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Abstract .  Asymmetric kernels are quite useful for the estimation of density func- 
tions with bounded support. Gamma kernels are designed to handle density functions 
whose supports are bounded from one end only, whereas beta kernels are particu- 
larly convenient for the estimation of density functions with compact support. These 
asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape 
varies according to the location of the data point, thus also changing the amount of 
smoothing. This paper applies the central limit theorem for degenerate U-statistics 
to compute the limiting distribution of a class of asymmetric kernel functionals. 
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1. Introduction 

Fixed kernels are not appropriate to estimate density functions whose supports 
are bounded in view that  they engender boundary bias due to the allocation of weight 
outside the support in the event that  smoothing is applied near the boundary. A proper 
asymmetric kernel never assigns weight outside the density support and therefore should 
produce better estimates of the density near the boundary. Chen (1999, 2000) shows 
indeed that  replacing fixed with asymmetric kernels substantially increases the precision 
of density estimation close to the boundary. In particular, beta kernels are particularly 
appropriate to estimate densities with compact support, whereas gamma kernels are 
more convenient to handle density functions whose supports are bounded from one end 
only. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, 
their shape varies according to the location of the data  point, thus also changing the 
amount of smoothing. 

This paper derives the asymptotic behavior of asymmetric kernel functionals by 
applying a central limit theorem for degenerate U-statistics with variable kernel. The 
motivation is simple. It is often the case that  one must derive the limiting distribution 
of density functionals such as 

(1.1) In = / A  ~ ( x ) [ f ( x )  - f (x )]2dx ,  

where ~(.) is a bounded regular function and f is an asymmetric kernel estimate of 
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the true density f with support A. Examples abound in econometrics and statistics. 
Indeed, a central limit theorem for the density functional (1.1) is useful to s tudy the 
order of closeness between the integrated square error and the mean integrated squared 
error in the ambit of nonparametric kernel estimation of densities with bounded support. 
Although there are sharp results for nonparametric density estimation based on fixed 
kernels, e.g. Bickel and Rosenblatt (1973) and Hall (1984), no results are available for 
asymmetric kernel density estimation. 

Further, goodness-of-fit test statistics are usually driven by second-order asymp- 
totics (e.g., Ait-Sahalia et al. (2001)), hence density functionals such as (1.1) arise very 
naturally in that  context. Consider, for instance, one of the goodness-of-fit tests ad- 
vanced by Fernandes and Grammig (2005) for duration models, which gauges how large 
is 

/o (1.2) A(f, O) = [Fe(x) - Ff(x)]2f(x)dx,  

where Fe(.) and F f(.)  denote the parametric and nonparametric hazard rate functions, 
respectively. It follows from the functional delta method that the asymptotic behavior 
of (1.2) is driven by the leading term of the second functional derivative, namely 

f0 r (x) 1 - f ( x ) ] 2 d x .  

As duration data  are nonnegative by definition, gamma kernels are called for so as to 
avoid boundary bias in the density estimation. 

Let X 1 , . . . ,  Xn be a random sample from an unknown probability density function 
f defined on a support  A, which is either A = [0, r or A -- [0, 1]. The nonparametric 
estimator ] of the density function f uses the appropriate asymmetric kernel, namely, 
the gamma kernel for A = [0, c~) and the beta  kernel for A = [0, 1]. As in any kernel 
density estimation, the smoothing bandwidth, say b, converges to zero as the sample size 
grows. We are now ready to formulate the main result. 

THEOREM 1.1. Suppose that ~ is a bounded regular function and the density func- 
tion f and its first and second derivatives are bounded and square integrable on A. As- 
suming further that b is of order o(n-4/9), it then ensues that 

(1.3) nbU4In b-l~4 Exl[c-ff2(xl) (xl)] N(O, 

where the subscript of the expectation operator E indicates the random quantity that it 
refers to, a~ = 1 E x l [c X / 2 ( x ) ( x ) f ( x ) ] , and the boundary correction depends 

o n  the support A w i t h  c[0 ,c~)(Xl)  ~-~ X l  and c[0,1](Xl) ~- X 1 ( 1  --  X l ) .  

As is apparent, the boundary correction CA(.) is the sole distinction between the 
limiting distributions of the two asymmetric kernel functionals. Because the support  is 
bounded only from below in the gamma kernel case, it suffices to control for values of x 
close to the origin. In the context of beta  kernels, it is necessary to deal with x in the 
vicinity of both boundaries of the unit interval. We defer until the next section, which 
reviews the properties of beta  and gamma kernels, to comment upon the bandwidth con- 
dition b = o(n-4/9). Lastly, we split the proof of the theorem into two parts: Sections 3 
and 4 demonstrate the result for the gamma and beta  kernel functionals, respectively. 
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2. Asymmetric kernels 

Instead of the usual nonparametric kernel density estimator 

i x/:1 ) 
where K is a fixed kernel function and h is a smoothing bandwidth, consider the asym- 
metric kernel estimator 

1 f i  KA(Xi), 
] ( x ) =  n 

i = l  

where KA (-) corresponds either to the gamma kernel 

u x/b exp ( -u /b )  
Kx/b+l,b(u) = r ( x / b  + 1)bx/b+l ][(u > O) 

or to the beta kernel 

ux/b(1 -- U)(1-x)/b 11(0 < U ~ 1) 
Kx/b+l'(1-x)/b+l(U) = B(x/b -~- 1, (1 -- x)/b + 1) 

according to the density support A. As usual, the smoothing bandwidth b converges to 
zero as the sample size n grows. 

Asymmetric kernel estimators are boundary bias free in that  the bias is of order 
O(b) both near the boundaries and in the interior of the support (Chen (1999, 2000)). 
The absence of boundary bias is due to the fact that  asymmetric kernels have the same 
support of the underlying density, and hence no weight is assigned outside the density 
support. The trick is that asymmetric kernels are flexible enough to vary their shape 
and the amount of smoothing according to the location within the support.  

On the other hand, the asymptotic variance of asymmetric kernels is of higher order 
O(n-lb -1) near the boundaries than in the interior, which is of order O(n-lb-1/2). 
Nonetheless, the impact on the integrated variance is negligible, so that it does not affect 
the mean integrated square error. Furthermore, the optimal bandwidth b. -- O(n -2/5) = 
O(h2.), where h. is the optimal bandwidth for fixed nonnegative kernel estimators (Chen 
(1999, 2000)). Accordingly, both beta  and gamma kernel density estimators achieve the 
optimal rate of convergence for the mean integrated squared error of nonnegative kernels. 

It is readily seen that the bandwidth condition b = o(n -4/9) induces undersmoothing 
in the density estimation. Other limiting conditions on the bandwidth are also applicable, 
but  they would result in different terms for the bias in (1.3). For instance, the bandwidth 
condition b -- O(n -2/5) that  entails asymptotically optimal pointwise density estimates 
yields an additional term driving the asymptotic distribution of (1.1). Accordingly, that  
would lead to another component in the variance whose estimation would require the 
estimate of the second-order derivative of the density function as in Hs and Mammen 
(1993), for example. As an alternative, H~rdle and Mammen (1993) and Chen et al. 
(2003) show that one may replace f(x) by E l (x )  in (1.1) so as to avoid undersmoothing. 

3. Gamma kernel functionals 

In this section, we show that the asymptotic behavior of gamma kernel functionals 
of the form (I.i) is indeed as claimed in (1.3). The proof builds on U-statistic theory in 
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that we decompose the functional so as to force the emergence of a degenerate U-statistic. 
Let rn(X, X1) = ~l/2(x)Kx/b+l,b(X1) and rn(X, X1) = rn(x, X1) --  EX1 [rn(X, X1)]. In 
addition, denote by f the integral over the density support A = [0, oc) ~ and by j~ mul- 
tiple integrals. Letting the absence of subscript in the expectation operator denote the 
expectation over (X1 , . . . ,  Xn) then yields 

= [ - E](x)l  x + f - i(x)l  x 

+ 2 f ~(x)[](x) - E](~)][E](x) - f(x)]dx, 

or equivalently, In = I1~ + I2n + I3n + I4n, where 

2 i~<j / r~(x, Xi)rn(x, Xj)dx Iln = n-- ~ . . 

z 

= / ~(x)[~](x) - I3n f(x)]2dx 

= 2 / ~(x)[ f (x)  - Ef(x)]  [El(x) - f(x)]dx. i4n 

The first term stands for a degenerate U-statistic and contributes to the asymptotic 
variance as well as to the limiting Gaussian distribution, whereas the second term defines 
the asymptotic mean. In turn, the third and the fourth terms are negligible provided 
that the bandwidth b is of order 0(n-4/9). 

We start by deriving the first and second moments of rn(X, X1). Observe that  

~X1 [Tn (X, X l ) ]  = qpl/2 (x) / Kx/b+ 1,b ( x l ) f ( x l ) d x l  = ~o 1/2 (x)Er If (r 

where ~ has a gamma distribution G(x/b + 1, b). Applying a Taylor expansion yields 

Er162 = f(x) + O(b), 

illustrating the fact that  the gamma kernel density estimation has a uniform bias of 
order O(b) as singled out by Chen (2000). Put  differently, the order of magnitude of the 
bias does not depend on the location within the density support  and, as a consequence, 
Ex1 [r,~(x, X1)] = ~l/2(x)f(x) + O(b). 

We compute the second moment of rn(x, X1) in a similar fashion. It ensues from 
the properties of the gamma density that  

Ex1 [r2(x, X1)] = qo(x) / K2/b+l,b(Xl)f(Xl)dXl 

= qo(X)Bb(x)Ev[f(r~)], 

where r / ~  ~(2x/b + 1, b/2) and 

P(2x/b + 1)/b 
(3.1) Bb(X) = 22x/b+lr2(x/b + 1)" 
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G i v e n  t h a t  ]E n [ f ( r l )  ] = f(x) + O(b), it then follows that 

1 / E x l I r ~ ( X ,  Xl)]ax-1/]E2xl[rn(x, X1)]dx 
n n 

_-- in f ~(X)Bb(X)[f(x) + O(b)]dx + O(/'t -1) 

_ - -  in f  (x)Bb(x)f( )dx + O(ft--1). 

Let R(z) - ff-ff-~exp(-z)z~+t/2/r(z + 1). By rewriting 
function, one obtains 

R2(x/b) b-1/2x-1/2 
(3.2) Bb(x) = R(2x/b) 2v/-~ 

(3.1) in terms of the R- 

According to Brown and Chen's (1999) Lemma 3, R(z) is a monotonic increasing function 
that converges to one as z --~ oc and R(z) _< 1 for any z > 0. Moreover, if x/b is large 
enough, the difference between one and the first fraction in (3.2) is negligible and hence 
one may consider that  x/-~Bb(x) = 1/(2v/~) (Chen (2000)). It therefore follows that  

1 /~(X)Bb(X)f(x)dx + O(n -1) E ( I 2 n )  = n 

1// 
= - p(x)Bb(x)f(x)dx + - ~(X)Bb(x)f(x)dx + O(n-1) .  

n n 

It then suffices to write the first integral in terms of co = x/b to show that the first term 
is at most of order O(1/n), so that 

b -1/2 1 fo ~ E(/2n) -- T 2 ~  x-1/2q~ + O(n-1) 

by the dominated convergence theorem, provided that E[x-1/2~(x)] is finite. It therefore 
ensues that  

b-~/4 rtbl/4E(I2n) -- -~--~ ]EX1 [X11/2qO(Xl)] -----= o(1). 

In addition, we show in the Appendix that 

(3.3) V(I2n) = O(n-3b -2 -t- n-3b-1) .  

It then follows that  V(nbl/412n) = n2bl/2v(I~n) = O(n-lb-3/2), which is by assumption 
of order 0(1). Applying Chebyshev's inequality thus results in 

b-1/4 
nbl/412n - 2---~Ex1 [X11/2p(X1)] = Op(1). 

The fact that b = o(n -4/9) also ensures that the third and fourth terms are negligible 
if properly normalized. Indeed, I3n is proportional to the integrated squared bias of the 
gamma kernel density estimation, hence it is of order O(b2). The bandwidth condition 
then guarantees that  nbl/413n = O(nb 9/4) = o(1). Further, 

]]g~(Z4n ) = 2 f ~(X)I~[/(X) -- ~ / ( X ) ]  []E/(X) --  f(x)]dx = O, 
J 
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whereas E(I42n) = O(n-lb 2) analogously to Hall ((1984), Lemma 1). This means that  
E(n2bl/2I~n) = O(nb 5/2) = o(n-1/1~ and thus it stems from Chebyshev's inequality 
that  nbl/4Ian -- Op(1). 

Finally, recall that  tin = Ei<j Hn(Xi, Xj), where  

Hn(Xi,Xj) -= -~ rn(x, Xi)~n(x, Xj)dx. 

As is apparent,  Iln is a degenerate U-statistic as Hn(Xi, Xj) is symmetric, centered, and 
]E[Hn(Xi, Xj)  I Xj] = 0 almost surely. To see why, note that  

E[Hn(Xi,Xj) ] Xj] = -~ f  n(x, Xj)EVn(x,X,) I XjIdx 

= kTt 2 ] ~n(Z ' Xj)]~[~.n(X, Xi)]dx, 

which equals zero because the mean of ~n(x, 32/) is by construction zero. We then apply 
Theorem 4.7.3 of Koroljuk and Borovskich ((1994), p. 163) for degenerate U-statistics, 
which states that  if, for some k > 1, 

k + n  Ex  x [H (X X2)] ~ X  1 ,X2 [ G n  ( X l  ' X 2 ) ]  1 - ~  2k it 2L n ~, 1, 
(3.4) Ekxl,x2 [H2n( x l ,  X2)] ~ 0, 

where Gn(X1,322) -- Exs [H~(X3, X1)Hn(X3, X2)], then 

nbl/niln d N (0, ~4hl/2 2L-~-]Ex1,x2fH2(XI,X2)] ) �9 

We start by establishing that  the denominator  of (3.4) is of order O(n-4kb -k/2) as a 
by-product of the derivation of the asymptotic variance a 2 of nbl/4Iln. Indeed, 

n4bl/2 2 ~ -- 2 EX1,X2 [H~(X1, X2)] 

-- 2bl/~ / [f ~n(x, xl)~(x, x2)dx]2f(xl,x2)d(xl,x2) 

= 251/2 ~ ~n(X, x l ) ~ ( x ,  x2 )~(y ,  Xl)~n(y, x2)f(xl)f(x2)d(x,  y, xl, X2) 

I/ l = 2 b l / 2 j  xl)f(xl)aXl a(x,y) 

= 2b 1/2 / E2x1 [fn(x, X1)f ,(y,  X1)]d(x, y) 

= 2bl/2 7~( , y)d(x,y), 

where %(x,  y) = Ca(X, y)-Cn(z,  y), Ca(X, y) -- EXI [rn(X, X1)rn(y, Xl)], and C~(x, y) 
Ex~[r~(x, X1)]Ex~[rn(y, X1)]. It is easy to show that  the latter equals 
~l/2(x)~U2(y)f(x)f(y) + O(b), whereas 

Cn(x,Y) ---- ~91/2(X))91/2(y ) [ Kx/b+l,b(Xl )Ky/b+l,b(Xl )dF(Xl ) 
3 
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= ~fll/2(X)~pl/2(y)Bb(x , y) / K(x+Y)/b+l,b/2(xl)dF(xl) 

= r y)E~[f(g)], 

where ; ~ G[(x + y)/b + 1, b/2] and 

P[(x + y)/b + 1] 5 -1 
(3.5) Bb(X, y) = r(x/b + 1)F(y/b + 1) 2(x+Y)/b+l" 

As before, we rewrite (3.5) in terms of the R-function so as to get 

R(b ) R(b ) {x~y~X/b+l/4 fXJr-y~y/b+l/4 
Bb(X, y) = 

= Bb(x, y)[Z~(x,y)] l/b, 

with 

R(b ) R(b ) (x--~y~l/4 {x~y~ 

(3.7) Z~(x,~) = \  ex ] \ - -~-y ] " 

Applying a Taylor expansion to E~ [f(~)] then yields 

a~ 2bl/2 / ~(x)~(y) {Bb(X,y) [f ( ~  -~-) 

= 2bl/2 J ~(x)~(Y)B~(x,Y) [f (~-~-~)] 2 

= 2 b U 2 / ~ ( x ) ~ ( y ) ~ 2 ( x ' y ) [ A ( x ' y ) ] 2 / b  If ( ~ - ) 1  

which reduces to 

b-1/2x-1/4y-1/4 
24~ 

1/4 b_l/2x_1/4y_1/4 
24~ 

+ O ( b ) ] -  f(x)f(y)}2d(x,y) 

d(x, y){1 + o(1)} 

2 
d(z, y){1 + o(1)}, 
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f O-2 = 2x/~b ] xl/2~2(X)JB2(X, x)f(x)dF(x){1 + o(1)}, 

by Lemma A.4 in the Appendix. 
The second and third terms on the right-hand side of (3.6) equal one if x = y, 

resulting in [~b(x, x) = Bb(X). It then holds that  

/7 a~ = 2x/2-~b xl/2~2(x)B2(x)f(x)dF(x){1 + o(1)} 

= 2 v ~ b  xl/~2(x)B~(x)I(x)aF(x)+o(1) 

+ 2, /~b x~/%~(z)B~(x)f(x)eY(x) 
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/~ ( b-ix-' ) 
= 2v/~b xll2q~ 4re f(x)dF(x) + o(1) 

1 
-- v f ~ X l [ X l l / 2 ~ 2 ( X l ) f ( X l ) ]  -}- o(1), 

for b small enough. 
Denote by ~n and Ar~ the first and second terms of the numerator in (3.4), re- 

spectively. We show that ~n _< O(n-4kb 1-5kl4) and then demonstrate that  An = 
O(nl-Skb(1-2k)/2), ensuring that (3.4) holds for 1 < k < 4/3. In what follows, we treat k 
as an integer. This is without any loss of generality given that, for any k > 1, there exists 
an integer kl > 1 such that k = kl/k2 and, by Jensen's inequality, s  k) _< [E(Zk~)] 1/k= 
for any nonnegative random variable Z. Observe that  

kOn =- g'x,,x= {Eka [Hn(X3, X,)Hn(X3, X2)]} 

= z~ 7t IP~X1,X 2 EX3 rn(X, X3)rn(y, X3)rn(x, X1)rn(y, X2)d(x, y) 

{[/ 1 = 4kn-4kEx~,x2 "/n(X, y)~n(X, Xl)rn(y, X2)d(x, y) �9 

Jensen's inequality then ensures that  

~n < 4 kn-4k / [ "/n(X,y) ]k 
- Lf(x) f (y) j  

= 4kn-4~ f [ ~n(x,y) ]~ L/(x):(y)J 

I~,~ (x, xl )~n (y, x2)lk dF(x, y)dF(xl )dF(x2) 

Ex11~n(x, X1)lkEx11~n(Y, xl )lk dF(x, Y). 

However, centering implies that ExII~n(u, X1)I k is at most of the same order of 

Ex~ [rnk (u, X1)] = O(B~ k) (u)), where 

Rk(u/b) (2:rb)O-k)/2k-1/2 < O(b(1-k)/2). B~k)('~)- R(ku/b) 
It thus follows that 

�9 ,~ < O(n-4kb-k/4[B~k)(x)]2) = O(n-4kbl-5k/4) 

in view that %(x,y)  = O(b-U4). In turn, the second term of the numerator in (3.4) 
reads 

An - nl-kExl,x:[H2nk(X1,X2)] 

: 22kn1-5k / [ /  ~n(y, xl)~n(y, x2)dy]2kdF(xl)dF(x2) 

2k 
= 22knl-5k / H rn(Yi, Xl)~n(yi, x2)dyidF(xl)dF(x2) 

i=l 

Li= 1 
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which is of order O(nl-hkb(1-2k)/~) by Lemma A.5 in the Appendix.  The quant i ty  
nbl/4Iln/aG therefore weakly converges to a s tandard  normal distribution,  which implies 
tha t  

b-1/4 
nbl/4In - 2x/,- ~ Ex~ [Xll/2~(X1)] d N(O, ~ ) .  

This proves the main result for the gamma kernel functionals. 

4. Beta kernel functionals 

In the sequel, we derive in similar fashion the limiting dis tr ibut ion of the be ta  kernel 
functional using the decomposit ion In = I ln  + I2n + I3n + I4n. The only difference is 
tha t  rn(x, X1) now represents ~l/2(x)Kx/b+l,(l_~)/b+l(X1) and f denotes the integral 
over the unit  interval A = [0, 1]. Again, the first te rm stands for a degenerate U-statistic 
and contributes with the asymptot ic  variance, whereas the second term provides the  
asymptot ic  bias. The third and the fourth terms are, once more, negligible as long as 
the bandwidth  b is of order o(n-4/9). As before, this assumption precludes the use of 
the opt imal  bandwidth  tha t  is of order O(n -2/5) as shown in Chen (1999). 

To begin, note tha t  Ex~[rn(x, Xl)] = ~l/2(x)Ec[f(~)], where ~ has a be ta  dis- 
t r ibut ion 13(x/b + 1, (1 - x)/b + 1). Chen (1999) demonstra tes  t ha t  the be ta  ker- 
nel density est imation has a uniform bias of order O(b), and hence it turns  out tha t  
]Ex1 [rn(X, Xl)] ~-~ ~l/2(x)f(x) -[-O(b). 

The second moment  of rn(x, X1) reads 

]~Xl[~'2n(X, Xl)] ~(X) / 2 = K~/b+l,(l_x)/b+l(Xl)f(Xl)dXl 

= ~a(x)Ab(x)En [f(~)], 

where ~ ~ B(2x/b + 1, 2(1 - x)/b + 1) and 

B[2x/b + 1,2(1 - x)/b+ 1] 
Ab(x) = B ~ -  1 - , ( - 1 : x - ~ - + - ~  " 

Chen (1999) shows tha t  IEn[/(~) ] = f(x) + O(b), thus 

l f Exl[r (x, X1)]dx- l f S?xl[rn(x, X1)]dx E(/2n) = n n 

= n ~(x)Ab(x)[f(x) + O(b)]dx + O(n-1). 

For b small enough, Chen (1999) shows tha t  Ab(x) may be approximated according 
to the location of x within the support .  More precisely, x/b and (1 - x)/b grows wi thout  
bound as b shrinks to zero in the interior of the support ,  whereas either x/b or (1 - x)/b 
converges to some nonnegative constant  c in the boundaries.  The approximat ion is such 
tha t  

{ 2~b-1/2[x(1 - x)] -1/2 if x/b and (1 - x)/b ---+ oc 
Ab(x) ,~ r(2c+l)/b 

22c+1r2(c+1 ) if x/b or (1 - x)/b --+ c, 

which implies tha t  Ab(x) is of larger order near the boundary.  As before, there is no 
impact in E(I2n). 
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Let ~ = b 1-~, where 0 < e < 1. Then,  

1 
/~ (x )Ab(x)[ f (x )  + O(b)]dx + 

E(_r2,,) = n 
O(n -1)  

= - + + ~(x)Ab(x)[f(x) + O(b)ldx + O(n -1) 

1 f l-,~ -- 2v._~n b-1/2[x(1 - x)]-l/2T(x)[f(x) + O(b)ldx 

+ O(n-lb -~ + n -1) 

b-l~2 Jo 1 -- 2v/_~n ~(x)[x(1 - x)]-l/2 f (x)dx + o(n-% -1/2) 

as long as e is properly chosen and E x ,  {IX1(1 - X 1 ) ] - 1 / 2 ~ ( X 1 ) }  is finite. Further,  as in 
the previous section, Y(I2n) = O(n-3b -2 + n-3b-1) ,  which means tha t  V(nbl/412n) = 
O(n-lb -5/2) -- 0(1). It thus ensues from the Chebyshev's  inequality tha t  nbl/412n - 
b-l~4 
2~"~ ]~X1 {[Xl(1 -- X 1 ) ] - l / 2 ~ 9 ( X 1 ) }  : Op(1). 

Applying the same techniques as in the previous section, it is s traightforward to 
demonst ra te  tha t  the thi rd  and fourth terms are negligible provided tha t  the bandwid th  
is of order 0(n-4/9). It remains to compute  the variance of the degenerate U-statistic 
Iln = ~-~i<j Hn(Xi,Xj) ,  viz. 

n4bl/2 / 
~ --  2 E x l , x ~ [ H ~ ( Z ~ , X 2 ) ]  = 2t, ~/~ [ C n ( x ,  y )  - C,~(~,  y)l~d(x, y), 

where C'n(x,y) = ~l/2(x)~U2(y)f(x)f(y) + O(b) as before. In turn,  

Cn(x ' y) = ~1/2 (x)~l/2(y) f Kx/b+l,(l_x)/b+l (Xl)Ky/b+l,(l_y)/b+ I(xl)dF(xl) 

---~ ~1/2 (X)~1/2 (y)Ab(x, y) f K(x+y)/b+i,(l_x_y)/b+l (Xl )dF(x l )  
J 

= ~1/2 (x)~1/2 (y)Ab(x, y)Er [f(r 

where ~ ~ B[(x + y)/b + 1, (2 - x - y)/b + 1] and 

B [ ( x  + y ) / b  + 1, (1 - x - y ) / b  + 1] 
Ab(x,y) = B[x/b+ 1, (1 - x) /b+ 1]B[y/b+ 1, (1 - y) /b+ 1]" 

Expressing the be ta  functions in terms of the R-funct ion then yields 

Ab(x, y) = Ab(x, y)[A(x,  y)]l/b, 

where /~(u ,  v) = A(u,  v)A(1 - u, 1 - v) and 

b-1/2x-1/4y-U4 
.Ab(x, y) = Rb(x, y)D(x, y) 2v~  

with 

R/2,b/ Rb(X, y) = R(x/b)R(y/b) 
R(2xy)b R2 l,b  
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(/X -1= y'~ 1/4 IX -~ y'~ 1/4 2-- X -[- y'~ 1/4 (2_=X_.~__yX 1/4 
D(x,y)= \--~-x j \--~--y j ( 2~l--x) ] k 2 ( 1 - y )  ] " 

It then follows that 

a2s = 2b.~ ~(x)~(y)A2(x, y)E 2 [f(r Y) + O(b) 

= 2b/~(X)~(y)  {~ib(x,y)[~(x,y)]l/bf (~--~-)}2 d(x, y) "~- O(b) 

by Taylor expanding E~[/(r However, the term A(x, y) works similarly to the term 
A(x, y) in Lemma A.4, yielding 

a~ = 2v/-~b / ~2(x)A2(x, x)[x(1 - x)]U2f(x)dF(x){1 + o(1)} 

- v / ~  ~2(x)[x(1 - x)]-l/2f(x)dF(x){1 + o(1)} 

= v~2  E{~2(x)[x(1 - x)]-l/2f(x)}{1 + o(1)} 

for b small enough. Applying then Koroljuk and Borovskich's (1994) central limit theo- 
rem for degenerate U-statistics gives way to 

nbl/ain b -1/4 V/~ Ex,{[XI(1 - -  Xl)]-l/2~(Xl)} ~ N(O, a2B), 

which completes the proof. To demonstrate that condition (3.4) holds, it suffices to apply 
the same technique as before. The only difference is that, instead of B~k)(.), there will 

be an analogous residual term, say A~k)(-), stemming from the extraction of a unique 
beta density out of the product of k beta kernels. 
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Appendix 

Derivation of (3.3). Because V(I2n) is at most of the same order of E(I2n), it 
suffices to compute the order of the latter. Thus, 

E(S.)  Exl [f xl)dx] 2 
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1 / Ex1 [r~(x, X1 r 2 -- ) ~(y, X1)]d(x,y) Tt 3 
1 ~ 2 2 

n3 J ]~X1 [rn(X, X1)]~"X 1 [rn(y, Zl)]d(x, y) 

1 / r~ n3 ]Ex1 [ n(Y, X1)]]E21 [rn(x, Xl)ld(x, y) 

+ V E}l[rn(X'Xl)lE  G(>Xl)]e(x'Y)" 

It is readily seen that  the second and third terms are of order O(n-ab-1/2), whereas the 
fourth term is O(n-3).  It then remains to show that  the first term is of order O(n-ab-2). 
Notice that 

: ]EX 1 [/~o(x)qo(Y)K2x/b+l,b(Xl)K2/b+l,b(Xl)d(x,Y)] 

= EX, [/~(x)~(y)Bb(X)gb(y)gb/2(x,y)K2(x+y)/b+l,b/4(Xl)e(x,y)]. 

This means that  

Tn = / ~o(x)~o(y)Bb(X)Bb(y)Bb/2 (x, y)E~ [f(w)]d(x, y), 

where w ~ G(2(x + y)/b + 1,5/4). Applying a Taylor expansion results in E~[f(w)] = 
f(x+~2) + O(b) = O(1), whereas rewriting Bb(.) in terms of the R-function yields 

R2(u/b) u-1/2b-1/2 
Bb( ) = R(2 /5) 

Similarly, one obtains 

2x 2y 

u-~/2b-1/2 < - 

x + y~ 2y/b+1/4 b_l/2x_l/4y_l/4 
2y ] 

Because R(.) is a monotonic increasing function that  never exceeds one (Brown and Chen 
(1999), Lemma 3) and A(x, y) _< 1, it then follows that  

( x  -'~-y ~1/4 (X + y ' ~ 1 / 4  b_U2x_l/4y_l/4 = ( x  --~-y ~1/2 b_l/2 
Bb/2(x,y)<_\ 2x ] \ 2y ] V ~  \ xy } 2v~" 

Because both x and y are at most of O(b1-r where c > 0, the first term is at most of 
order 0(b~/2-1/2). It then follows that  Bb/2(x, y) < O(5-1), which implies that  Tn is at 
most of order O(b-2), completing the proof. 



ASYMMETRIC KERNEL FUNCTIONALS 437 

LEMMA A.1. I f y  > x, then h(y)  =- l o g A ( x , y )  > - ~ ( y  - x) 2. 

PROOF. The argument  relies on the third-order Taylor series expansion of /~(y)  = 
(x + y) log(x + y) - (x + y) log2 - x l o g x  - y l o g y  around x. It follows from /~'(y) = 
l o g ( x + y ) - l o g 2 - 1 o g y ,  A"(y) = (x+y)  -1 _ y - 1  < 0 and ?~'"(y) = - ( x + y ) - 2  +y  -2 > 0 
tha t  ZX(x) = h ' ( x )  = 0, h " ( x )  = - 1 / ( 2 x )  and ZX'"(x) = 3/(4x2). It thus holds tha t ,  for 
X ~ X* _~ y, 

~ ( y )  _ ( y -  x)~ + (Y-~)----:~'"(x*). 
4x 6 

The result then  immediately follows from the fact tha t  /~m(.) > 0. [] 

LEMMA A.2. If  t > O, then A(y) >- s@(Y - x)2(y - x) for x(1 - t) _ < y _ < x. 

PROOF. As before, the following Taylor expansion holds 

s _ (y_ x): (y_ ~)a/v"(x*), 4 ~ + ~  

where x < x* < x(1 - t). As 2~'" is a decreasing function, /~'"(x*) < A'"(x) and thus 
A'"(x*)(y - x) a > s  - x) 3 for y < x. It then  ensues tha t  

( y - x )  2 ( y - x )  3 ( y - x ) 2 ( y - x )  s  _> - -  + - -  _ 
4x 8x 2 8x 2 ' 

completing the proof. [] 

LEMMA A.3. For every y, ~(y)  <- s@(Y - x)2(y - x). 

PROOF. In view tha t  A'"'(y) = 2(x + y) -3  _ 2y-3 < 0, the result readily follows 
from the fourth-order Taylor expansion 

7X(y) - (Y -4---x-- x)2 + (y - x)2(Y8x 2 -- X) -t- httH(X *) (y --2----------4~ x)4 

where X* lies in the interval between x and y. [] 

LEMMA A.4. Let e(b) = f ~  f ~  /X2/b(x,y)g(x,y)d(x,y) with A 
and (](y) = f ~ g ( x , y ) d x  such that I[?loc exists. It then holds 
(27rb) 1/2 f ~  xl/2g(x, x)dx. 

as zn (3.7) 

that g(b) = 

PROOF. Let 0 < t < 1, then  

x 

e(b) >_ /X2/b(x, y)g(x, y)dydx + A2/b(x, y)g(x, y)dydx. 
(l-t) 

Applying Lemmas  A.1 and A.2 yields 

[ e(b) >_ exp   dydx 
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+ exp (y - x)2(y - 3x) g(x, y)dydx 
(l-t) 4x2b 

~/o ~ ~ oxp [ ,~S] ~x~,~x 
/J/ /  [ ] + exp (Y - x)2(t § 2) g(x,y)dydx. 

O-t) 4xb 

Letting z = (2xb)-l /2(y - x) results in 

/o ~ /Jo~ [ ~ S  ]~,x ~,~x 
= (2~b)~/~ e x p ( - z ~ ) g ( x ,  x + z (2~b) l /~ )azax ,  

and hence 

/0/j[exp ] lim inf b -1/2 o0 (y ~.T.b)2 540 g(x, y)dydx 

> v / ~  exp(-z2)g(x ,  x)dzdx 

= V / ~  xl/2g(x, x)dx. 

Letting now w = (4xb)-l/2(t  + 2)1/2(y - x) yields 

] 
4xb J g(x, y)dydx 

cr 4 / - ~ _  f o  exp(-w2)g ( x , x  + / - ' ~ ' ~  
=~ v ~ j_~, ~,,~-~,,~ "v , -~)  '~''d~' 

and thus 

/0// [ ] l iminfb -1/2 oo exp (Y - x)~(t § 2) g(x,y)dydx 
b--.o O-t) 4xb 

> exp(-w2)g(x ,  x)dwdx 
o o  

~ / o  ~ 4~_~ = 2 g(x, x)dx. 

It then suffices to let t shrink to zero to appreciate that  

lim inf b-1/2f(b) > xl/2g(x, x)dx. 
b---~O 

On the other hand, for t > O, one may write 

f(b) = A2/b(x, y)g(x, y)dydx + A2/b(x, y)g(x, y)dydx. 
x(t-I-1) JO 
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However, for every y >_ x(t + 1), 

2 ) t +  2 

A(y) <_ A(x(t + 1)) = x log  2tlt2( + + 1) t+l ,  

so that  A(x,  y) < a x where at - (t+2)t+2 - -  t , 2t+2(t+l)t+a < 1. The  following inequalities then hold 

/0"/o" AU/b(x, y)g(x, y)dydx < a t gt x, y)dydx 
(t+l) 

< I~1~ as a x - -  
- 2 log at 

where ~(x) _-- f g(x, y)dy. It also follows from Lemma A.3 that  

L ~ JofX(t+l) A2/b(x'y)g( dydx 

L ~  f x(t+l) (Y-X)2(y-3X)]g(x ,y )dydx  < exp 
- Jo 4x2b 

L ~  f x(t+l) ( Y -  X)2(2-t)]  g(x,y)dydx" < exp 
- Jo 4xb 

Lett ing w = (4xb)-1/2(2 - t)l/2(y - x) results in 

L ~162 JOfX(t+l)A2/b(x,y)g(x,y)dy dx 

' SL ~ t"" 
- v ~-=-~ + 'V ~-c-i) e'e'  

It now suffices to assume tha t  xl/2g(x, y) <_ xl /2g(x)  C L ~ for every y > x to ensure that  

So' " ( b_l/2e(b)< 4x i_ ox.(~.), x,x+~v~).~.=+o(~ ) 

and hence 

limsupb-1/2g(b) < V ~ L ~ 42~zt b--->O -- -~- g(x, x)dx, 

which yields the  desired result for t --+ 0. [] 

m LEMMA A.5. Let x(,~) = (xl , . . . ,Xm),  Sm = ~,j=l XJ and 

(8m-1 "Jr- ~rn ) sm- l +xm 
Am(X(m)) : r l ~ S m _ l _ ~ X  m Nim=l X xi �9 

Suppose that 
m 

g(~(m)) = f~(=m/.~)=~ I I  ~(~) 
i=l Xi 



440 MAI=tCELO FERNANDES AND PAULO KLINGER MONTEIRO 

is bounded and there exists h(Xl) C L 1 such that 9(X(m)) <- h(xi) if xi >_ xl  for every 
1/b 

i > 2. It then follows that ~ Am (X(m))g(x(m))dx(m) = 0(b('~-1)/2). 

1/b 
PROOF. Let era(b) = f Am (X(m))g(X(m))dx(m) and 

Gin(a) = lOgAm(X(m-1), a) 

: (Sm_l + a) log (sm---lrn-+ a )  - 
m--1 
E xi log xi - a log a. 
i=1 

Differentiating Gin(a) with respect to a then gives way to 

G~(a)  = l o g (  sm-1 + c t ) m  - - l o g a  

1 1 S.~-i a"(~) - 
8m--1 + a O~ O~(Sm--1 -~- OL) 

1 1 

G~(OL) -- (8m--1 -t- 002 -I- ~ > 0, 

_ sin-1 then yields whereas G~'(a) < 0. Evaluating at a m- i  

< 0  

(Sin--1 ~ (Sin-1 ~ _ ~ l x i l o g x i  
G i n \ m - l ]  = Sm-l  l~ \ m - 1 ]  i=1 

(Sm--1  ~ ~___ 0 
G~ \ m -  1 ]  

G"~ \ m - 1] mSm-1 

( S m - l ~  ~.:__ ( ? T t = l  ~2 t_ [ m ( m = l ) ] 2  = 
G~ k m _ l ] \ m S m - 1 /  [ msm-1 ] 

( m -  1)2(m 2 - 1) 
2 2 m Sin_ 1 

As in the proof of Lemma A.4, we let 0 < t < 1 and decompose the integral in g.~(b) into 
the sum of the integral over Xm _> s*_  1 - (1 + t ) s m _ l / ( m  - 1) and the integral over 

* G I s* G ' (  ~m-1 Xm < s* In the first case, the fact that  Xm > S.~_ 1 and ( m - l )  < = 0 - -  m - - l "  - -  - -  ~, m--1 ,' 
implies that  

Cm(Xm) _ Cm(S;~_l) 
m--1 

= ( S m _ l + S m _ l ) l o g ( S m - l ~ S * - l )  -- E x i l o g x  i -  
i=l 

_ s m - l ( m  + t) log [Sm-l(  m-1 
. ~ -  1 L - ~ ( ~ -  i )  ] - ~ ~ l o g x ~  

i = 1  

sm-1(1-I-t) 

< Sm_l(m -t-t)log [Sm-l(m +_t)]  ( Sin-1 
- -  m - 1 L m ( f n  - 1 )  J - Sin-1 log ~ m  - -  1 ]  

8 " _  1 log s~_  1 



ASYMMETRIC KERNEL FUNCTIONALS 441 

s m - a ( l + t )  l~ 

~n~- ~ log (1 + t) l+t " 

Letting at denote the term within curled brackets and 

~(x(~_~)) = f g(~(~_~), zm)dx~ 
then yields 

f~ A~b(x('~))9(x('~))dx(~) 
rn>8* 

- -  m - - 1  

atm-1/b(m-1) g(X(m))dX(m ) < a t g(,x(m-1))aX(m-1) 
,,~>>_sL_~ 

'Q }m--1 
_ ,O,c~/atm-1/b(m-1)dX(m_l)-~,~I,~{/at~/b(m-1)dXl 

= 191~ (l~gat)m - 1 m - - 1  b m-1 = O(bm-1)" 

As for the integral over x~ <_ s~_l ) ,  we first observe that 

2 (8m-1 ~ 1(m-1): ( 8m--1~ 
Gin(a) = G m  \ m -  1 /  2! m--s--m_-~ a - m -  1]  

1 ( m -  1)2(m2-- 1) ( 8 m - 1 ~ 3 ~  ( 8 m - l )  4 
+ 3--~. m2S2m_l o~ r e : l )  + .G'"'(~) a m -  1 

for a <_ ~ < S~m_l). It follows from G""(~) < 0 that 

Gin(a) <_ G r n \ m _ l ]  2 mSm-a m - l /  

1 ( m -  1)2(m 2 1) Sm-z 
+ 6  - ~ 2--Y25---- o~ m - - ]  8rn_ 1 

( ) 2 ( m - 1 ) 2  [ m 2 - 1  ( 

However, Xm <_ S(m_l) implies that Xm - 

m 2 - 1  ( 
1 3"-mSm---1 Xm 

Now, because 

A~/b(x(.~)) _< ~r~-lkX(m-1))exp -- Xm 

s.~-i < s~_lt and hence m--1 -- m--1 

8m--i I m-F1 m-i  >1 3 ~ t .  

sm_  1)2 (1 
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for Xm __< 8 * _  1, changing variables to zm = b-1/2(Xm ~s~-i ) results in 

~x 1/b Am (x(m))9(x(m))dx(m) 

<bX/2/A1/b ) { / ~  [ -- ( m + l  ) ]  
_ _  ~m_l(X(m_l) exp --z~ (m 1) 2 1 t 

c~ 2mSm-1 3m 

x g x(m-1), m -  1 +zmbl/2 dzm dx(m-1). 

To complete the proof, it suffices to proceeding by induction so as to conclude that era (b) 
is at most of order O(b(m-1)/2). [] 
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