l  i n d e p e n d e n c e :  (a) k = 3, (b)  k = 4, a n d  (c) k = 7. 
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and proved that the MLE of E is inadmissible. 
The Stein loss for estimating the covariance matrix E is equivalent to the following 

loss for estimating the precision matrix it  = E - l :  

(1.3) L0(l~, i t)  = t r ( ~ - l i t )  - log I ~ - l f t l  - p. 

Of course, the Stein loss is related to the commonly used entropy loss. See Robert  (1994). 
In this paper, we will consider the estimation of the precision matrix and the covariance 
matrix in the star-shape model under two loss functions. Let f ( x  I it) be the density of 
X under Ft. The entropy loss for i t  is 

(1.4) L l ( ~ , a )  = 2 log f ( X l ~ )  I(Xlit)ax 

= tr ( f i i t  -1)  - log I ~ i t - l l  - p. 

The Stein loss is obtained from the entropy loss by switching the role of two arguments, 
~ and Ft. The loss function L1 is typical entropy loss and has been studied by many 
authors such as Sinha and Ghosh (1987), Krishnamoorthy and Gupta  (1989), and others 
for various contexts. 

Note that  because neither L0 nor L1 is symmetric, we could consider a symmetric 
version by adding the Stein loss L0 and entropy loss LI: 

(1.5) L2(~,  it) = L0(l~, it) + L I (~ ,  it) = t r ( ~ i t  -1) 4- t r ( ~ - l i t )  - 2p. 

The symmetric loss L2 for i t  introduced by Kubokawa and Konno (1990) and Gupta  
and Ofori-Nyarko (1995), can be seen as estimating the covariance matrix and the preci- 
sion matrix simultaneously. The corresponding entropy loss and symmetric loss for the 
covariance E can be obtained by replacing fit -1 by E and ~t -1 by ~,. We will focus 
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on estimation of the precision matrix Ft because the results for ]E can be derived as 
corollaries of the corresponding results for ~t. 

The remainder of this paper is organized as follows�9 In Section 2, we give the MLE 
of the precision matrix in the star-shape model and prove that  it is not unbiased. Based 
on the MLE, an unbiased estimate of the precision matrix is given. In Section 3, we first 
consider a type of Cholesky decomposition of the precision matrix, that  is, Ft ---- qr 
where �9 is a lower triangular matrix with positive diagonal elements and then get the 
special group G of lower-triangular block matrices. Interestingly, the problem is invariant 
under the matrix operation from G, instead of traditional Cholesky decomposition�9 The 
invariant Haar measures of this group are given, and we also prove that  the Jeffreys prior 
of ~I' matrix is exactly the same as the right invariant Haar measure on the group G. A 
reference prior is obtained by using the algorithm in Berger and Bernardo (1992). The 
closed form of equivariant estimators of ~ also is derived. 

In Section 4, we introduce a class of priors of ~ ,  which includes all priors such as the 
left and right Haar measures and the reference prior as special cases. Some properties 
on the posterior under such class of priors are discussed�9 In Section 5, the closed form of 
Bayesian estimators with respect to such a class of priors is obtained under the entropy 
loss. We find that  these Bayesian estimators include a lot of usual estimators such as 
the MLE, the best equivariant estimates under the group G. From this, we also know 
that  the MLE of ~ is inadmissible under the entropy loss. Results on the symmetric loss 
are shown in Section 6. The risks of equivariant estimators are given in Section 7. The 
results on estimating covariance matrix are given in Section 8. Finally, some numerical 
results also are given in Section 9. 

2. The MLE and unbiased estimator 

Let Y1,  Y 2 , . . . ,  Y n  be a random sample from Np(0, I t - l ) ,  where ~ satisfies (1.1). 
n Let S = ~-~=1 Yi Y'i. Assume n > p + 1 throughout this paper. Then S is a sufficient 

statistic of ]E or ft  and has a Wishart distribution with parameters n and Ft -1. Write 
S = (Si j ) ,  where Sij  is the pi • pj sub-matrix. Whittaker (1990) gives the expression 
of MLE of the covariance matrix E for k = 3. For general k, it is easy to show that  the 
MLE of E has the expression 

(2.1) 

$11 $12 $13 " "  Slk ) 
S21 S22 S 2 1 S ~ S 1 3  . . .  S 2 1 S ~ S l k  

= ! . . .  . 

~ '~  . �9 �9 � 9 1 4 9 1 7 6  �9 

Ski  S k l S ~ S l ~  S k l S ~ S 1 3  " "  Skk 

Define 

(2.2) Sii.1 = Sii - S i l S ~ S i l ,  i = 2 , . . . , k .  

By (2.1), the MLE ~M of the precision matrix fl  can be obtained by 

(2.3) 
�9 . � 9 1 4 9  ~ , 

0 "'" ~kk ] 
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where 

k 

~M = nS11 _~_ n E  Sl11SliS~.11SilSlll; 
i=2 

^ M = nS~.~, i = 2 ,  k. ~'~ii " ' "  , 

The following proposition shows that  ~ u  is an unbiased estimate of E while ~M is not 
an unbiased estimate of Ft. 

PROPOSITION 2.1. Consider the star-shape model. 
(a) The MLE ~ M  in (2.1) is an unbiased estimate of ]E; 
(b) The MLE ~ M  in (2.3) is not an unbiased estimate of ~ .  

PROOF. It is well-known that  E(S i j )  -- nE i j ,  i , j  = 1 , 2 , . . . , k  because S 
Wp(n, E). For (a), we need to prove 

(2.4) E ( S i l S l l l S l j )  -~ n E i l ~ l / ~ l j ,  2 <_ i < j <_ k. 

We will prove (2.4) for the case when (i, j )  = (2, 3) only. Other cases are similar. 

(2.5) 

By 

For convenience, let 

~]ii.1 = ~]ii - ]Eil ]E11Eli, i = 2 , . . . , k .  

( 11 12 13) (( 11  13)) 
S21 S22 S23 "~ W p l + p 2 + p 3  n ,  ~-]21 E22 E21 El/~-~'13 
$31 $32 $33 E31 E31ElllE12 E33 

and using the property of the marginal and conditional distributions for Wishart distri- 
bution (see Theorem 3.3.9 of Gupta and Nagar (2000)), we have 

\S317 ] s~1 ~ Np~+.~,p~ r . ~, SH, 202 0 \ E 3 1 /  E33.1 

Here we exploit the notation for matrix variate normal distribution given by Defini- 
tion 2.2.1 of Gupta and Nagar (2000), that  is, Xp• ~ NB,~(Mp• E | @) if and only 
if vec(X')  ~ Npn(Vec(M'),  ]E| Applying Theorem 2.3.5 of Gupta and Nagar (2000), 
it follows that  

Because E ( S n )  : n]En, we get E($21S1)S13)  : n]E21]E[11]E13. Thus (2.4) holds for 
(i, j )  = (2, 3). For (b), because 

( 11 
Sil Si~ ~ Wp,+p, n, \ ]Eil Z~i ' 
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we have 

(2.8) 

Thus  
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8,1  '~ W p l  ( n ,  E, , ) ,  8ii. , ~ Wp~ (n - P l ,  ~']i i .1) ,  i = 2 , . . . ,  k. 

E ( 8 i ~ )  _ 1 1E~-11 '  E(S~}I  ) = 1 ~ - 1  i = 2, , k. 
n - p l  - -  n - - p ,  - -Pi  - -  1 ii.1, " ' "  

The  proof  is completed.  

Based on the  MLE ~IM in (2.3), we create  an unbiased es t imate  of f l  in Proposi-  
t ion 2.2. 

(2.9) 

w h e r e  

PROPOSITION 2.2. Under the star-shape model, an unbiased estimate of Ft is 

I/~f' a~2 ~f2 ' a#~ 
~U = /~U1  " / ' 

\ ak, akk / 

k 
s f ,  = (n - p - 1 )S{ r  + E (n - pl - -  P i  - -  1)811181iS~.118ilS1#; 

i=2 

^ u  - ( n  1)8T181i8~1. , ,  ~-~'i = - -  P l  - -  P i  - -  

~-~U = ( n - -  p ,  - -  P i  - -  1)8i-/.1,, i = 2 , . . . ,  k. 

PROOF. First ,  no te  tha t  the following relat ionships between f~ = E -1 and ]E, 

k 
a,1 z T ~ + ~  -1 - ,  - , .  

i=2 

~'~ii = ~ ' ] - - '  i = 2 ,  k .  i i . , ,  " "  " 

From (2.7), we have 

(2.1o) S~l I s , ,  ~ N p , , p l ( N i , E l I S n , N i i . 1  | S u ) ,  

and (S i , ,  S n )  is independent  of S i i . 1 ,  where Sii . ,  is defined by (2.2). Therefore ,  we get 

E ( S i l S , i S ~ l . 1  I S , , )  = S [ ~ E ( S , i  ] S u ) E ( S ~ I . , )  

= 1 1811" (S 11~--] 111~-] 1i) " ~11  
n - p ,  - P i -  

= 1 1 E l l  E 1i E~'I' 
n - Pl - Pi - 

and 
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1 1 S [ ~ E ( S l i E ~ I I S i l  I S l l ) S - 1  
rt - pl  - pi - iI 

Pi 1 S ~ 
n - Pl - Pc - 

1 
+ E l i E i i . l E i l E l l  . 

n - -  P l  - -  P i  - -  1 

So we get 

E ( ~  U) : n - p -  1 + E p ~  E(S~-I 1) + ~ }']~11][]1i}-']~/.11}-]il}-]~111. 
/=2 i : 2  

Because E ( S [  1) = E [ ~ / ( n  - Pl - 1), we have E(~u1) = Ft11. For i = 2 , . . . ,  k, 

E ( ~ U )  = - ( ? ~  - P l  - P i -  1 ) E ( S l l  S l i S ~ i l l )  : -Y]l - lY]l i~-~/ .11 : ~-~1i, 
^ u  

E(~ -~ i i  ) -~ ( n  - P l  - P i  - 1 ) E ( S ~ . 1 1 )  = ~-]~11 : ~'~ii. 

The proof is completed. 

3. Cholesky decomposition and noninformative priors 

3.1 The role of  group invariance 
It is well known that group invariance plays an important role in finding better  

estimates of the covariance and the precision matrices in multivariate normal models. 
With an appropriate group ~, if the model is invariant under the transformation using the 
element from the group to the data, we can restrict our attention to a class of equivariant 
estimators obtained by the group invariance principle. This class often includes the MLE 
under some mild conditions. Then a frequentist method may be applied to get the best 
equivariant estimator in this class. The procedure is to characterize the functional form 
of any equivariant estimator with respect to G. The best equivariant estimator can be 
obtained by minimizing the risk of an equivariant estimator with respect to the given loss 
function. The best equivariant estimator is often superior to the MLE. See for example, 
James and Stein (1961), Olkin and Selliah (1977), Sharma and Krishnamoorthy (1983), 
etc. 

Two drawbacks exist with this frequentist method. One drawback is that  it might 
be difficult to get the closed form of equivariant estimators with respect to the group. 
Furthermore, it could be more difficult to calculate risks for an equivariant estimator. 
Alternatively, a Bayesian method may be considered. Eaton (1989) showed that under 
some conditions, the best equivariant estimator will be a Bayesian estimator if we take 
the right Haar measure on the group as a prior. See Chapter 6 of Eaton (1989) for details. 
With the Bayesian method, Eaton (1970) successfully obtained the best equivariant es- 
timator of the covariance matrix with respect to the group of lower triangular matrices 
in multivariate normal distribution with missing data  under the Stein loss L~ (~], ~ )  al- 
though the general form of equivariant estimators is not derived because of complication. 
Konno (2001) got a similar result in lattice conditional independence models introduced 
by Andersson and Perlman (1993). 

Note that to exploit the frequentist method or the Bayesian method described above, 
it is crucial to choose an appropriate group that makes the model invariant. It could 
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be difficult to get an appropriate group when the precision matrix or the covariance 
matrix is structured. Fortunately, such a group does exist under the star-shape model 
by Andersson and Perlman (1993). We will describe this group in detail for our statistical 
inference. 

3.2 Cholesky decomposition 
We now consider how to get better  estimators over the MLE ~M and the unbiased 

estimator ~ u  of the precision matrix under the entropy loss L1 and the symmetric loss 
L2. First, we decompose the precision matrix or the covariance matrix as 

(3�9 ft  = ~"@ or ]E = A A ' ,  

where both �9 and A are p by p lower-triangular matrices with positive diagonal entries. 
For convenience, A will be viewed as the Cholesky decomposition of E. From the 
structure of ~t given by (1.1), it is easy to show that �9 has the following block structure: 

(3.2) R* = 

( ~It 11 0 0 . . .  0 ) 
~IJ21 I.I/22 0 .. �9 0 
~I/31 0 ~I/33 �9 �9 �9 0 , 

. . . �9 . �9 

lt~kl 0 0 "" " ~ k k  

where @ii is a Pi • Pi lower-triangular matrix. Note that  there is no restriction on @ij 
(i > j )  except requiring that all diagonal elements of @ii are positive. Define 

(3.3) G = { A  e R p• ] A has a structure as (3.2)}�9 

We have the following result: 

LEMMA 3.1. (a) G is a group with respect to matr ix  multiplication�9 (b) For any 
A E G, A -1 has the expression, 

(3.4) 

A-1 / 1 11 0 0 .-. 0 
- A ~2 A 21A -~11 A ~21 0 . . .  o 

A - 1  = - A 3 3 1 A a l A ~  0 Af31 . . .  0 
�9 . o . , ,  " 

-1 "-1 
- - A k k  A k l A 1 /  0 0 " "  A k k  

PROOF. Note that  G is a subset of the group of all p x p lower triangular matrices. 
The results then follow from Andersson and Perlman (1993) or can be verified directly. 

Note that  the star-shape model is invariant under the group G and so are the entropy 
loss L1 and the symmetric loss L2�9 In the following subsection, we will give the general 
form of equivariant estimators of ~ or E with respect to the group G�9 
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3.3 The general forms of equivariant estimates of ]E and ~t 
An estimate ~](S) of E is called equivariant under the group G if and only if for 

any A E G, 

(3.5) E ( A S A ' )  = A E ( f l ) A ' .  

For estimating the precision matrix f~, ~ ( S )  is equivariant under the group G if and 
only if 

(3.6) ~ t ( A S A ' )  = ( A ' ) - I ~ ( S ) A  -1 

for any A C G. 
For the star-shape model, it is easy to show that  S l l  , S 1 2 , . . .  , S l k  , S 2 2 ,  . . . , Skk are 

sufficient statistics for ]E (see (4�9 and (4.3) for details). Then S = n)-]MLE is also a 
sufficient statistic for E. Thus we can easily see that  for any equivariant estimate ~ ( S )  
satisfying (3.5), there will be ~0(S)  -- ~](S) a.s. such that  

(3.7) Eo(A[~A')  = AEo([~)A'.  

Let S11.1 = S l l  for convenience. Define 

(3.8) T = 

T n  0 0 ..- 0 / 
S21(T~l) -1 T22 0 . . .  0 
S 3 : (  T'I : )  - 1  0 T33 "" 0 , 

�9 �9 . � 9 1 4 9  �9 

Skl (  T'll) -1 0 0 "'" Tkk 

where Tii is Cholesky decomposition of Sii.:,  i = 1, 2 , . . . ,  k. Then S = T T '  and T E G. 
Put t ing  A -- T -1 in (3.7) gives ~30(S) -- T ~ o ( I ) T '  = T W T ' ,  where W ---- ~ o ( I )  
is a constant matrix that  can be expressed as PP~ for a P E G. In addition, for any 
P E G, the estimate Eo([~) = T P P '  T ~ satisfies (3.7) obviously�9 Hence the general form 
of equivariant estimates of ]E is 

(3.9) ~ ( S )  -= T P P ' T ' ,  

where T is defined by (3.8) and P C G is a constant matrix�9 
Let 

(3�9 R = T -1 = 

T~-# 0 0 . . .  0 ) 
- T2-2: S2I 8:-11 T22:  0 . . .  0 

T318318-~ 1 0 T3~ "" 0 . 
�9 �9 �9 . � 9 1 4 9  " 

Tk~SklS-Z? 0 0 ".. T ;~  

Thus the general form of equivariant estimates of f~ is 

(3�9 f t (S)  = R ' Q ' Q R ,  

where Q E G is a constant matrix�9 
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R e m a r k  1. Both the MLE ~M and the unbiased estimator ~tu obtained in Propo- 
sition 2.2 are equivariant with respect to G. In detail, the MLE of f~ given by (2.3) can 
be expressed as 

(3.12) r im = n R ' R .  

And the unbiased estimate of ~ given by (2.9) can be expressed as 

(3.13) 

where 

(3.14) 

~ u  = R '  U R ,  

U = diag{(n - p - 1 ) I ra ,  (n  - Pl - -  P2 - 1 ) I p 2 , . . . ,  (n  - Pl - -  P k  - -  1)Ipk }. 

R e m a r k  2. By (3.11), any estimator that has the following expression 

(3.15) f l  = R ' Q R  

will be a G-equivariant estimator of ~t, where Q is an arbitrary diagonal matrix with 
constant positive diagonal entries. This is an important class because we will show later 
that each of them is a Bayesian estimator under either L1 or L2. 

3.4 I n v a r i a n t  H a a r  measures  and  n o n i n f o r m a t i v e  pr iors  
Now we discuss the invariant Haar measures on the group G and some other nonin- 

formative priors. 
For any i = 1, 2 , . . . ,  k, let 

(3.16) ~i i  = 

e r a  0 . . .  0 ) 
"~2i21 ~2i22 " ' "  0 

�9 . . .  �9 
@ 

And for i -- 2 , . . . , k ,  let 

(3.17) 

r  r " ' "  r  ) 
r r " ' "  r 

ItlJ i 1 ~ . . . . .  �9 �9 

Similar to Example 1.14 of Eaton (1989), we have the lemma. 

LEMMA 3.2. The  left invar ian t  H a a r  measure  on ~ is 

d ~  
(3.18) 

" I - I j = l  1 lj=l Wljj E i = 2  Pi r~33 

while the right invar ian t  H a a r  measure  on G is 

d~2 
(3.19) v~ (d l I I )  ~ ]-[Pl w,p--j+I r [ k  F [P~ M,pi--j+I" 

1 l j = l  Wljj " 1 1i=2 1 l j = l  Wi j j  
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Remark 3. For ~k = ~I t - l ,  we can readily verify that ~(d~I ')  = tJ~(dA) and 
p~ (d~)  = v~ (dA). 

The invariant Haar measures plays a crucial role in finding a better estimator of the 
precision matrix or the covariance matrix (see Eaton (1989) for details). The following 
proposition will give other two noninformative priors of �9 in the star-shape model. 

PROPOSITION 3.1. Consider the star-shape model. 
(a) The Jeffreys prior rc j(r~) of ~2 is the same as the right invariant Haar measure 

of G given by (3.19). 
(b) The reference prior of �9 for the ordered group {~bnl, (r ~122),...~ (~1p11, 

�9 . - ,  r  (r r V,2~),..., (r r Ck,~,,..., Ckp~p~)} is given by 

d ~  
(3.20) lrR(d@) c< 

yI  k Pi " i=1 YIj=* ~2ijj 

PROOF. Let 8 = (r r ~3122,' ' ' ,  ~)1p11, ' ' ' ,  ~21plpl, (~211, ' ' ' ,  •21pl, r  
Ckpkl, ' ' ' ,  Ckpkpl, ~/3kpkl'"""' ~2kpkpk)l and Ii  be the i x i identity matrix and e i be the 
i • 1 vector with the i-th element 1 and others 0. Because the likelihood function of 
is 

f ( X  l ~)  (x l~2'~lU2 exp ( - 2 X ' ~ 2 ' ~ X )  , 

the log-likelihood is then 
k 

log f = const + E log I~i~ I 
/=1 

1 / l l l l l 
2 X i @ i i ~ i i X i  + 2 X l @ i l ~ i i X  i -~ X l @ i l ~ i l X 1  . 

i=1 i=2 i=2 

The Fisher information matrix of 8 is 

(O logf  
(3.21) A(8) = - E \  

0808' ] 
= d i a g ( A l l , . . . , A l m , A 2 1 , . . . , A 2 p 2 , . . . , A k l , . . . , A k p ~ ) ,  

where 
1 ! 

Alp1 = Var(X1) + ~/,~-----eplepl; 
Wlplpl 

1 
Al j  : (Ij  O) Var(Xl) ( I j  0)' + ~ l j j e j e j ,  

( X l )  --~- 1 e I 
hip  i = Mar X i  ~ e p l + p i  pl+pi, 

,pipi 

Aij = (Ira+ j 0) Var Xi  

1 ! 
+ ~/Tem+jem+j,  j = 1 ,2 , . . . , p ,  - 1, 

T ij j  

j = l , 2 , . . . , p ~ - l ;  

i = 2 , . . . , k ;  

i = 2 , . . . , k .  
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Because IE = ~-,~-1 ____ (lII,lli)--I ' we get Var(X1) = ( l I l i l l I / l l )  - 1  and for i = 2 , . . . ,  k, 

( ) ( ) ( , ) - 1  
Var X1 = ~11 0 -1 ~ 1  ~ i l  

Thus using IB + aa'l -- IBI(1 + a'B-la), where B is invertible and a is a vector, we 
can easily show that  

J 
(3.22) IAljl = 21- I 1 l _ < j _ < p l ;  

t=l r ' 

m 1 P~ 1 
(3.23) I A ~ j I = 2 ] - [ ~ - ~ - ' ] - [  2 , l<_j<_pi ,  

t=l"" s " ~ ) l t t  : r  
2 < i < k .  

Hence the Jeffreys prior of �9 (or 0) is ]A(0)I 1/2, which is proportional to that  in 
(3.19). Based on (3.21), (3.22), and (3.23), the reference prior of �9 for the ordered 
group {@111, (~121, ~/)122),""", (~)lpll,""", ~21plpl), (r r ~)211), �9 �9 �9 , (r " " �9 , 
Ckpkpl, r 1 , . . . ,  Ckpkpk)} is easy to obtain as (3.20) according to the algorithm in Berger 
and Bernardo (1992). 

4. Properties of posterior of @ under a class of priors 

In this section, we consider a class of priors of 

(4.1) 
k p~ 

p ( ~ )  c< H H r exp(-3ij~b~jj), 
i=1 j=l  

where /~ij _> 0, j = 1 , . . . ,P i ,  i = 1 , . . . , k .  This class includes the left Haar invariant 
measure ub(~) ,  the right Haar invariant measure @ ( ~ )  (the Jeffreys prior 7rj(~)) ,  and 
the reference prior 7rR(~). We have the following posterior properties: 

THEOREM 4.1. For the star-shape model, the posterior p ( ~  [ S) under the prior 
p(~)  in (4.1) has the following properties: 

(a) p ( ~  I S) is proper if and only if n + aij + 1 > O, j = 1 , . . . , p t ,  i = 1 , . . . , k .  
(b) ~11, (~21, k022),... ,  (~k l ,  ~2kk) are mutually independent; 
(c) For i = 2 , . . . , k ,  conditional distribution of g2il given ~i i  is 

Np ,pl(- .S lSll',Ip  | Sll); 
(d) For i = 1 , . . . , k ,  

{1 } Pi 
~b n+c~j exp(-/3ijr ). 

H r ~33 
j = l  

PROOF. 

(4.2) 

Because the likelihood function of �9 is 

f ( S  [ ~ )  e< 1~'~[~/2 exp 
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then the posterior of �9 under the prior p ( ~ )  in (4.1) is 

p ( ~ l S )  o ( l~A 'g2 ,n /2exp{ - l t r (~ '~S ) }  

Because In/2 k i n : ~ i : l  ] ~ i i  and 

k 
(4.3) t r ( @ S ~ ' )  = E t r (@i iS i i ' l@ ' i i )  

k pl 

H H r exp(-fiOr )" 
i~--I j----1 

From Theorem 4.1, each of the posteriors under the left Haar invariant measure 
u~(~) ,  the right Haar invariant measure u~(~)  (the Jeffreys prior 7rj(~)),  and the 
reference prior 7rR(@) will be proper. Specifically, the posterior under the left Haar 
invariant measure v~(ko) is related to Wishart  distribution as shown below. 

COROLLARY 4.1. If we take the left invariant Haar measure of the group g, ~ ( d~  ) 
as a prior, then the posterior distribution of �9 has the following properties: 

(a) ~11, (~21, ~ 2 2 ) , . . . ,  (~k l ,  ~kk) are mutually independent; 
(b) ~11Sl1~11 ~ Wpl(n, Ipl); 
(c) For i = 2 , . . . ,  k, V,S,.lV i ~ Wp, (n  - p l ,  Ip ); 
(d) For i = 2 , . . . , k ,  conditional distribution of ~i l  given ~ii is 

Np,,p~ ( - V i i S i l  S l ) ,  Ip, | 8-11). 

5. Bayesian estimators of ~ under the entropy loss 

To find the Bayesian estimate of ~t with respect to the prior p ( ~ )  under the entropy 
loss L1, we need the following two lemmas. 

LEMMA 5.1. Let A be a constant positive definite matrix and B = (bij)mxm be 
its ChoIesky decomposition. Assume that Z = (Z~j).~xm is a randomly lower-triangular 
with positive diagonal elements whose distribution follows 

(5.1) Z exp t r ( Z A Z '  ~' exp(-fliz~i). -- Zii 
i=l  

i=1 
k 

+ E t r { (~ i l  + ~iiSi lS11)S11(~i l  ~- V i i S i l S l l l ) t } .  
i-~ 2 

Hence it follows 
k 

P(~/ I S)  O( H e x p  [ - - l t r { ( ~ I / i l q - ' i i S i l S l l l ) S l l ( ~ i l q  - ~ i i S i l S l l ) ' } l  
i=2 

k { 1 } P~ ~ljn+ai~ 
x H e x p  - h t r ( ~ i i S i i . l V ' i i )  H T i j  j exp(-flOr 

i----1 j----1 

Thus we proves parts (b), (c), and (d). For part (a), it is easy to show that  p (V I S) is 
proper if and only if the marginal posterior P(~u I S) is proper, i = 1 , . . . ,  k. By taking 
the transformation ~ii ~ 0~  = ~ii Tii, we will readily get that  P(~ii I S) is proper if 
and only if n + a 0 + 1 > O, j = 1 , . . . , p i ,  i = 1 , . . . , k .  Hence (a) holds. 
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(a) I fc~ > 0,/3i >__ 0, i = 1 , . . . , m ,  then 

(5.2) E ( Z ' Z )  = (B ' )  -~ d iag(5~ , . . . ,  5m)B -1, 

where 5i = (a~ + 1)/(1 + 2t3ib~ 2) + m -  i, i = 1 , . . . , m .  
(b) Ifc~i > 1, 13i _> 0, i -- 1 , . . . , m ,  then 

(5.3) E( Z'  Z)  -1 = B d i a g ( ~ l , . . . ,  r/m)B',  

j -1  ., = (1 + 2/3ib~2)/(a~ 1), where r/1 = Ul, ~/j = uj I-[i=l (l + ui), j = 2, . .  m with ui 
i =  l , . . . , m .  

PROOF. Let t ing Y = Z B ,  then  Y = (Yij) is still lower-triangular and 

(5.4) Y ~ exp - ~ tr( Y Y ' )  H Yi~ exp(-~ib~2Y2i)" 
/=1 

From above, we know tha t  all Yij, 1 _< j < i < m are independent  and 

Yij '~ N(O, 1), 1 _< j < i _< m; (_ 1 + 2 ~ b ~  2 2 
Yii exp 2 Y~i], 1 < i < m .  

I f a i  > 0,/3i _> 0, i = 1 , . . .  ,m ,  then yi 2 ,- F((a~ + 1)/2, (1 +2/3ib~2)/2) and E(y2i) e x i s t s ,  
i = 1 , . . . , m .  Thus it is s traightforward to get (5.2). For (5.3), we just  need to show 
E(Y' Y)-~  = d i a g ( ~ l , . . . ,  ~m). Under the condition a~ > 1, fl~ > 0, E ( y ~  z) exists and 
is equal to u~, i -- 1 , . . . ,  m. Thus we can get the result by using the same procedure in 
the Appendix on p. 1648 of Eaton  and Olkin (1987). 

For A = I ,  a i  = n, fli = 0, i = 1 , . . . , m ,  Z Z  ~ follows Wishar t  dis tr ibut ion with 
parameters  n and Ira, and in this special case (5.3) was first obtained by Eaton and 
Olkin (1987). We also note tha t  5i, Oi in Lemma 5.1 are independent  of A if and only if 
13i = 0, i = 1 , . . . , m .  

LEMMA 5.2. Let A = { B  E R p• I B is lower-triangular with positive diagonal 
elements}. I f  A > O, then 

~ i ~ { t r ( B A B ' )  - l o g  IBB ' I}  = p +  log lA I 

is achieved at B = ~---1, where ~ ~ is Cholesky decomposition of zi. 

Note tha t  any positive definite matr ix  has a unique Cholesky decomposition, and 
the proof of the above lemma is directly obtained by applying L e m m a  2.1 in Ea ton  and 
Olkin (1987). 

THEOREM 5.1. Suppose that n + (~ij - 1 > 0, i = 1 , . . . , k ,  j = 1 , . . . , p~ .  Then 
under the entropy loss L1, the Bayesian estimator of fl  with respect to the prior p( ~ ) 
in (4.1) is given by 

(5.5) ~11 = R ' B - 1 R ,  
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where R is given by (3.10), B = diag(B1, B 2 , . . . ,  Bk) and Bi = diag(bil, . . . ,  bip~) with 

j--1 
(5.6) bll ---- Ull ,  blj = Ulj I I ( 1  + u~t), j = 2, . . .  ,Pl 

t=l  
and 

(5.7) bil = (1 + tr(B1)}Uil, 
j--1 

(5.8) bij = { l + t r ( B 1 ) } u i j l - I ( l + u i t ) ,  j = 2 , . . . , p i ,  i = 2 , . . . , k .  
t=l  

Here uij = (1 + 2/~jt~j2)/(n § ~ij -1 ) ,  j = 1,.. .  ,Pi, i = 1, . . . ,  k with tijj being the j-th 
diagonal element of Ti~. 

PROOF. The Bayesian estimator of Ft under the entropy loss L1 will be produced 
by minimizing the posterior risk 

- - - - / [ t r { ~ ( ~ ' ~ )  -1 } - log I~ (~ '~ ) -11  - p]p(~ I S)d~,  b l ( ~ )  

where p ( ~  I S) is described in Theorem 4.1. Let ~ = ~ ' ~ ,  where ~ E G and has the 
similar block partition as in (3.2). The question is then how to minimize 

= / t r { ( ~ , ~ - l ) ( ~ , ~ - l ) ' } p ( , ~ l S ) d ~ -  g1(~) log I ~ ' ~  I . 

So we need to calculate the posterior expectation of t r { ( ~ I ' - l ) ( ~ - ~ ) ' } .  By (3.4), it 
follows 

(5.9) o o . . . o  I 
(i 21 - ip2 r o 

---- (431 ~I/33 lit 331 lI/31 ) ~I111 ~33 IIt331 0 

^ " --1 --1 ; ; ~ffkk"~k 1 (~'kl ~I'kk~I'kk ~I'kl)'Iql 

From Theorem 4.1(d) and (5.3) in Lemma 5.1, it follows that 

E{(~IJ~I~IIl l)-I  { S ) =  T l l B 1 T ~ l l ,  

E{(~'i i l '~ii)  -1 [ ,~} = T u B i  T'ii/{1 + t r ( B 1 ) } ,  

^ I - - 1 ^ 1  ---- E t r ( ~ i ( ~ i i ~ i i )  ~i i}  
i=l 

k 
q - E t r { ( ~ i l  -- ~ii~.~il~ff il )( ~ i l  ~ l l ) - l (  ~ i l  -- ~lJ i i ~  ~ l  ~ff il )'}. 

i=2 

i =  2 , . . . , k  

and therefore 

(5.10) t r { ( ~ - l ) ( ~ - l )  '} 
k 
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because of the condition n + c~ij - 1 > 0, i -- 1 , . . . , k ,  j = 1 , . . . , p i .  In addition, by 
Theorem 4.1(a)(d) and Theorem 2.3.5 of Gupta  and Nagar (2000), 

E [ t r { ( ~ ' i l  - ~I~ii~.~il~il)(~il~ll)--l(~[li l  -- ~ i i ~ l ~ i l )  '} I S] 
= t r [ E { ( ~ q l -  ~i~I'~l~I'il)'(~'il - ~ i i ~ l ~ i l ) l S } E { ( ~ i l ~ l l ) - l l s } ]  

= tr{(~'il + 42iiS~1S~)'(42il + ~iiSi~S-l~)TuB~ T'n} 
+ tr(B1) tr(~,~ T~iBi T'~dgd)/{1 + tr(B~)}. 

Thus we have 

(5.11) E [ t r { ( ~ - l )  ( ~ - 1 ) ' }  I S ] 
k 

TiiB~ Ti i~i i )  
i=1 

k 

+ Etr{(~ql + ~q~SilSl~)'(~'il + ~iSiIS~)TIIBI T'n}. 
i=2 

Hence, 

k 
g l ( ~ , )  = ~ { t r ( ~ , .  ' ^ '  ^ '  ^ TiiB~ Ti i~i i )  log -- I~i i~i i l}  

i=1 
k 

+ E t r { ( ~ i l  4- ~ i i S i l S l # ) t ( ~ i l  4- ~ i i S i l S 1 1 )  T l l B i  T i l  }. 
i=2 

Because T u B 1  Till > 0, then by Lemma 5.2, we can readily see that g l ( ~ )  is minimized 

at ~ = B~.I /2T~ 1 for i = 1 , 2 , . . . , k  and ~ j l  = - ~ j j S j l S - ~  f o r j  = 2 , 3 , . . . , k .  Thus 
the proof is completed. 

From Theorem 5.1, the Bayesian estimator i l l  is equivariant with respect to the 
group G if and only if a l l~ i j  = 0, j = 1, . . . ,p~,  i = 1 , . . . , k .  In this case, ~tl will 
have the form (3.15), which includes the MLE A M and the unbiased estimator ~tu. 
Conversely, we can show that any estimator having the form (3.15) will be the Bayesian 
estimator of ~ with respect to the prior p ( ~ )  by taking/3~j -- 0 and some appropriate 
ais. A similar result will hold for the symmetric loss L2 discussed in the following section. 

As a corollary of Theorem 5.1, we get the Bayesian estimator of 12 under the entropy 
loss LI with respect to the left Haar invariant measure @ ( ~ ) .  This estimator will be 
shown the best equivariant estimator under the group G. Bayesian estimators of 12 with 
respect to the right Haar invariant measure @ ( ~ )  (the Jeffreys prior 7rj(~))  and the 
reference prior 7rR(~) will be given in Corollary 5.2. 

COROLLARY 5.1. Under the entropy loss L1, the best G-equivariant estimator of 
is the same as the Bayesian estimator with respect to the left Haar invariant measure 

@ ( ~2 ) and is given by 

(5.12) ~IB = R'BB1R, 
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where 1~ is given by (3.10), B B  = diag(B~B, B 2 B , . . . ,  B k B )  and B i B  ---- diag(b~lB,. . . ,  
b~p~ B ) with 

(5.13) 

n - - 1  
bijB : (n-j-1)(n-j) '  if i = 1, j ---- 1 , . . . , p l ,  

n--1 (n--pl--j--1)(n--pl--j)' i f  i = 2 , . . . , k ,  j = 1 , . . . , p i .  

PROOF. Suppose E = A A ' ,  where A E G. By Theorem 6.5 in Eaton (1989), 
the best equivariant estimator of E with respect to the group ~ will be the Bayesian 
estimator if we take a right invariant Haar measure v~(dA) on the group G as a prior. 
Because ~ = ~ ' ~  = ( ~ , ) - - 1 ~ - 1  and ~r(d~)6 = , ~ ( d ~ ) ,  thus the best equivariant 
estimator of ~ with respect to the group G will be the Bayesian estimator if we take the 
left invariant Haar measure ~ ( d ~ ) ' o n  the group G as a prior. So this completes the 
proof by t a k i n g a l j  = - j i f l  _< j _ < p l ,  ai j  = - p l - j  i f l < j  < p i ,  2 < i  < k and 
~ i j = 0 ,  l < j _ < p ~ ,  l < i < k i n T h e o r e m 5 . 1 .  

Remark  4. It is well-known that the group of lower-triangular matrices is solvable 
and thus its subgroup G is also solvable (see Bondar and Milnes (1981) for a survey). 
By Kiefer (1957), the best G-equivariant estimator RIB is also minimax with respect to 
the entropy loss L1. 

COROLLARY 5.2. Under the entropy loss L1, the Bayesian estimator ~ l J  of ~'~ 
with respect to the Jeffreys prior  7r g( ~ ) is 

(5.14) ~ l J  = R ' B - j  1R, 

where B j has the fo rm 

diag ( l l lp l  , n - p + pl - 1  n - p + pl - I ) 
n - p -  ( n - p - 1 ) ( n - p 2 - 1 ) I p 2 ' " " ( n - p - - l ~ 2 2 p [ - 1 )  Ipk " 

The Bayesian est imator ~ I R  with respect to the reference prior  ~rR( ~ ) under  the entropy 
loss L1 is 

(5.15) ~ IR  = R ' B R 1 R ,  

where B R = diag(B1R, B2R,  . . . , B k R )  and BiR = diag(bilR, bi2R,. . . ,  bipiR) with 

(n - 1) j -1  j = 1, 2 , . . .  ,Pl; 
(5.16) b l jR- -  ( n -  2)J ' 

(5.17) bijn = {1 + tr(B1R)} (n -- 1) j -1  (n - -2 ) J  ' j = l , 2 , . . . , p i ,  i = 2 , . . . , k .  

6. Bayesian estimators of ~ under the symmetric loss 

Similarly to Lemma 5.2, we need the following lemma, which is a direct corollary of 
Lemma 2.2 in Eaton and Olkin (1987). 
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LEMMA 6.1. Suppose that ,4 is defined in Lemma 5.2. If A and A are both diag- 
onal with known positive diagonal elements, then 

~ni~[tr(BAB')  + t r { ( B ' ) - I A B - 1 } ]  = 2tr(A1/2AX/Z) 

is achieved at B = (A-1/2A1/2) 1/2 ----- A-I/hA1/4.  

THEOREM 6.1. S u p p o s e t h a t n + a i j - l  >O, i =  l , . . . , k , j =  l , . . . , p i .  Underthe 
symmetric loss L2, the Bayesian estimator of It with respect to the prior p(~)  in (4.1) 
is given by 

(6 .1)  ~t2 = R'H-1R, 

where R is given by (3.10), H = B1/2C-1/2 with B being defined in Theorem 5.1 and 
C = d i ag (C1 , . . . ,  Ck). Here Ci -- diag(cil , . . . ,Cip,) ,  

n + alj  + 1 
c u -  1 +  2/31jt~-~ + P - J '  j - -  1 , . . . , p i ;  

n + aij  + 1 
-- + p i - j ,  j = l , . . . , p i ,  i = 2 , . . . , k .  Cij 1 + 2~ijti-j~ 

and tijj is the j- th diagonal element of Tii. 

PROOF. Under the symmetric loss L2, the Bayesian estimator of ~ with respect 
to the prior p (~ )  will be produced by minimizing the posterior risk 

/ [ t r { h ( @ ' ~ )  -1} + t r { ~ - 1 ( r 1 6 2  - 2p]p(@ [ S)d~2. b2(~) 

Similarly to the proof of Theorem 5.1, by setting ~ = ~ '@,  we just need to minimize 

/ [ t r { ( r 1 6 2  '} + t r { ( ~ r 1 6 2  ] S)dffl g2(~) 

in terms o f ~ .  With the condition n + a i j - 1  > 0, i = 1 , . . . , k ,  j = 1 , . . . , p i ,  the 
posterior expectation of t r { ( ~ - l ) ( ~ - i )  '} is shown by (5.11). We now calculate the 
posterior expectation of t r { ( ~ - l ) ( ~ - l ) ' } .  Similar to (5.10), it follows 

(6.2) tr{ ( l l J~-  1) (~II~-i)  ' } 
k 

: ~ t r ( ~ l ' ~ i i ~ i i ~  1) 
i=l 

k 

C=2 

By (5.2) in Lemma 5.1, we have 

E(@'.@.  IS )  ( , -1 -1 : Tii ) D i T i i  , i = 1 , . . . ,  k, 
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where Di is Pi x Pi diagonal with the j- th diagonal element 

dij n + aij + 1 
- -  + P i - j ,  j = l , 2 , . . . , p i ,  i - - 1 , . . . , k .  

1 + 2~ijti-j} 

Moreover, by Theorem 4.1(d) and applying Theorem 2.3.5 in Gupta and Nagar (2000), 
we have 

g { ( ~ I I i l  - ~ i i ~ 1 ~ i 1 ) ( ~ 1 1 1 ~ 1 1 ) - 1 ( ~ i l  - ~ i i ~ i l ~ i l )  t ] S }  

~ - 1 S - 1 l  I = t r { ( ~ ] l ~ 1 1 1  11 i Pl 

§ E { ~ i i ( S i l S l l  I § ~ i  1 ^ ^ ,  ^ -1  -1  ^ -1 ^ , , 

Thus, 

(6.3) E [ t r { ( ~ + - l )  (@+-1)'} I S ] 
k k 

^, -1 , -1 E t r { ( ~ l ~ l l ) - l S i ? } t r ( I p ~ )  = ~ t r{ (@i~  ) (T~) D ~ T ~ I ' ~  1} + 
i=1 i=2 

k 
^ --1 ^ ^ --I ^ --it § E tr{(SilS{-ll § ~ii  ~II i l )1II l l  ~IIll 

i=2 
^ --i ^ l t -1 --i 

}< ( S i l S 1 1 1  § ~ i i  l I I i l )  ( T i i )  D i T i i  } 
k 

= E t r { ( ~ i ) - I  (T'ii)-i Ci T ~ i ~  i } 
i=1 

k 
^ - - 1  ^ ^ - - 1  ^ -- l t  

§ E t r { ( S i l S l  1 § ff2ii ~IJil)~I/11 ~IIll 
i--2 

^ --1 ^ t ! --1 X ( S i l S l  1 § ~ i i  ~tI/il) ( T i i )  D i T ~ I }  �9 

Combining (5.11) and (6.3), we get 

k k 

tr(@u TiiBi Tii~ii  ) § (6.4)  g 2 ( ~ )  = E ^ ' ^' E t r { ( ~ i ) - l ( T ' i i ) - l C i T ~ l ~ ~ i l }  
i=1 i=1 

k 
1 

+ 1 + tr(B1) E tr{(~il  + ~i i~ i iS l~  )' 
i----2 

• ( ~ i l  § ~ i i S i l  S l l  1) TiiBi  T'ii} 
k 

+ E tr{(SilS111 + ~ 1 ~ i l ) ~ 1 1 1 ~ ' 1 1 1 1 '  
i=2 

^ --1 ^ t t--1 --1 
)< (SilSll  § ~ii ~IIix) Tii DiTii } 

k k 
> ~ t r ( ~ i i T i i B  i t ^ '  ^ ,  -1  t -1 - ~ T i i ~ i i )  + E t r { ( ~ i i )  ( T i i )  C i  T::i~-l~zz zz , ,  

i=1 i----1 

and the equality holds if we take 

~,. = - ~ , . & ~ S 1 1 ,  i = 2 ,3 , . . . ,k .  
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Also, by Lemma 6.1, we can easily see that  the right hand of (6.4) attaches minimum at 

(B1/2 C - 1 / 2 ) - 1 / ~  T - 1  -1 ~ii  = ,--i --i J --ii = HSz l/2 Tii , i = 1, 2, . . .  , k, 

which completes the proof. 

Similar to Corollaries 5.1 and 5.2, we give the corresponding results for the sym- 
metric loss L2 without proofs. 

COROLLARY 6.1. Under the symmetric loss L2, the best G-equivariant estimator of 
f l  is the same as the Bayesian estimator with respect to the left Haar invariant measure 
ub ( d ~  ) and is given by 

(6.5) fl2B = R ' H B t R ,  

where R is given by (3.10), H B  = diag(H1B, H 2 B , . . . ,  HkB).  Here HiB = diag(hilB, 
�9 ..,hip~B) and 

{ n - I  }1/2 
h l j s =  ( n - - j - - 1 ) ( n S - ~ ( n + p - - 2 j + l )  , j---- 1 , 2 , . . . , p l ;  

{ o 1  
h i jB= ( n - - p l - - j - - 1 ) ( n - - p l - - j ) ( n - - p l + P i - - 2 j + l )  ' 

j = l ,2 , . . . ,p~;  i =  2 , . . . , k .  

Remark 5. Similar to Remark 1, both the MLE ~M and the unbiased estimator 
~lu are also inadmissible under the symmetric loss L2. 

Remark 6. Similar to Remark 4, the best G-equivariant estimators ~t2 is also min- 
imax with respect to the symmetric loss L2. 

COROLLARY 6.2. Under the symmetric loss L2, the Bayesian estimator ~2J of ~'~ 
with respect to the Jeffreys prior 7rj(~) is 

g j  = diag n ( n - p - 1 )  IPl' n(n - p~-- l~ - - - -p2  - 1) I P 2 ' ' " '  

p2 - 1) J 

The Bayesian estimator ~12R with respect to the reference prior 7rR(ff2) under the sym- 
metric loss L2 is 

(6.7) ~2R = R ' H R 1 R ,  

(6.6) f l2 j  = R ' H j I R ,  

where 
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where HR = diag(HiR, H 2m . . . , H kR ) and H iR = diag(hilR, hi2R, . . . , hip~R) with 

hijR -~ { 

(n_1)J_1 
(n+p--j)(n--2)J }1/2, i f  i = 1, j = 1 , . . .  ,Pl ,  

Pl (n-- l )  j -1  (n-- l )  j -1  {1 + Y~=I (n-2p }1/2{ (n+p~--j)(n--2)' }1/2, 
i f  i = 2 , . . . , k ,  j = l , . . . , p ~ .  

7 .  Risks of equivariant estimators of 

In this section, we will calculate the risks of equivariant estimators defined by (3.11) 
under the entropy loss L1 and the symmetric loss L2. 

THEOREM 7.1. Suppose that Q is in the group G and has a similar block parti t ion 
of  �9 as in (3.2). Then under the entropy loss L1, the risk of the equivariant est imator 

~t = R ~ Q~ Q R is given by 

k k 
(7.1) Rl(~t,~t) = E { t r ( Q i ~ B i B Q ' i i ) - l o g [ Q i i Q ' i i [ - p i } + E t r ( Q i l B i B Q ~ i l )  

i=1 i--=2 

Pl k p~ 

+ E E(l~ X2n--J +1) + E E E ( l ~  
j=l i=2 j=l 

where B i B ,  i = 1 , . . . , k  were defined in Corollary 5.1 and X2m stands for  the central 
Chi-square distribution with m degrees of  freedom. 

PROOF. Because the risk of any G-equivariant estimator will not depend on f~, 
without loss of generality, we assume that  Ft = Ip .  For R defined in (3.10), we have 

k 

tr(R Q QR) = 
i=1 

k 

Y' t r {  Q.  T 2  S;l  S; l  Sl ( , -1 Tii) Qii} + 

i=2 

k 

+ Z~  t r t  ~r T l l  11) ~ i l l  
i=2 
k 

_ E t F { Q i l  - 1  --1 t --1 t T l l  811 Sli( Tii) Qii}. 
i=2 

From (2.8), it follows 

E(  T'I 1 T l l )  -1 = B1B,  

E (  T~i Ti i ) - i  _ n - Pl - n - - - ~ ]  - 1 BiB, i = 2 , . . . , k .  
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In addition, by (2.10) and the independence between (Sil ,  $11) and Sii.a, we get 

E{ Tl11S~1Sli(T'~i) -1 } = E{ T~11SllE(S1i I S11)}E(T'ii) -1 = 0, 

g{  T~ l  Sil Sl l l  S111S1i( Trii)-I } = E{ T~il E( Sil S11S111Sli I Sl l)(T' i i )  -1} 
= E{tr(S~l)}E(T'ii Tii) -1 = p lB i s / (n  - 1). 

The last equality holds because E ( S ~ )  -- I p l / ( n -  Pl - 1). Therefore, 

k k 

r ' E{tr(R' Q' QR)} = E t ( Qi~BiB Qii) + E tr( QilB1BQil) . 
i = 1  i = 2  

Moreover, 

E(log IR' Q' QRI) 

= log lQ 'QI  + E  log IS~.~l = ~ - ~ l o g l O ~ l -  y~E(loNIS,.~I) 
i = 1  i = 1  

k P l  k Pi 

= E l~ - E E(l~ 1) - E E E(l~ 1)" 
i=i j=l i=2 j=l 

This implies (7.1). 

If Q is diagonal, we have the following corollary. 

COROLLARY 7.1. Define W = diag(W1,  W 2 , . . . ,  Wk),  where Wi = diag(wil, 
�9 .. ,Wipe), i -- 1, . . .k .  Under the entropy loss L1, the risk of the equivariant estimator 

= R '  W R  is 

k p~ 
(7.3) R l ( ~ , a )  = E E (bij'wij - logwij - 1) 

i=I j=l 

Pl  k p~ 

+ E E(l~ 1) + E E E(l~ +1)' 
j = l  i----2 j = l  

where bijs is defined by (5.13) in Corollary 5.1. 

By (7.1), the risk RI (~ ,  l~) consists of two parts, namely, 

k k 

Rll  ---- E { t r (  QiiBisQ'ii) - log IQiiQ'iil - pi} + Z tr( QilB1BQ'il), 
i=l i=2 
Pl k Pl 

j=l  i=2 j=l  

where the second part  R n  is independent of Q and just depends on n and (Pl, p 2 , . . . ,  pk). 
The best equivariant estimator ~ IB  also can be derived by minimizing (7.1) or Rl l .  
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From Remark 4, the best G-equivariant estimator ~'~IB is minimax and thus we get 
the minimax risk in the following: 

Remark 7. Under the entropy loss L1, the minimax risk is given by 

k p~ Pl k p~ 

(7.4) E E l o g b i j , + E E ( l o g x ~ _ y + l ) + E E E ( l o g x 2 _ p ~ _ j + l ) ,  
i=1 j = l  j = l  i=2  j = l  

where bijB is defined by (5.13) in Corollary 5.1. 

Based on (7.3), we can easily get the risk expressions for the MLE ~M, the unbiased 
estimator ~ u ,  and the Bayesian estimators ~tl j  and ~IR under the entropy loss L1. 
Some numerical results will be given in next section. 

We now give the frequentist risks of a general class of equivariant estimators under 
the symmetric loss L2. The derivation of the risks is similar to that under the entropy 
loss and is omitted. 

THEOREM 7.2. Let G = diag(G1 . . . .  , Gk) and Gi -- diag(gi l , . . .  ,gip,) with 

n + p - 2 j + l ,  if i = l ,  j = l , . . . , p l ,  
( 7 . 5 )  = 

n - p l + p i - 2 i + l ,  if i = 2 , . . . , k ,  j = l , . . . , p i .  

Then for any Q c G in Theorem 7.1, the risk of the G-equivariant estimator ~ -- 
] I R Q Q R  under the symmetric loss L2 is 

k 

(7.6) R2(~,  ~2) --- E [ t r ( Q i i B i B  Qii)' + tr{(Qii)t -1GiQii-1 }] _ 2p 
i = 1  

k 

+ E [ t r ( Q i l B 1 B  Q'il) 
i----2 

+ tr{ Qi-~ 1 Qil ( Qi~ Qn)  -~ Q'~l(Q~ii)-i Gi}], 

where BiB is defined by (5.13) in Corollary 5.1, i = 1 , . . . ,  k. 

COROLLARY 7.2. Suppose that W is the same as in Corollary 7.1. 
symmetric loss L2, the risk of the equivariant estimator ~ = Fl' W R is 

k p~ 

- 1  - 1 ) ,  (7.7) R2(a, a) = Z Z(bi,-wiJ + 
i=1 j = l  

where bijs and gij are defined by (5.13) and (7.5), respectively. 

Under the 

Remark 8. Under the symmetric loss L2, the minimax risk is given by 

p1 { ( n - 1 ) ( n  + p -  2j + 1)}1/2 

j = l  

+ 2 E E  (n p-~----j---1)--~ p1~3~ - 2 p .  
i=2  j = l  



478 D O N G C H U  SUN A N D  X I A O Q I A N  SUN 

8. Es t imat ing  the covar iance mat r i x  

As immediate  corollaries of our results on est imat ing the precision matrix,  we now 
list the  results for est imating covariance matr ix  under  the  s tar-shape model. 

For est imating the covariance matrix,  the entropy loss and the  symmetr ic  loss are 

(8.11 * ~ LI (E ,  E)  = t r ( ~ - l ] E )  - log I~]-I]EI - p 

and 

(8.2) L~(E,  E)  * ^ * ^ = L0(E , ]E) + LI(]E , ~]) = t r (~]E -1) + tr(~J-1]E) - 2p. 

THEOREM 8.1. Under the entropy loss L~, the Bayesian estimator of ~ with re- 
spect to the prior p(~2) in (4.11 is given by 

(8.3) ~]1 -- T B  T', 

where T is given by (3.8) and B is defined in Theorem 5.1. 

THEOREM 8.2. Suppose that P is in the group G and has a similar block partition 
of �9 as in (3.2). Then, under the entropy loss L~, the risk of the equivamant estimator 

= T P P ' T  r is given by 

k 

RI(IE , E) = E [ t r { p ~ I  B~B(P'ii) -1 } - log IP~I(P'~i)-ll - p~] ( 8 . 4 /  * ^ 

i=1 

k 

+ E t r { p ~ l p i l P - l ~ B i B ( p ~ l p i l P - l ~ ) ' }  
i=2  

Pl 

+ E E ( l ~  2 ~ n - j + l )  
j = l  

k p~ 

+ E E E(log 2 X n - p l - j + l ) ,  
i=2  j - -1  

where BiB, i = 1 , . . . , k  were defined in Corollary 5.1 and X2m 
Chi-square distribution with m degrees of freedom. 

stands ]or the central 

COROLLARY 8.1. Under the entropy loss L~, the best G-equivariant estimate o r e  
is given by 

(8.5) ~ ' ] l g  = T B B  T I, 

where T is given by (3.8) and BB  is shown in Corollary 5.1. Furthermore, ~]IB is 
minimax and its minimax risk is given by (7.4). 

THEOREM 8.3. Under the symmetric loss L~, the Bayesian estimator of E with 
respect to the prior p(~)  in (4.1) is given by 

(8.6) ~'2 = T H  T', 
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where T is given by (3.8) and H is defined in Theorem 6.1. 

THEOREM 8.4. Under the symmetric loss L~, then, for any P E ~, the risk of the 
G-equivariant estimator E - -  T P P'  T ~ is 

k 

( 8 . 7 )  * ^ R2(~, ~) = E[tr{PulB~B(P'i~) -1} + tr(P~i GiPii)] 
i=1 

k 

-~- E [ t r {  g~i1pix g11B iB(  P.~il g i l  P11) '} -~- tr( Pil  g'il Gi)] - 2p, 
i=2 

where BiB is defined by (5.13) in Corollary 5.1, i -- 1 , . . . ,  k and G -- d i ag (G~, . . . ,  Gk) 
is given in Theorem 7.2. 

COROLLARY 8.2. Under the symmetric loss L~, the best ~-equivariant estimator 
of ]E is given by 

(8.8) E2B = T H B  T', 

where T is given by (3.8) and HB is shown in Corollary 6.1. Also, ~,eB is minimax 
and its minimax risk is given by (7.8). 

9. Numerical results 

9.1 Numerical computation 
In this subsection, we will compare the risks of MLE ~tM, the unbiased estima- 

tor ~tv, the best equivariant estimator ~ l s ,  the Bayesian estimator ~ l g ,  and the 
Bayesian estimator ~IR under the entropy loss L1. Each risk will be denoted as 
R1M, R1u, R1B, R1j and RIR, respectively. We also will compare the risks of MLE 
~M, the unbiased estimator ~ v ,  the best equivariant estimator ~2B, the Bayesian es- 
t imator ~2J,  and the Bayesian estimator ~2R under the symmetric loss L2, denoting 
each risk as R2M, R2u, R2B, R2j and R2R. 

For the entropy loss L1, we will denote each first part on the right hand of (7.3) as 
RllM, Rllu, RllB, Rl l j ,  RllR respectively and the common second term as _t~12. Note 
that  R12 will just depend on n and (pl ,p2, . . .  ,pk). Because there is no explicit form 
for the expectation of natural logarithm of chi-square distribution, we use Monte Carlo 
method to get the value for the common second part  R12. Some simulation results are 
given in Table 1. From the simulation study, we found that the improvements over the 
risk of ~M by FtlB are significant. Of course, the best equivariant estimator ~tlB is 
the best among five estimators. Simulation study also shows that these five estimators 
have the following relationship, ~IB ~ ~IR ~ ~ l J  ~ ~V ~ ~M, where "-~" stands for 
"better than".  Another interesting thing is that except the best equivariant estimator 
~IB,  the Bayesian estimator ~IR with respect to the reference prior will be the best 
one because the power of each r  is always one. 

For the symmetric loss L2, we can compare their risks by (7.7) directly. The 
improvements over the risk of ~M by h2B are also significant. Some simulation re- 
sults are given in Table 2. The relationship among ~M, ~tu, Ft2B, ~ 2 J ,  ~2R will be 
~2B -~ ~z~2R "~ ~z~2J ~ hM ~ ~U" The Bayesian estimator Ft2R with respect to the 
reference prior is still the best one except the best equivariant estimator ~2B. 
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Table 1. Risks of ~M,  ~tu, RiB,  ~']1,] and  l~lR under L1. 

p p~s n R1M Riu RiB R i j  Rln  

4 (2,1,1) 7 4.9099 2.6100 1.9938 2.4746 2.3896 

12 1.4941 1.0497 0.9384 1.0381 1.0030 

17 0.8502 0.6658 0.6201 0.6628 0.6454 

22 0.5825 0.4819 0.4571 0.4807 0.4705 

(1,2,1) 7 3.7287 2.1356 1.7018 2.0869 1.9399 

12 1.2322 0.9032 0.8200 0.8979 0.8609 

17 0.7197 0.5803 0.5457 0.5789 0.5620 

22 0.4998 0.4231 0.4042 0.4225 0.4129 

(1,1,1,1) 7 2.5475 1.7791 1.4097 1.7260 1.4903 

12 0.9704 0.7724 0.7017 0.7653 0.7189 

17 0.5891 0.5008 0.4713 0.4988 0.4786 

5 (2,2,1) 8 6.4323 3.3930 2.4771 3.2286 3.1270 

13 2.0997 1.4432 1.2561 1.4242 1.3747 

18 1.2126 0.9301 0.8503 0.9248 0.8983 

(1,2,2) 8 4.0314 2.5236 1.9599 2.4751 2.2137 

13 1.5492 1.1543 1.0303 1.1458 1.0865 

18 0.9387 0.7602 0.7061 0.7577 0.7301 

(3,1,1) 8 8.0801 3.8673 2.7691 3.6136 3.7236 

13 2.4282 1.5897 1.3744 1.5661 1.5366 

18 1.3681 1.0156 0.9247 1.0092 0.9888 

(1,3,1) 8 5.6792 2.9447 2.2519 2.8989 2.8103 

13 1.8777 1.2975 1.1486 1.2909 1.2484 

18 1.0942 0.8448 0.7805 0.8429 0.8207 

(2,1,1,1) 8 4.7844 3.0364 2.1851 2.8495 2.5304 

13 1.7712 1.3124 1.1377 1.2866 1.2127 

18 1.0572 0.8506 0.7759 0.8431 0.8077 

(1,2,1,1) 8 3.2783 2.2576 1.7348 2.2130 1.8970 

13 1.3273 1.0368 0.9228 1.0271 0.9603 

18 0.8203 0.6859 0.6362 0.6829 0.6525 

O n e  t h i n g  s h o u l d  be  m e n t i o n e d  if t h e r e  is flij  7 ~ 0, t h e n  t h e  r i sk  of  t h e  B a y e s i a n  

e s t i m a t o r  w i t h  r e s p e c t  t o  t h e  p r i o r  p ( ~ )  u n d e r  e i t h e r  L i  or  L2 is v e r y  c o m p l i c a t e d .  

I t  is n o t  c l ea r  w h e t h e r  t h e r e  is such  a B a y e s i a n  e s t i m a t o r  t h a t  wil l  b e  b e t t e r  t h a n  t h e  

m a x i m a l  l i k e l i h o o d  e s t i m a t o r  o r  t h e  b e s t  e q u i v a r i a n t  e s t i m a t o r  in t h e o r e t i c a l  v iew.  W e  
wil l  e x p l o r e  t h i s  p o i n t  in  t h e  fu tu re .  

9.2 Analysis  of  a real example 
W e  now a n a l y z e  a d a t a  set  f r om M a r d i a  et al. (1979).  I t  cons i s t s  of  t h e  e x a m i n a -  

t i o n  m a r k s  of  88 s t u d e n t s  in five s u b j e c t s :  a l g e b r a ,  m e c h a n i c s ,  vec to r s ,  a n a l y s i s ,  a n d  

s t a t i s t i c s .  M e c h a n i c s  a n d  v e c t o r s  were  c losed  b o o k  e x a m i n a t i o n s  a n d  t h e  r e m i n d e r s  were  

o p e n  b o o k .  W h i t t a k e r  (1990) shows  t h a t  g iven  a l g e b r a ,  m e c h a n i c s ,  a n d  v e c t o r s  a r e  con-  

d i t i o n a l l y  i n d e p e n d e n t  w i t h  a n a l y s i s  a n d  s t a t i s t i c s .  B e c a u s e  t h e  m e a n  of  t h e  p o p u l a t i o n  
d i s t r i b u t i o n  is u n k n o w n ,  we wil l  have  S 88 --  } - ] ~ = l ( Y i  - ~ P ) ( Y i  - I7) ' ,  w h i c h  fol lows 
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Table 2. Risks of ~tM, ~ v ,  ~2B, ~t2j and ~t2R under L2. 

p p~s n R2M R2U R2B R2j R2R 

4 (2,1,1) 7 6.5000 8.3333 4.2514 5.2553 4.9304 

12 2.3333 2.5000 1.9146 2.1139 2.0319 

17 1.4176 1.4744 1.2449 1.3296 1.2921 

22 1.0175 1.0458 0.9236 0.9704 0.9490 

(1,2,1) 7 5.1000 6.5000 3.5723 4.3461 3.9833 

12 1.9667 2.1151 1.6627 1.8155 1.7374 

17 1.2183 1.2711 1.0905 1.1556 1.1210 

22 0.8825 0.9092 0.8122 0.8483 0.8288 

(1,1,1,1) 7 3.7000 5.5000 2.8783 3.4947 3.0219 

12 1.6000 1.8095 1.4065 1.5308 1.4387 

17 1.0190 1.0952 0.9340 0.9879 0.9479 

5 (2,2,1) 8 8.4667 11.5000 5.3279 6.8967 6.4342 

13 3.2333 3.5437 2.5787 2.9161 2.7916 

18 1.9956 2.1044 1.7154 1.8636 1.8040 

(1,2,2) 8 5.6667 8.0000 4.0900 5.1135 4.5328 

13 2.4848 2.7619 2.0941 2.3209 2.1970 

18 1.5893 1.6905 1.4142 1.5153 1.4592 

(3,1,1) 8 10.3333 13.3333 6.0614 7.8943 7.6748 

13 3.6667 3.9286 2.8418 3.2311 3.1309 

18 2.2198 2.3077 1.8746 2.0439 1.9924 

(1,3,1) 8 7.5333 9.4000 4.8289 6.1593 5.7772 

13 2.9182 3.1286 2.3581 2.6396 2.5371 

18 1.8135 1.8897 1.5737 1.6965 1.6478 

(2,1,1,1) 8 6.6000 10.5000 4.5783 5.9182 5.1794 

13 2.8000 3.2381 2.3111 2.6100 2.4481 

18 1.7714 1.9286 1.5542 1.6881 1.6137 

(1,2,1,1) 8 4.7333 7.3000 3.5713 4.5048 3.8566 

13 2.1697 2.4952 1.8668 2.0712 1.9359 

18 1.4071 1.5286 1.2691 1.3605 1.2997 

481 

W,5(87, E )  w i t h  

= q E21 E22 ~-']21~-']11E13 ) ' 

\ E31 E31 ~-]111 El2 E33 

where ~Ell, ~-~22, ~-~33 are 1 by i, 2 by 2 and 2 by 2, respectively. From the data, we get 
the maximum likelihood estimates of the covariance matrix ~E and the precision matrix 
~l = ]E -1 as follows, 

112.8860 101.5794 85.1573 112.1134 121.8706 / 

101.5794 305.7680 127.2226 100.8842 109.6641 

E M  = 85.1573 127.2226 172.8422 84.5744 91.9349 

112.1134 100.8842 84.5744 220.3804 155.5355 

121.8706 109.6641 91.9349 155.5355 297.7554 
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and 
0.0285 -0.0029 -0.0056 -0.0075 -0.!049 / 

-0.0029 0.0052 -0.0024 0 
~M = --0.0056 --0.0024 0.0103 0 

--0.0075 0 0 0.0098 --0.0020] 
--0.0049 0 0 --0.0020 0.0064 / 

According to Corollary 5.1 and Corollary 8.1, the best equivariant estimates of )-2, 
and ft -- ]E -1 under the entropy loss are 

and 

[ 115.5421 103.9695 87.1610 114.7513 124.7381 
[103.9695 318.1865 131.4490 1 0 3 . 2 5 7 9 1 ~ : 0 2 : : ~  

~IB = ] 87.1610 131.4490 181.9965 86.5644 
~114.7513 103.2579 86.5644 228.2229 160.0359] 
\124.7381112.244494.0981160.0359312.7319/ 
/ 0.0272 -0.0028 -0.0052 -0.0072 -0.i046 I 
[ -0.0028 0.0050 -0.0023 0 

~IB = [ -0 .0052 -0.0023 0.0096 0 
~-0.0072 0 0 0.0094 -0.0019 / 
\ -0 .0046  0 0 -0.0019 0.0060 / 

Similarly, we can get the best equivariant estimates of ]E and fl = ]E -1 under the 
symmetric loss 

and 

111.6681 100.4835 84.2385 110.9038 12~.5554:~i/ 
100.4835 309.8557 127.5934 99.7958 

E2B = 84.2385 127.5934 177.0760 83.6620 
110.9038 99.7958 83.6620 221.7599155.0463] 

/ 10 ~ 9090   

/ | -0.0028 0.0051 -0.0023 0 
~ 2 B  = / - -0 .0053  -0.0023 0.0099 0 

/ -0.0074 0 0 0.0096 -0.0019 ] 
\ -0 .0047  0 0 -0.0019 0.0061 / 

For the entropy loss L1, the posterior risks of ~M, ~IB, Ftlj, ~lt~ are given in Table 3. 
By comparing the posterior risks, we find that the maximum likelihood estimator of 

Ft is always the worst one among the given four estimators under any of three usual priors, 

Table 3. Posterior risks of ~M, ~'~IB, ~lJ ,  ~ I R  under L1 and L2. 

L1 L2 

~ IB  0.1299 0.1339 0.1295 ~2B 0.2599 0.2678 0.2590 

~ l J  0.1316 0.1322 0.1301 ~z~2j 0.2632 0.2645 0.2602 

~ I R  0.1306 0.1335 0.1288 ~2R 0.2613 0.2670 0.2576 

~ M  0.1375 0.1394 0.1394 FtM 0.2656 0.2681 0.2591 
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v b ( ~ ) ,  v ~ ( ~ ) , T r R ( a 2 ) .  For  e x a m p l e ,  u n d e r  t h e  lef t  H a a r  i n v a r i a n t  m e a s u r e  v ~ ( ~ ) ,  t h e  

M L E  ~ M  wil l  b e  i m p r o v e d  b y  t h e  b e s t  e q u i v a r i a n t  e s t i m a t o r  ~ I B  for a b o u t  5.5 p e r c e n t .  

T h e  p o s t e r i o r  r i sks  o f  ~ M ,  ~ 2 B ,  ~ 2 J ,  ~ 2 R  u n d e r  t h e  s y m m e t r i c  loss L2 a re  a lso  g iven  in  
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