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A b s t r a c t .  Let {Xn}n>0 be a Markov chain with stationary distribution f ( x ) ~ ( d x ) ,  
being a a-finite measure on E C R d. Under strict stationarity and mixing condi- 

tions we obtain the consistency and asymptotic normality for a general class of kernel 
estimates of f(.). When the assumption of stationarity is dropped these results are 
extended to geometrically ergodic chains. 

Key  words and phrases: Kernel estimator, general state space, mixing condition, 
geometric ergodicity. 

1. Introduction 

Kernel density type estimators for real-valued and strictly stationary Markov chains 
were considered by Roussas (1969, 1991), Rosenblatt (1970) and Athreya and Atuncar 
(1998). They extended to the Markov chain case the results of kernel density estimates 
of a sequence of independent and identically distributed (i.i.d.) random variables. For 
the stationary density f( .)  kernel estimators of the type 

(1.1) I n ( x )  = K x -  X k  h , h = h n ~ O  for n - ~ c ~ ,  

Then under regularity conditions on K(.) and h the consistency and were studied. 
asymptotic normality were obtained. Roussas (1969) considered chains satisfying Doob's 
Condition Do with an unique ergodic set and no cyclically moving subsets. Rosenblatt 
(1970) replaced these assumptions by ~-mixing conditions. Athreya and Atuncar (1998) 
weakened these conditions by assuming Harris recurrency. Other results about kernel 
estimators in a Markov chain can be found in Roussas (1991). 

We consider a more general setting: a Markov chain {Xn}n>0 with general state 
space E C R d and replace the stationary density by the existence of a density f( . )  with 
respect to a a-finite measure v on E. Under this setting the estimators in (1.1) can be 
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redefined by, 

1 ~ W(h, x, Xk), h = hn, (1.2) fn(x) = n 
k=l  

where W(h, x, .) is an appropriate weight function. Note tha t ,  in the usual case v is 
the Lebesgue measure and we may think of W as K / h  with h s tanding for v((x - h/2, 
x + h/2)) .  Fur ther  motivat ion for the use of (1.2) can be found in Campos and Dorea 
(2001), where the i.i.d, case was treated.  

In Section 2, we gather  the basic assumptions and some preliminary results. In 
Section 3, under  strict s ta t ionar i ty  and ~-mixing we show the strong consistency and 
asymptot ic  normality. And in Section 4, unlike the previous works on this mat ter ,  the 
assumption of strict s ta t ionar i ty  is dropped. 

2. Preliminaries 

Let {Xn}~>0 be a Markov chain with t ransi t ion kernel {P(x, A) : x �9 E, A �9 8} 
where E C R d and g is a a-field of subsets of E.  Assume tha t  the chain possesses a 
s ta t ionary density f(-) wi th  respect to the a-finite measure v on E,  tha t  is, 

/A f ( x ) v (dx )=  /E P~(x ,A) f (x)v(dx) ,  VA �9 g, Vn 

where for n _> 2 

Pn(x, A) = / E  pk(y, A)pn-k(x ,  dy), 1 < k < n - 1. 

In the usual case the asymptot ic  properties of (1.1) were derived at continuity points 
of f ( . ) .  Here we consider v-continuity points. 

DEFINITION 2.1. For a function g defined on E we say tha t  x is a v-continuity 
point of g, in short x �9 C~(g), if given e > 0 there exists 5 > 0 such tha t  

v { y :  Iv - xl < I (x) - g ( y ) l  > = 0. 

DEFINITION 2.2. We say tha t  {Xn}n>0 satisfies ~-mixing condition if for all A E 
~0 k, for all B E ~ + ~ ,  k > 0 and n _> 1, 

(2.1) IP(A A B) - P(A)P(B)I < ~(n)P(A) and ~(n)  I 0 as n ~ oc, 

where ~-[+m = a(Xt, Xt+I,. .  . , Xz+m). 

DEFINITION 2.3. We say tha t  the chain is geometrically ergodic if there exists a 
probabili ty 7r on E and constants a > 0 and 0 < p < 1 such tha t  

(2.2) ]pn(x,A) - Tr(A)[ < ap n, Vx e E, VA e g, Vn. 

Note tha t ,  in this case, we necessarily have 

P~(x, A) = 7r(A) and ~T(A) = f f(y)v(dy) Vx �9 E, Vd �9 $. lilTl 
JA 
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CONDITION 1. 
functions with respect to u. Moreover, given 5 > 0 

(2.3) 

For x E Cv( f )  and h = hn ~ 0 assume that W(h,  x, .) are density 

where 

(2.4) 

IWe(h,x,y)l  <_ Ke(x) < oc, and lim We(h ,x ,y )  = O. 
h--*0 

W~(h,x,y) =W(h,x,y)l(~:jz_x,>~t(y). 

C O N D I T I O N  2. 

h} we have 

(z5) 

and 

(2.6) 

Assume that Condition 1 holds and that for "~n(X) = u{y : l y - x l  ~ 

lim 7.~(x) = ~/(x) < c~, 
r b  - - +  (TX) 

lim n')'~(x) -- cc 
n - - - ~ O G  

7 n ( x ) W ( h , x , y )  ~ K l (x )  < oc for h small. 

The following preliminary results will be needed in our proofs. 

LEMMA 2.1. (Campos and Dorea (2001)) Let (S,S,A) be a ~r-finite measurable 
space. For x E S fixed and h > 0 assume that V(h,  x, .) are real-valued functions satis- 
fying (2.3) and such that for h small 

~ [V(h,x,y)[A(dy) <_ Ko(x) < oo. 

Then i r e  is an integrable function and x E C~(r we have 

lira f V (h , x , y ) r  r  f V(h ,x ,y )A(dy)  = O. 
h--*O Js  Js  

LEMMA 2.2. (Roussas and Ioannides (1987)) Let {Xn} be (p-mixing and assume 
that ~ and r} are, respectively, .Fok-measurable and 5~+n-mensurable random variables 
such that 

EI~I p < ~ ,  EI~I q < 

Then the covariance satisfies 

1 1 
for p > l, q > l with - + - = 1 .  

P q 

1/p p l i p  q 1/q (2.7) [cov(~,~)[ ~2(p (n) (E[~[)  (E[~[ )  . 

Moreover, if [z}l < M a.s. (almost surely) then 

(2.8) [E(~ 170 ~) - E~I _< 2(p(n)M a . s .  
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LEMMA 2.3. (Devroye (1991)) Let Go = {0, f~} C ~l C " ' "  C ~n be a sequence 
of nested a-algebras. Let U be a Gn-measurable and integrable random variable, and 
define the Doob martingale Uk = E(U [ ~k). Assume that there exist a 6k_l-measurable 
random variables Vk and constants ak such that Vk < Uk <_ Vk + ak. Then given e > 0 

_2e2 } 
P( lU-EU]_>e)_<4exp  Y'~=la~ " 

3. Estimation under !p-mixing 

In this section, we assume that  the chain is strictly stationary, that is, 

P(Xn �9 A) = / A  f(y)v(dy), VA �9 $, n = 0, 1, 2 , . . .  

and is ~-mixing. Note that  from (1.2) we have 

1 ~ E(W(h ,x ,  Xk)) /E W(h ,x , y ) f ( y ) . (dy )  E(fn(X)) = n 
k-=l  

and a direct application of Lemma 2.1 gives us the asymptotic unbiasedness. 

PROPOSITION 3.1. If Condition 1 holds then 

(3.1) lim E(fn(X)) -- lim EW(h ,x ,  X1) = f(x) ,  Vx �9 C~(f). 
n- -*c~  h--*O 

THEOREM 3.1. (Quadratic mean consistency) If Condition 
En%1 ~1/2(n) < ~,  then 

(3.2) lim E{[fn(X) - f(x)] 2} = O, Vx �9 C,( f ) .  
n---* oc 

2 holds and 

PROOF. By (3.1) it is enough to show_ that var(fn(X)) --* O. Using (2.5) this can 
be accomplished by showing that  n"/n(X)var(fn(X)) is bounded. By stationarity we can 
write, 

nvar(A(x))  = var(W(h, x, X~)) 
2 n - 1  

+ - ~ ( n  - k) cov[W(h, x, Xl), W(h, x, X~+k)]. 
n 

k= l  

Next, we show that for some M < c~ 

(3.3) 

and 

(3.4) 

lim sup "~n(X) var(W(h, x, Xx)) < M 
n - - ' ~  OO 

z . (x )  cov[W(h, x, Xl) ,  W(h, x, Xx+k)] _< 2M~/2(k). 
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Then it will follow that ,  

nTn(X ) var(fn(X)) <_ M + 2M E ~1/2(k) < ~ "  
k > _ l  

To prove (3.3) note tha t  from (2.5) and (3.1) we have 

(3.5) lim %~(x)[EW(h, x, Xl)]  2 = ~/(x)f2(x). 
n--~c~ 

Define Y ( h , x , y ) =  "y~(x)W2(h,x,y)then by (2.3), (2.4) and (2 .6 )we  have 

V~(h, x, y) < K1 (x)W~(h, x, y) < K1 (x)K~(x). 

Also, 

THEOREM 3.2. 
for all/3 > 0 

447 

Then 

(3.8) E exp{-n/3~n2 (x)} < ~ "  
n>l 

lim fn(X) = f ix) ,  v-a.s., Vx �9 C,( f ) .  
n---+ o ~  

PROOF. The proof  makes use of some of the  ideas from Dorea and Zhao (2002). 
(i) From Proposi t ion  3.1 we have l imn- ,~  E(fn(X)) = f (x)  thus enough to show 

(3.9) lim fin(x) - Ef(fn(x))] = 0, v-a.s. 

Define the auxiliary functions 

and 

Ck(Xk) = E[E(~/n(x)W(h,  x, Xk+j) I "T'kl ) -- E('Tn(x)W(h, x, Xk+j))] 
j>_o 

~k+l (Xk) = E[E(~/n(x)W(h,  x, Xk+j+I )  I J~'l k) - E(~/n(x)W( h, x, Xk+j+l))] 
j>_o 

f 
(3.6) lira V~(h,x,y) = 0 and ]V(h , x , y )~ , (dy )  <_ Kl(X) < C ~ .  

h - * 0  JE - - 

And from Lemma 2.1, 

(3.7) lim "7~(x)E(W2(h,x, X1)) --- f (x)  lim f V(h,x,y)v(dy)  <_ f (x)Kl(x) .  
n---* o c  n - - ~  o c  J E 

To prove (3.4) we make use of Lemma 2.2 by taking p = q = 2, ~ = 

")/nl/2(x)W(h, x, Xl )  and ~ = ~ /2 (x )W(h ,x ,  Xl+k). By (3.6) and s ta t ionar i ty  we get 
(3.4) with M = g l ( x ) .  [] 

(Strong consistency) If Conditon 2 holds, ~-~n>l ~(n) < oc and if 
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where 9 ck = o ' (X1 , . . . ,Xk) .  That they are well-defined follows from (2.8) by taking 
= "/n(x)W(h,x,  Xk+l+j) and observing that  by (2.6) we have ]r][ < KI(x) .  It follows 

that 
lEO? f . ~ )  - E~] I < p(l + j )K~(x)  

and for L(x) = 2Kz(x) ~-~>1 ~(n), 

(3.10) Ck(Xk) < L(x) and Ck+l(Xk) < L(x). 

On the other hand, we can write 

and 

Ck(Xk) - ~k+z (Xk) = "/n(x)[W(h, x, Xk) - EW(h ,  x, Xk)l 

n 

n3'~ (x)[fn (x) - E(f~ (x))] = E "/n (X)[r (Xk) -- Ck-t-1 (Xk)] 
k = l  

n 

= ~ ) l ( X l )  - ~n_l_l(Xn) ~- E[~Jk(Xk)  -- ~)k(Xk_l)]. 
k=2 

Moreover, 

(3.11) p( i f~(x)  _ E(fn(x)) l  > e) < P ( 1 r  r  > n" /~x )e )  

+ P Ck(Xk) -- Ck(Xk-1)] > �9 

(ii) We will show that  given e > 0 there exists ~(e) > 0 such that  

(3.12) P([fn(X) - Efn(X)[ >_ e) < 4exp{-n"/2n(X)/3(e)}. 

By (3.8) and application of the Borel-Cantelli Lemma we have the desired convergence 
(3.9). By (3.10) we have Ir162 < 2L(x) and by (2.5) we have n '~(x)  ---, oc. 
Thus, for n large 

P ( ' r  - ~n+z(X~)' >_ n" /~x)e )  = 0. 

To estimate the second part of (3.11) we make use of Lemma 2.3. Let Gt = 9~, 
n X 4 n ( x ) .  U : E k = 2 [ ~ ) k ( k )  --~)k(Xk-1)], Vl = E(U I~l), Yl = Vl-1 - 2 L ( x )  and el = 

Note that  we have for k > l, 

E(r I Gz) = ~{E[E(' , /n(x)W(h,x,  Xk+j) I Gk) I Gz] 
j>_o 

- E[E("/n(x)W(h, x, Xk+j)) I ~l]} 

-= E[E(" /n ( x )W(h ,  x, Xk+j) I ~l) - E('yn(x)W(h, x, Xk+j))] 
j>_o 

= 
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Similarly E(r  I Gl) = ~k(Xl). It follows that  

l 

uz = y ~ [ E ( r  I Gr - E ( r  I G~)] 
k=2 

+ ~ [E(r lG1)- E(r lgz)] 
k = / + l  

l 

: E [ r  -- C k ( X k _ l ) ]  
k=2  

and 
IUz - Uz-~l _< ]r § Ir _< 2L(x). 

Since EU = 0 we have 

P k Xk - -r  Xk-1 >_ 

~2 
where ~/(c) -- ~ ,  and (3.12) follows. [] 

_< 4 exp{-n'~2n (x)fl(c) } 

Remark 1. C a) Note that, in the above proof, the assumption of strict stationarity 
is not used, except where the asymptotic unbiasedness from Proposition 3.1 was needed. 

(b) The difficulty in replacing the Q-mixing condition (2.1) by a weaker a-mixing 
condition 

IP(A A B) - P(A)P(B)I  <_ a(n) and a(n)  $ 0 as n --+ oc, 

relies on the fact that  we can no longer guarantee the inequality (2.8) used in the proof 
of the strong consistency (cf. Theorem 3.2). 

Next, we provide conditions under which the asymptotic normality can be obtained. 
Assume that the transition kernel possesses a density function p(x, y) with respect to 
~(dy), that  is, 

P(x,  A) = lAP(X, y),(dy), (3.13) 

It follows that for n > 1 and p(~ -- 1, 

(3.14) 

where 

Vx E E, VA E $. 

p(n) (x, A) =/A p(~) (X, y)~(dy) 

p(n) iX ' y) : /E p(n--1)(X, Z)R(Z, y)~(dz). 

PROPOSITION 3.2. 
and that 

(3.15) 

Assume that the chain possesses the transition density (3.13) 

f W2(h, x, y)~(dy) -- T2(x) l i I n  "yn(X) 
J 
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exists. Moreover, assume that Condition 2 holds, }-2~n>1n~l/2(n) < oc and (x,x)  E 
C,2(p (n)) for n = 1, 2, . . . .  Then we have 

(3.16) 

where 

(3.17) 

lira n~%(x)var(f~(x)) = ~r2(x) 
n--~ oo 

a2(x) = f (x)T2(x)  - ~/(x)f2(x) + 27(x) E P l , k + l ( X  , X) < 00. 
k = l  

PROOf. (i) First, we show that  

(3.18) l i m  f W(h,  x, u)W(h,  x, v ) f (u)p  (k) (u, v)~,(du)u(dv) = f ( x )p  (k) (x, X). 
JE 2 

Let g(u, v) = f (u)p  (k) (u, v) and V(h, x, u, v) -- W(h,  x, u)W(h,  x, v). Then both 
g and V are density functions with respect to L, 2. Moreover (x, x) C C~2(g) and for 
Y~(h,x, u, v) = V (h,x,  u, v)l(l(~,v)_(~,x)l>~)(u, v ) we have 

Y,(h,x, u, v) < We/v~(h,x, ~) + We/,n(h,x, v ) <_ 2Ke/,n(x ) < ~ .  

Thus the hypotheses of Lemma 2.1 are satisfied and (3.18) follows. 
(ii) By stationarity we have 

nTn(x ) var(fn(X)) = 7n(x) var(W(h, x, X, ) )  

2 n--1 
-~- -- E ( n  -- k) c o v { W ( h , x ,  X1),  W ( h , x ,  X l+k)} .  

n 
k = l  

Prom (3.5), (3.15) and Lemma 2.1, 

lim 7n(x)E(W2(h,  x, X1)) = f(X)T2(X) 
n---4 ~ 

and 
lim 7n(X) var(W(h, x, X1)) = f (x)T2(x)  - f2(x)7(x) .  

n ---~ (:~ 

From (3.18) we have 

n - - 1  

l ime E %~(x)cov{W(h,x,  X1), W(h , x ,  Xl+k)} = E ~/(x)f(x)P(k)(x'x) 
k = l  k _ > l  

and from (3.4), 

n - 1  n - - 1  

k~n(X) Cov{W(h,x, Xl), W(h,x, Xl+k)} < 2M ~ k~l/2(k). 
k = l  k = l  

n - - 1  
Since ~ k = l  k ~ / 2 ( k )  < c~ we obtain (3.17). [] 

The proof of asymptotic normality uses the same techniques as the proof of the 
Central Limit Theorem for Markov chains from Doob (1953). The basic difference is the 
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replacement of Doob's condition Do by ~-mixing condition. The major difficulty was to 
compute the limiting variance, which was done in Proposition 3.2. A detailed proof can 
be found in Campos (2001). 

THEOREM 3.3. (Asymptotic normality) Assume that the hypotheses of Proposi- 
tion 3.2 are satisfied. Let f ( x )  > 0 and E { I ~ W ( h  , x, X1)I 3} < c~. Then for a S(x) 
given by (3.17) we have 

(3.19)  [In(X) -- E(In(x))] N(O, 

4. Estimation under geometric ergodicity 

In this section, we replace the assumptions of ~-mixing and strict stationarity by 
the geometric ergodicity (2.2). Let #o(dy) be an arbitrary initial distribution and let 
#~(dy) denote the distribution of Xn, that  is, 

f 
P~o(Xn e A) = ]AP~(dy) VA �9 $ 

where P~o indicates that the initial distribution is #0. Similarly we will use the notation 
E~0 instead of E for the expectation. 

PROPOSITION 4.1. There exists constants a > 0 and 0 < p < 1 such that 

(4.1) A~Esup P,o(X~ �9 A) - f a f ( y ) . ( d y )  < olp n 

and for A c ~o k, B E k+n, ~(n) = 2(~p "~ we have 

(4.2) [Puo(A A B) - Puo(A)P~o(B)I < ~(n)Puo(d).  

PROOF. Using (2.2) we have 

Ptz~ E d)-  fA f(y)v(dy) b = fE pn(x'd)]-t~ fE fA f(Y)l](dY)~t~ 

<- ]E [Pn(x'm) - 7r(d)l#~ <- aPn" 

As for (4.2) enough to use the fact that  

IEuo{l(xk+neB) l Yko} - Puo(Xk+~ E B)I < IP~(Xk ,B)  - I t ( B )  I 

+ IPuo(Xk+n e B) - ~(B)I 
~ olp n + oLp k+n ~ 2(~p n = ~(n). [] 
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THEOREM 4.1. Let {Xn} satisfying the geometric ergodicity condition (2.2) and 
let #o be any initial distribution. Assume that Condition 2 holds then 

(4.3) lirn E ,  o{(fn(x ) - f(x))  ~} = O, Vx e C,(f) .  

If, in addition, (3.8) holds then 

lim f~(x) = f(x),  ,-a.s., Vx �9 C~(f). 
n ---+ O ~  

Moreover, if the hypotheses of Theorem 3.3 are satisfied we have asymptotic normality 
(3.19). 

PROOF. (i) First, we show the asymptotic unbiasedness. From Lemma 2.1 we 
have for the initial stationary distribution 7r(dx) -- f(x)v(dx) 

W(", I -- 
(4.4) O. 

Since E~oW(h , x, Xk) = fE W(h, x, y)#k(dy) we have from (2.6) and (4.1) 

(4.5) iE W(h, x, y)[pk(dy) -- f(y)]u(dy) < Kl(x) 2apk 
- ~ n ( X )  " 

It follows that, 

n Z k ) ) ]  - 2 a K 1  (x )  pk. 1 E [ E , o ( W ( h , x ,  X k ) ) _  E~(I~V(h,x, <- n ~ ( x )  k:l  
n k=l 

By (2.5) and (4.4) we have, 

(4.6) lim E,o(fn(x)) = f(x).  
n--*oo 

(ii) To prove the consistency in quadratic mean we proceed as in Theorem 3.1 by 
showing (3.3) and (3.4) without the assumption of stationarity. From (2.6) and (4.6) we 
have, 

~'n(X) var.o(W(h,x,  Xk)) - ~/n(x) ~__~[E.o(W2(h,x, Xk)) _ (E .o(W(h,x ,  Xk)))2] 
n n 

k = l  k = l  
n 

~fn(X) E E l ~ ~  
n 

k = l  

< Kl(x) ~ E . o ( W ( h , x ,  Xk)) < oo. 
n k-~l 

Similarly, writing 

E~oW(h, x, Xj+z) = JEf2 W(h,x,v)#j(dy)PZ(y, dv) 
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we have for Ln(j, l) = I cOV~o{W(h, x, Xj), W(h, x, Xj+z)}l 

Ln(j,l) = /E W(h,x,u)W(h,x,v)~j(du)ttj(dy)[P~(u, dv) - 

/ ( l ( X )  ./~2 W(h, x, u)pj(du)#j(dy) 2ap t 
-  n(x) 

= 2apl  E l ( X )  E ~ o W ( h  ' x ,  X j ) .  

It follows from (4.6) that  

n- - ln - - j  n l n - - j  

"yn(X) E E Ln(j, 1) < K I ( X )  E E 2 a p I E ~ o W ( h ' x ' X j )  < ~ "  
n n 

j = l  /=1 j = l  /=1 

(iii) By Proposition 4.1 the chain is v-mixing and ~(n) = 2ap ~. Clearly 
~-]n>l ~(n) < ~ and the strong consistency follows from (i) and Remark 1. 

(iv) Since ~n_>l n~1/2(n) < oc using (4.1) we have for any measurable function 

lira [P~o(~(Xl , . . .  , X n ) e  A ) -  P T r ( ~ ( X l , . . .  , X n ) � 9  A)I = O. 
n - - ~ O 0  

And the asymptotic normality (3.19) follows. [] 
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