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Abs t r ac t .  Assuming an additive model on the covariate effect m proportional haz- 
ards regression, we consider the estimation of the component functions. The es- 
timator is based on the marginal integration method. Then we use a new kind of 
nonparametric estimator as the pilot estimator of the marginal integration. The pilot 
estimator is constructed by an analogy to the two-sample problems and by appeal- 
ing to the principles of local partial likelihood and local linear fitting. We derive 
the asymptotic distribution of the marginal integration estimator of the component 
functions. The result of a simulation study is also given. 
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1. Introduction 

Suppose tha t  we observe the failure t ime Ti and the covariate vector process Xi -- 
{Xi(t) I t _> 0} under  censoring and tha t  we want to investigate the effect of X~ on Ti 
by assuming a proportional hazards model. 

A fully nonparametr ic  procedure would be an ideal me thod  when we cannot  specify 
any parametr ic  forms of the covariate effect in the hazard function. However, it is well 
known tha t  fully nonparametr ic  procedures may suffer from the curse of dimensionality. 
Then we need to impose some kinds of assumption on the forms of the covariate effect 
to alleviate the the curse of dimensionali ty of fully nonparametr ic  regression. Addit ive 
modeling is among those assumptions. We consider additive modeling of the covariate 
effect in proport ional  hazards regression since it is a natura l  generalization of the Cox 
regression model in Cox (1972) and familiar in the literature. See Hastie and Tibshirani  
(1990b) for additive models. 

Suppose tha t  we have n independent  and identical observations on [0, ~-], (5i, Xi, Ti A 
Ci), i = 1 , . . . ,  n, where Ci is the censoring time, 5i = I(Ti <_ Ci), and ~- is a known con- 
stant.  We assume tha t  the censoring mechanism is independent.  See (5.7) of Kalbfleisch 
and Prentice (2002). We assume tha t  Xi is 2-dimensional for simplicity of presentation. 
Then Xi(t) = (Xli(t), X2i(t)) T. Let (0, 0) T be the s tandard  point of the covariate vec- 
tor. We denote the transpose of a matr ix  A by A T. We comment  on the cases of more 
covariates in Section 3. 

Defining Ni(t) and Yi(t) by Ni(t) = I(Ti <_ t A Ci) and Y~(t) = I(Ti A Ci >_ t), 
we assume tha t  there exists an appropriate fil tration {St I t  C [0, 7]} such tha t  {Ni(t)} 
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is adapted and {Xi(t)} and {Yi(t)} are predictable. Let the filtration satisfy the usual 
conditions as in Dabrowska (1997) and 9rt_ denote the smallest a-algebra containing 

Then our model is specified by assuming that the intensity process of {Ni(t)} on 
[0, T] is 

(1.1) Ai(dt) = E {  Ni(dt) l ~ t -  } = Yi(t) exp(r  Xi ( t )  ) )Ao(t)dt, 

where r is an unknown smooth function and A0(') is an unknown bounded function. 
In this papaer we impose the additivity assumption on r 

(1.2) 

where ~ = (~1,~2) T, r  = 0, and r = 0. Then A0(') is the baseline hazard 
function. Because of the assumption of independent censoring, the intensity process of 
{I(Ti  < t)} is (1.1) with Yi(t) replaced by I(Ti > t) and the effect of the covariate vector 
is still exp(r In addition, when we have (1.1), {Mi(t)} defined by 

~0 t Mi(t)  = Ni(t)  - Yi(t) exp(r  

is a martingale process with respect to {grt}. See Chapters 2-3 of Andersen et al. (1993) 
for the mathematical treatment of these subjects. 

We estimate r  for a fixed xl by marginal integration. Then we actually es- 
t imate r - r because of the definition of our estimator. Since we impose no 
restriction on A0('), functions in (1.2) are only identifiable up to a constant addition. 
Thus only differences such as r - r make sense. If we estimate r --[- C by 
using observations with IXli(t)  - xl{ < a, where a is a bandwidth, c depends on the 
estimation procedure and the estimate does not make sense by itself. 

First we estimate r  X2i(0)) - r  X2i(0))(= r  because of the additivity 
assumption) in our estimation procedure. We denote the estimates by r X2i(0)) - 
~(0, X2i(0)). They are called the pilot estimates of the marginal integration estimator 
and explicitly defined in Section 2. Then we estimate r by 

n 
1  (4(xl, x2 (0)) - x2i(0))). (1.3) ~1(Xl) = n 

i=1 

We set ~1(0) = 0. We can also define ~1(Xl) by 

(1.4) ~l (Xl )  : / ( ~ ( X l ,  X2) -- ~(0,  x2))q(x2)dx2, 

where q(.) is a density function satisfying some regularity conditions. (1.3) means we 
choose the density function of X2(0) as q(.) in (1.4). 

As in other papers on marginal integration estimators, we show that ~l(Xl) has the 
same rate of convergence as in the cases where Xi is 1-dimensional. We can use the 
above procedure to estimate r for a fixed x2, too. 

Here we comment on our pilot estimator. Fan et al. (1997) considered a fully 
nonparametric estimator of the covariate effects in proportional hazards models and 
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the estimator is familiar in the literature. However, in this paper we do not use the 
estimator, which we call the integration estimator since it is obtained by integrating the 
estimated derivative function. We use a new kind of nonparametric estimator as the 
pilot estimator, which we call the two-sample estimator. Both of the estimators have 
similar asymptotic properties. See Honda (2004) for their asymptotic properties. Note 
that  the integration estimator requires a more restrictive smoothness condition. 

In order to describe the differences between the two estimators, we temporarily 
assume that Xi is 1-dimensional and time-independent. Then the integration estimator 
of r  ~b(x) - r  is defined by 

/o V (x) = V?(s)ds, 

where ~ ( s )  is the estimated derivative function. On the other hand, the two-sample 
estimator depends only on 

{(ai, Xi ,Ti  A CJ  l lX~ -- xl <_ a} U {(5~,Xi, T~ A C j  I IX~I < a}, 

where a is a bandwidth. We introduce a dummy variable Zi such that 

1, IXi - x  I _< a 
(1.5) Zi = 0, otherwise 

Then we estimate r  as the coefficient of the dummy variable Zi by appealing to the 
principles of local linear fitting and local partial likelihood. 

Linton et al. (2003) also considered the estimation of the component functions in 
(1.2) by local constant fitting and the marginal integration method. They first estimate 
the hazard function without any assumptions on the form of the hazard function. Note 
that  time t is among the covariate vector in their pilot estimation. Then they obtain 
the estimators of the component functions by carrying out marginal integration. The 
asymptotic properties are given in Section 4 of Linton et al. (2003). They also proved 
that the m-step backfitting improves the marginal intergration method. When covariates 
are time-independent, time t does not have to be among covariates in the pilot estimation 
and d + 1 in (A.3) on p. 470 of Linton et al. (2003) will be replaced by d. 

We describe some differences between their estimators and ours. 
1. Their estimators are not guaranteed to be nonnegative. We have no possibility 

of negative estimates of exp(g)i(x~)). 
2. They use kernels of 5th or higher order. See (A.4) on p. 470 of Linton et al. 

(2003). Kernels of 3rd or higher order will be appropriate for time-independent covari- 
ates. Kernels of higher order are not robust to boundary effects. We just use symmetric 
kernels because we apply local polynomial fitting. 

3. Their assumption (A.3) on p. 470 of Linton et al. (2003) is about  the smooth- 
ness of functions. When X~ is 2-dimensional, Ao(.) and r in (1.1) must be 5-times 
continuously differentiable in Linton et al. (2003). When Xi is 3-dimensional, A0(') and 
r must be 6-times continuously differentiable. If covariates are time-independent, r 
will have to be 3-times and 5-times continuously differentiable, respectively. Then their 
estimators achieve the optimal rates for the smoothness assumptions. In this paper, 
we concentrate on the cases where r is twice continuously differentiable and Ao(') is 
just bounded. We impose some assumptions on the sample path properties of Xi in 
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Section 3. Then our estimators achieve the convergence rate of n -2/5  and n -2 /5  log n 
for 2-dimensional and 3-dimensional covariate vectors, respectively. See also Remark 
3.1 in Section 3. When we deal with time-independent covariates, we can do without 
Assumption A6 below, which is about the sample path properties of Xi. 

Linton (1997, 2000), Fan et al. (1998), Linton et al. (2003) and some other authors 
considered improving the marginal integration method, for example, by choosing weight 
functions or using marginal integration estimators as initial estimators of backfitting 
procedures. Backfitting is another estimating method for additive models. We also 
consider a one-step backfitting procedure in Remark 3.2 in Section 3. However, we 
have no rigorous result on the backfitting procedure at present. We just describe the 
procedure. 

We refer to the literature on nonparametric estimation of hazard functions. As 
for proportional hazards models, O'Sullivan (1993) studied smoothing splines, Huang et 
al. (2000) applied regression splines to ANOVA models which include the model of this 
paper, Pons (2000) studied varying-coefficient models by following Fan et al. (1997). Fan 
et al. (1997) considered another nonparametric estimator of the covariate effect for the 
cases of parametric baseline hazard functions. Nielsen et al. (1998) considered a similar 
problem. 

Some authors considered nonparametric or semiparametric estimation of hazard 
functions with no proportionality assumption on hazard functions. For example, Kooper- 
berg et al. (1995) considered regression splines, Li and Doss (1995) studied kernel and 
nearest neighbor estimators, Nielsen and Linton (1995) considered kernel estimators. 
The results in Nielsen and Linton (1995) have been extended in Linton et al. (2003). 
Dabrowska (1997) studied a kind of partially linear models. 

Finally we refer to the literature on additive models. As mentioned above, addi- 
tive models are proposed to alleviate the curse of dimensionality of fully nonparametric 
procedures. There are several kinds of estimators for additive models. The marginal 
integration method was proposed by Newey (1994), Linton and Nielsen (1995), and 
Tjr and Auestad (1994). See Linton (2000) and Sperlich et el. (2002) for recent 
developments. As for backfitting, see Hastie and Tibshirani (1990b) for the algorithms. 
Hastie and Tibshirani (1990a) applied backfitting to the same problem as in this paper. 
However, they gave no theoretical analysis on the asymptotic properties. See Opsomer 
and Ruppert  (1997), Opsomer (2000), and Mammen et al. (1999) for recent theoreti- 
cal developments. A comprehensive review of regression splines to ANOVA modeling is 
given in Stone et al. (1997). See Gu (2002) for detailed expositions on smoothing splines. 
A review of the above methods is given in Schimek and Turlach (2000). 

It is often the case that  covariate vectors are sparsely observed over subsets of the 
region of interest. For example, let 0 < Az < A2 < A3 and suppose that  we are interested 
in r - r  where xl E (A2, A3). Our estimator has no difficulty even if we have 
almost no observation with Xzi(t) E (A1,A2). However, regression spline estimators 
may need some remedies since they usually carry out estimation on the whole region 
simultaneously. 

In Section 2, we define the estimator and present the asymptotic properties in 
Theorem 2.1. The result of a simulation study is also given. Two remarks are given in 
Section 3. The proof of Theorem 2.1 are confined to Section 4. 
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2. Marginal integration estimator 

In this section we define our estimator of r  and present the asymptotic prop- 
erties in Theorem 2.1 below. The result of a simulation study is also presented. The 
proof of Theorem 2.1 is given in Section 4. 

Consider a rectangular region (LB1,  UB1) x (LB2,  UB2)  in which Xi ( t ) ,  0 < t < r,  
takes the values. Then assume the standard point (0, 0) T is inside the region and that 
LB1 < x l  < UB1 and xl 7 ~ 0. 

We estimate r in (1.2) for a fixed Xl. First we stimate r  - 
^ 

r X2i(0)), i = 1 , . . .  ,n, as defined later in (2.9), then obtain the estimator ~bl(Xl) 
of r  as in (1.3). 

We introduce some assumptions and notations to define ~1(Xl).  Assumption A1 is 
related to the kernel function and a usual one in the literature on nonparametric regres- 
sion. Assumption A2 is about bandwidths a and b for X l i ( t )  and X2i( t ) ,  respectively. 
Assumption A3 is about the smoothness of r 

ASSUMPTION A1. The symmetric nonnegative kernel function K(.)  is bounded 
and Lipschitz continuous. The support is contained in [-1, 1]. Besides f K ( u ) d u  = 1. 

ASSUMPTION A2. a ---* O, b ---+ O, ( nab 2 ) - l ( l o g n )  2 ~ O, na 9 --* O, and nab s ---+ O. 

ASSUMPTION A3. The component function ff)l(E1) is twice continuously differen- 
tiable around 0 and xl.  The other component function r is twice continuously 
differentiable on (LB2, UB2).  In addition r and all the derivatives are bounded. 
Note that Ao(t) is only assumed to be bounded. 

We define/3o for local polynomial fitting. The elements of/30 = (/31,/32,/33,/34) T are 
given by 

(2.1) /31 = ~ ) I ( X l ) ,  /32 = ar /33 = ar /34 = br 

Note that /3o depends on x = (Xl,X2) T and that xl is fixed and x2 varies with x2 = 
x2 (0). 

We define local linear fitting in our pilot estimator. When ]Xli(t) l _< a and I X2i (t) - 
x21 _< b, we have by application of the Taylor series expansion that 

(2.2) r  X2i( t ) )  - X l i ( t )  ar + ~2(x2) 
a 

+ X2i(t) - x 2  ' x O(b2). bCu(2)  + O(a 2) + 
b 

Remember (1.2). When Ixli(t) - xll _< a and Ix2i(t) - x21 b, we also have 

(2.3) ~3(Xl i ( t ) ,X2i ( t )  ) = ~ ) l ( g l )  _~_ X l i ( t )  - gla~)~ (Xl) q_ ~/)2(g2) 
a 

+ X 2 ~ ( t )  - x2  
b br + O(a 2) + O(bU). 
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Hence our localized covariate vector )(i(t) for x = (Xl, X2) T is defined by 

(o,o 
-~i(t) = (1, ~x~(t)-x*,0, X~(t--)b-~ )T, 

(o, o, o, 0) 

Ka(Xl i ( t ) )Kb(X2i ( t )  - x2) :> 0 

Ka(Xl i ( t )  - Xl)Kb(X2i( t )  -- X2) > 0 

otherwise, 

where 

Ka(~l) = 1Ka and Kb(~2) = ~ K  . 

The definition of Xi(t) has no constant term for r since the constant term disap- 
pears in the local partial likelihood even if it is included. See Section 3 of Fan et al. 
(1997). The first element of )(i(t) corresponds to the dummy variable Zi in (1.5). If 
Ix1[ < 2a, we should modify the definition of-~i(t). Hereafter we assume that n is large 
enough to have Ix, l > 2a. 

We denote the localized versions of Ni (t) and Mi (t) by Ni (t) and/~/i (t), respectively. 
They are defined by 

(2.4) N~(t) = Kab(Xi( t ) )Ni( t )  and ]IT/i(t) = ~[ab(Xi(t))Mi(t),  

where 

~[ab(Xi(t)) = Ka(Xl i ( t ) )Kb(X2i ( t )  -- x2) + Ka(Xl i ( t )  -- x l )Kb(X2i ( t )  -- x2). 

By combining (2.2) and (2.3) and using the definitions of/30 and )(~(t), we have 
that 

(2.5) r  X2i(t)) -- ~b2(x2) =/3Tf(i(t)  -~- O(a 2) + O(b 2) 

if -fifab(X~(t)) > 0. The first term of the RHS of (2.5) represents the local linear fitting 
in the definition of our pilot estimator. 

We define CKjk(ql,q2), CKjk, and DKj by 

(2.6) CKjk(~l, ?72) = / %tJvk exp(r/lU + ~12v)K(u)K(v)dudv, 

CKjk = CKjk(O, 0), DKj = / uJK2(u)du.  

We estimate /3o by maximizing the local partial likelihood. To present the local 
partial likelihood, we define s(J), j -- 0, 1, 2, as in Dabrowska (1997). 

(2.7) 

n 

= E 
i=1 
n 

S(1)(t' r / )=  E 
i=1 

n 
= 

i=1 

Yi (t) exp(r/T fQ (t) )[(ab ( X i  (t) ), 

Yi (t)f(i  (t) exp(r]Txi (t))[(ab(Xi (t)), 
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where r / E R 4 and v | means vv T. 
Then  the local partial  likelihood L(~)  is given by 

• 1 (/3Tf(i(t) -- log s(O)(t, 3))figi(dt). 
(2.8) L(~)  : ~ i=1 

See Section 3 of Fan et al. (1997) for the  derivation of (2.8). We denote  the  es t imator  of 
/3o b y / ) ,  which is defined by 

(2.9) L(/~) = max L(~) ,  

where/3 = (/~1, r ~)4) T and  r depends  on x = (Xl, x2) T. We write  @(Xl, x2 ) -@(0 ,  X2) 
for /)1 to stress its dependence on x2. The  marginal integration es t imator  of r  is 
defined as in (1.3). 

We describe Assumptions  A4 A6 before s tat ing Theorem 2.1. Assumpt ions  A4 and 
A6 are about  the  propert ies of Xi. When  covariates are t ime-independent ,  Assumpt ion  
A6 is unnecessary. 

ASSUMPTION A4. The 2-dimensional covariate vector Xi(t),  0 < t <_ % has the 
density function f(~,  t), where ~ = (~1, ~2) T. It is twice continuously differentiable with 
respect  to ~ and no less than el on ( ( -e2 ,  e2) t2 (Xl - e2, Xl + e2)) x (LB2, UB2) x [0, 7-] 
for some positive constants  E1 and e2. All the  derivatives and f(~,  t) are bounded  on the 
region. We also assume that  

of Of (~,t2) < Lit1 - t2[, If(L tl) - I (L t2)l < L i t 1  - t21 and 0~j(~,  t l )  - 

where j = 1, 2 and L is independent  of ~. Next  we denote  the marginal  densi ty functions 
by f l (~l , t )  and f2(~2,t), respectively. The  former is continuous on ( ( -e2 ,e2)  t2 (xt - 
e2, Xl + e2)) x [0, 7-] and the lat ter  is continuous and bounded  on (LB2, UB2) x [0, T]. 

ASSUMPTION A5. We denote E(Y/(t) [ Xi(t)  = ~) by g(~, t). Then  g(~, t) is twice 
continuously differentiable with respect  to ~ and all the  derivatives are bounded  on 
((--e3, e3) [_l (Xl -- e3, Xl -~- e3)) X (LB2, UB2) x [0, T] for some positive constant  e3. Besides 
9(~, ~-) _> e4 on the region for some posit ive constant  e4. We also assume that  

Ig(~, t l )  -- g(~, t2)] < Lit1 - t2 [ and 0 • ( • , t l )  - ~-~-g (~,t2) < L [ t l  - t 2 l ,  
~j 

where j = 1, 2 and L is independent  of ~. 

ASSUMPTION A6. We assume tha t  Xi(Ti) has the bounded  density. In addition, 

I x , ( t )  - X , ( s )  l 
sup < Wi a.s. and E{W/2 } < ec 

0_<s , t_<.  It - s l  ~1 

for some posit ive e I and e2. 

The  former assumption of A6 deals with the  terms like }-~.i~___1 f fab(Xi(Ti))/n.  The 
lat ter  assumpt ion implies a kind of H61der continuity of Xi (t) and deals with the  terms 
like }-~i~1 Kab(Xi(t))/n.  
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Here we state the main result of this paper. The proof is deferred to Section 4. 

THEOREM 2.1. In addition to the setup around (1.1)-(1.2), we assume that As- 
sumptions A1-A5 hold. Then we have 

(na)l/2(~l(Xl) -- r (Xl) - Bias) --~ N (O, DK2 f (I/(Xl , X2))--12f~ (X2, O)dx2) 

in law as n -~ c% where 

a2 C (~ ~ Bias = ~- K20t~l ~ 1J -- r + o(a 2) + 0(52), 

i f ( x )  = ( W ( x ,  t))-lf(0, x2, t)g(O, x2, t ) f ( x ,  t )g(x ,  t)er162 

W(x ,  t) = f(O, x2, t)g(O, x2, t) + f (x ,  t)g(x, t)e r 

If b = O(a), the optimal bandwidth for Xli is a = cn -1/5, where c depends on 
r r and f (V (X l ,  x2))-lf22(x2, 0)dx2. We can estimate r and r by 
local quadratic fitting as in Fan et al. (1997). We give an estimator of the asymptotic 
variance. 

- -1  

DK2 f2(X2j(O), O) Yi( t)Ka(Xli( t ))Kb(X2i( t)  - x2) 
n j=l i=1 )_1}_1 

+ Y~( t )Ka(X l i ( t )  - x l ) K b ( X 2 i ( t )  - x2)e ~1(xl) 
i=1  

- 1  
er176 }-~-~=1 Nk(dt) 

• 

E2=l yk(t)e(O~(X~k(t))+(O2(X2k(t)) ' 

where ]2(', 0) is a nonparametric estimator of f2(', 0). We have to use a rule of thumb 
for r and r in the above expression. 

Theorem 2.1 implies that if b = O(a) and a = cn -1/5, the rate of convergence of 
~1(Xl) is optimal. We have no optimality criterion for b at present. We have to calculate 
f) for each (xl,X2i(0)). If b is too small, it might be impossible to get ~ for some 
(Xl, X2i(0))'s. Thus it might be good to avoid small values of b. 

We give only an outline of the proof of Theorem 2.1 here. 
The estimate r of/3o in (2.1) is written as 

02 L ) -1 
(2.10) ~ -/30 = (/3*) U(/3o), 

0/30/3 T 

where 

/3* =/30 + -/3o), 
OL 

0 < 0x < 1 and U(/3) = ~ ( / 3 ) .  
up 

All of r /30, L(/3), and U(~o) depend on x = (Xl, x2). The pilot estimates in (1.3) are 
the first element of/3 with xl fixed and x2 = X2i(0). 
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We decompose U(9o)as  U(9o) = U1(9o) ~- U2(9o), where 

~-~. ~ -  ( S(1)(t'9~ ) l~/Ii(dt), 
1 2 (t) s(o)(t,90) (2.11) U1(9o) = n ~=1 o 

1 Yi(t) )fi(t) S(O)(t, 9o) ) (2.12) U2(90) = n z = l  0 

x Kab(Xi(t))er 

The bias of ~1(xl) comes from U2(90) and the convergence in law to the normal distri- 
bution comes from U1(90). 

First we prove that 

(2.13) ~ - 90 = Op(a 2) -~- Op(b2) + Op({(nab) -1 log n}1/2), 

uniformly in x2. Next by exploiting (2.13), we replace 9* in 

- -1  

with 9o. Then we carry out another close examination of (2.14) by using the definition 
of 9o in (2.1) and then deal with the summation in (1.3). 

We carried out a small simulation study to see the performances of the estimator 
in Linton et al. (2003) and our estimator. We tried three models below, where the 
baseline hazard functions are constant functions and covariates are time-independent. 
The sample size is 600, we took xl = -0 .5  and 0.5, and the repetition number is 100 in 
the simulation study. We used Splus for the simulation study. We mean by Z ,-~ Ex(A) 
tha tZ  has the exponential distribution with mean A -1. 

(1) Ti ~ Ex(exp(~bl(Xl) + r  (x2))) and Ci "~ Ex(exp(r  (xl) +~2(x2))/1.75), where 
%bj(xj) = 51og(xj + 2.5), j = 1,2. 

(2) Ti "~ Ex(exp(r162 and Ci "~ Ex(exp(r162 where 
Cj(xj)  = 2sin(1.57xj), j -- 1, 2. 

(3) Ti "~ Ex(exp(r  +r and Ci ~ Ex(exp(r  + r  (x2))/1.75), where 
r = 2xj, j = 1,2. 

In (1)-(3), Xj ,,~ Uni f ( -1 ,  1), j = 1, 2, where we denote the uniform distribution 
on (a, b) by Unif(a, b). 

First we define an adapted version of the estimator in Linton et al. (2003). 

(2.15) 

where 

~1(xl) ---- log &U(Xl) --log&u(O), 

(2-2~)/~ 
&u(EI , - 2 -  2a 

6 E & ( ~ l , - I  + a + j6), 
j = l  

1 Ka( l - Xl )Ka( 2 - 
= n 

i = 1  

1 ~ K~(~I - X l i ) K a ( ~ 2  - X 2 i ) T i  A Ci .  

i = 1  

- -  a( l' 
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The estimator in Linton et al. (2003) (the first kernel). 

Xl ---- 0.5 Xl ~--- --0.5 

(1) 
true value 0.911 --1.116 

mean 0.876 -- 1.076 

variance 0.087 0.073 

(2) 
true value 1.414 -1.414 

mean 1.358 - 1.336 

variance 0.103 0.093 

(3) 

true value 1.000 - 1.000 

mean 0.956 -0.953 

variance 0.089 0.075 

Table 2. The estimator in Linton et al. (2003) (the second kernel). 

xl  = 0.5 xl  = -0 .5  

(1) 

true value 0.911 --1.116 

mean 0.700 --0.993 

variance 1.607 0.710 

NA 7 7 

(2) 

true value 1.414 -1.414 

mean 1.399 - 1.343 

variance 0.411 0.655 

NA 8 7 

(3) 

true value 1.000 - 1.000 

mean 0.849 -0.987 

variance 0.531 0.414 

NA 4 6 

W e  chose  5 = 0.01, a = 0.2, a n d  K(u) = (1 - u 2 ) 2 I { - 1  < u < 1} for  T a b l e  1. W e  

chose  5 = 0.01, a = 0.3, a n d  K(u) = (1 - u2)3(1 .5  - 5 . 5 u 2 ) I { - 1  < u < 1} for T a b l e  2. 

T h e  s e c o n d  k e r n e l  is tw ice  c o n t i n u o u s l y  d i f f e r e n t i a b l e  a n d  sa t i s f ies  f u2K(u)du = 0. T h e  

f i rs t  k e r n e l  f u n c t i o n  does  n o t  s a t i s f y  t h e  a s s u m p t i o n  on  t h e  ke rne l  f u n c t i o n  in  L i n t o n  et 
al. (2003).  I n  T a b l e  2, N A  m e a n s  t h e  n u m b e r  of  t h e  cases  w h e r e  &u(xl) or  & v ( 0 )  is 

n e g a t i v e  in  t h e  100 r e p e t i t i o n s .  T h e  m e a n s  a n d  v a r i a n c e s  in T a b l e  2 a r e  c o m p u t e d  b y  

e x c l u d i n g  such  cases .  

T h e  r e su l t  on  t h e  e s t i m a t o r  of  t h i s  p a p e r  is p r e s e n t e d  in  T a b l e  3. W e  t o o k  a = b = 0.2 

a n d  K(u) = I { - 1  < u < 1}. W e  u s e d  t h e  u n i f o r m  ke rne l  t o  e x p l o i t  t h e  c o x p h  f u n c t i o n  

of  Sp lus  w i th /~0  as  t h e  i n i t i a l  va lue .  
I n  a d d i t i o n  we r e m o v e d  s o m e  X2i in  t h e  s u m m a t i o n  of  (1.3) to  s t a b i l i z e  t h e  pe r -  

f o r m a n c e  of  t h e  e s t i m a t o r .  See (a) a n d  (b) be low.  I f  we do  n o t h i n g ,  we wil l  h a v e  s o m e  

e x t r e m e  e s t i m a t e s .  I t  is b e c a u s e  t h e  e s t i m a t o r  is b a s e d  on  i m a g i n a r y  t w o - s a m p l e s  a n d  a 

n u m e r i c a l  o p t i m i z a t i o n  p r o c e d u r e .  

(a)  W e  r e m o v e d  X2i  in t h e  s u m m a t i o n  such  t h a t  X2i  E [ - 1 , - 1 + b / 2 ]  or  [1 -b/2,  1]. 

(b)  W e  r e m o v e d  X2i in t h e  s u m m a t i o n  such  t h a t  ab~~jnl Ka(xx - X I j ) K D ( X 2 i -  
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T ab l e  3. T h e  e s t i m a t o r  p r o p o s e d  in t h i s  pape r .  

Xl = 0.5 x l  = - 0 . 5  

t r u e  va l ue  0.911 - 1 . 1 1 6  

(1) m e a n  1.015 - 1 , 2 2 2  

v a r i a n c e  0.053 0,058 

t r u e  va l ue  1.414 - 1 . 4 1 4  

(2) m e a n  1.527 - 1 , 5 2 3  

v a r i a n c e  0.067 0.066 

t r u e  va l ue  1.000 - 1,000 

(3) m e a n  1.100 - 1.094 

v a r i a n c e  0.060 0.055 

413 

n 
X2j )S j  < 3 or ab ~-~.j= 1 K a ( X l j ) K b ( X 2 i  - X 2 j ) 5 j  < _ 3. 

Table 2 implies that we should be very careful when we use higher-order kernels. 
Some remedies as (a) and (b) above will be necessary to improve the practical perfor- 
mance of the estimator. The first kernel does not satisfy the assumption on the kernel 
function. However, the result in Table 1 is much better than expected. In Tables 1 
and 3, the variances are much more serious than the biases. 

3. Remarks on extensions 

Theorem 2.1 shows that the proposed marginal integration estimator of r (Xl) -- 
~1 ( x l ) - ~ 1  (0) has the same rate of convergence as in the cases where Xi is l-dimensional. 
We have assumed that X~ is 2-dimensional so far. We comment on the cases of more 
covariates in Remark 3.1. Remark 3.2 is about a one-step backfitting procedure. 

Rema rk  3.1. We refer to the cases of more covariates. When X~(t)  = (Xl~(t), 
X2i(t), X3i ( t ) )  T and r = ~1(~1) + ~)2(~2) + ~3(~) ,  where ~ = (~1, ~2, ~3) T, let us use 
a common bandwidth b for both X2i(t) and X~i( t ) .  Suppose that  r  j = 1,2,3, 
are twice continuously differentiable. Then only Assumption A2 should be modified as 
follows: 

(3.1) a ---* O, b ~ O, ( n a b 4 ) - l ( l o g n )  2 ~ 0, na 9 --~ O, nab s ~ O. 

However, this implies that only a suboptimal rate O(n -2/5 log n) is guaranteed f o r  ~ 1  ( X l )  

by the results of this paper. 
If ~2(~2) and ~3(~3) are three times continuously differentiablel we can replace 

o(b 2) with O(b 3) in the asymptotic bias of the pilot estimators. Then the optimal rate 
for twice continuously differentiable r  is achieved by taking a -- c ln  -1/5 and b = 
c2n- (2/15 < < 1/5). 

When X i ( t )  = (Xli(t), X2~(t), X3i(t), X4i ( t ) )  T and the component functions of r 
other than ~1(~1) are three times continuously differentiable, only a suboptimal rate 
O(n -2/5 log n) is guaranteed by taking a -- c ln -1 /5 ( log  n) 1/2 and b = c2n-2/15(log n) ]/3. 

As is pointed out by several authors, the marginal integration method requires the 
calculation of pilot estimates and may not be applicable to the cases of covariate vectors 
of higher dimension. 
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Remark  3.2. We consider a one-step backfitting procedure to estimate r  in 
our setup. We conjecture that  it has the same asymptotic properties as the oracle 
estimator which is defined as if we knew r However, we could just give a heuristic 
argument. Thus we describe only the procedure and do not present any theoretical 
arguments on the asymptotic properties here. 

First we define the oracle estimator of ~bl(xl) of two-sample type. 
We begin with the definitions of the localized covariate vector )(i(t) for Xl and so 

o n .  

(3.2) 

(0, 0, Xli(t)/h) T, 

Xi(t) = (1, (Xli(t) - xl)/h,  O) T, 

(0,0,0) ~, 

IX~(t)l __ h 

IXi i ( t )  -- x l l  <_ h 

otherwise, 

~0 = (Zl, Z2, Z3) r = (r hC~(Xl), hr ~, 

~ : h ( X . ( t ) )  = K h ( X . ( t )  - x l )  + K ~ ( X ~ ( t ) ) ,  

where Kh(.)  = K ( . / h ) / h  and h is the bandwidth. 
We also define S(~ if/i, and Ni by replacing X/(t), exp(r/T)(i (t)), and 

Kab(Xi( t ) )  by )(~(t), exp(rlTJ(i(t) + ~b2(X2i(t))), and B2h(Xli(t)) ,  respectively in (2.4) 
and (2.7). 

Then the local partial likelihood is (2.8) with -~i, S (~ and /Vi replaced with J(~, 
~(o), and Ni, respectively. We denote the partial local likelihood by L03 ). The oracle 
estimator of r of two sample type is defined as the first element of / )  such that  

L(~)) = max L(/3). 

We denote the oracle estimator by 21 (Xl). 
We will have a one-step backfitting estimator of r  if we replace r in the 

definition of r  with our marginal integration estimator of r which is denoted 

by ~2('). 
We conjecture from a heuristic argument that  the one-step backfitting estimator 

has the same asymptotic properties as the oracle estimator if a / h  ---* c~, not --~ 0, and 
more is assumed on the smoothness of the model. However, we have no result on the 
uniformity of a necessary expression of r Besides we have adopted the counting 
process approach and the predictability of the integrands is crucial to the approach. The 
problem of predictability seems to be tough to tackle. We omit any further details here. 

4. Proof of Theorem 2.1 

We need two propositions and several lemmas to prove Theorem 2.1. First we 
establish (2.13) in Proposition 4.1. Then we derive an expression of (2.14) in Proposition 
4.2 by using (2.13). Finally the proof of Theorem 2.1 is presented. The proofs of lemmas 
are confined to the end of this section. 

Several kinds of uniformity of convergence play important roles in the proofs. For 
example, we assume just for a technical reason that  we know 1/301 < M uniformly in 
x = (xl,x2) T for a very large M, where I" I stands for the Euclidean norm. Then 
x2 E (LB2, UB2).  In Lemma 4.1 below, the expressions uniformly hold on {(x2, t, r/) I 
x2 e (LB2, UB2), t �9 [0, ~-], [7[ < M}. 
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We give a remark on the boundary effect with respect to x2 before we start to prove 
Theorem 2.1. 

Remark 4.1. When x2 is close to LB2 or UB2, the properties of ~b(xl,x2)-~b(O, x2) 
are different from those with x2 - LB2 > b and UB2 - x2 > b. However, the bias is 
still O(a 2) + O(b 2) and the proportion of the observations with X2i(0) - LB2 << b or 
UB2 -X2i(0)  _< b tends to 0. In fact the boundary effect does not matter  in the 
asymptotic properties of r Thus we do not care about the boundary effect with 
respect to x2 in the proofs to make the proofs more readable. 

Lemma 4.1 is employed to evaluate  s(J)(t,?]) with ?] = t3" or/3o in (2.10). See (2.6) 
and (2.7) for the definitions of CKjk and S(J). 

LEMMA 4.1. We have the following expression of S (~ Uniformly in x2, ?], and t, 
where ?] = (?]1, ?]2, ?]3, ?]4) T, 

ls(~ ?]) 
n 

= f(x ,  t)g(x, t)eWCKoo(?]2, ?]4) § f(O, x2, t)g(O, x2, t)CKoo(?]3, ?]4) 
o 

§ a-~x 1 (f(x,  t)g(x, t))e vl CK10(?]2, ?]4) § b (f(x, t)g(x, t))e •1CK01 (?]2, ?]4) 

0 
+ a-~xl(f(O, x2, t)g(O, x2, t))CKlo(?]3, ?74) 

+ b ~ x ( f ( O ,  x2, t)g(O, x2, t))CKol(?]3, ?]4) 

+ Op(a 2) + Op(b 2) + Op({(nab) -1 log n}l/2). 

We denote the sum of the first and second terms of the RHS of the above expression 
by Ao(x,t,?]). We have similar expressions for S(1)/n and S(2)/n. We give only the 
sums of the first and second terms of the expressions and denote them by Al(x, t, ?]) and 
A2 (x, t, ?]), respectively. 

Al (x, t, ?]) = f (x, t)g(x, t)e vl ( Cgoo(?]2, ?]4), CKlO (?]2, ?]4), 0, CK01 (?]2, ?']4)) T 
+ f(O, x2, t)g(O, x2, t)(O, O, CKlO (?]3, ?]4), CKO1 (?]3, ?]4)) T. 

[ CK00(?]2, ?]4) CK10(?]2, ?]4) 0 CK01(?]2, 7]4) 

A2(x,t,?]) = f (x , t )g (x , t )e  v l [  CK10(?]2,?]4) CK20(?]2,?]4) 0 CKl1(?]2,?]4) ) / o 0 0 0 

\ CK01(?]2, ?74) CKl1(?]2, ?]4) 0 CK02(?]2, ?]4) 

0 0 / 
0 0 0 

+f(O, x2,t)g(O, x2,t) 0 CK20(?]3,?]4) CKl1(?]3,?]4) " 

0 CKl1(?]3, ?]4) CK02(?]3, ?]4) 

Lemma 4.2 is necessary to show that  (2.14)= Op(1) uniformly in x2 in the proof of 
Proposition 4.1. 
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LEMMA 4.2. Uniformly in x2 and 7, 

02 L fo r 0130/3 T (rl) = W(x ,  t)e ~2(~2) (Ao(x, t, rl))-lA2(x, t, rl)Ao(t)dt 

- fo ~ W(x ,  t)er t, r/))-2(A1 (x, t, rl))| + Op(1), 

where W(x ,  t) is defined in Theorem 2.1. 

LEMMA 4.3. Uniformly in x2, 

U1 (/30) = Op(a 2) + Op(b 2) + Op({(nab) -1 log  n } l / 2 ) ,  

a 2 
U2 (/30) = -~( f / (x)CK2o(r  -- r 0, 0, 0) T + Op(a 2) + op(b2), 

where fT(x) is defined in Theorem 2.1. 

PROPOSITION 4.1. Unformly in x2, 

/~ -/30 = Op(a 2) + Op(b 2) + Op({(nab) -1 log n}1/2). 

PROOF. We should note that  r - /3o = Op(1), unformly in x2. This is proved by 
showing the uniform convergence in probability of L(rl) - n  -1 log n }-~ Ni(T) and evalu- 
ating the limit. We omit the details. Then the proposition follows from Lemmas 4.1-4.3 
and the uniform convergence in probability of/3 -/30. [] 

Lemma 4.4 is easy to establish. The proof is omitted. Note that  it is about  a sum 
of i.i.d, random variables and that  the symmetry of the kernel is used. The proof does 
not use the results of the other lemmas and propositions. 

LEMMA 4.4. If  G(x, t) is a deterministic function and continuously differentiable 
with respect to x2 and G(x, t) and the derivative are uniformly bounded, then we have 
uniformly in x2, 

1• - G(x, t)Ni(dt) 
n i=1 

1" = ( f ( z , t ) g ( x , t ) a ( x , t ) e  r + f(O, x2, t)g(O, x2, t )a(x, t))er 

+ Op(a 2) + Op(b 2) + Op({(nab) -1 log n}1/2). 

Explicit expressions of ~'~a(X) and ftb(x) in Proposition 4.2 are not necessary in the 
proof of Theorem 2.1. 
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PROPOSITION 4.2. ( )1 
0/30/3T(/3") 

( ~ - l ( x )  o 

= 0 V - I ( x lCKlo  
0 0 

0 0 

o o ) 
0 0 

V -1 (0, x2)CKlo 0 
0 (V(x)  -~- V(O, x2))-lCK12 

+ afl~(x) + bflb(X) + Op(a 2) + Op(b 2) + Op({(nab) -1 log rt}l/2), 

uniformly in x2, where 

V(~) = f(~, t)9((,  t)er162 = x  or (0, x2) T, 

~ ( x )  and ~b(X) are 4 • a-dimensional deterministic functions and continuously differ- 
entiable with respect to x2, and every element and all the derivatives are bounded. 

PROOF. 02 L ( f4* ~ Note that  - O~O#T ~ j is written as 

(4.2) Z ~ ] ~ -  S(2)(t'/3*)]Vi(dt ) __ Z ~ f r  (~(1)(t , /3.)) |  
n , =  1 o S(~ *) n~=ldO (S(~ 2 '~ j" 

Only the outline of the evaluation of the first term is given. 
We apply Lemma 4.1 to S (~ and S (2), then the definition of /3* in (2.10) and 

Proposition 4.1 allows us to replace /3* with /30 in (4.2). It is because the remainder 
parts of the RHS's are Op(a 2) + Op(b 2) + Op({(nab) -1 logn} 1/2) in Lemma 4.1 and we 
have only to take the first six terms of the RHS's into account. 

Next substitute the definition of /30 in (2.1) into S(~ and S(2)(t,/3o), use 
Lemma 4.1 again, and apply the Taylor series expansion to the first six terms of the 
RHS's in Lemma 4.1 with respect to r /a t  (r 0, 0, 0) T. Finally from Lemma 4.4, we 
have 

(4.3) 1 ~ / 0  ~" S(2)(t,~ *) ~(31x 

1 0 0 0  / O00 0 / 
0 CK20 0 0 0 

= V ( x )  o o o o + v ( o ,  x2) o o o 
0 0 CK2O 0 

0 0 0 CKo2 0 0  0 CKo2 

'T ~0 T +aj al(x,t)Ao(t)dt+b a2(x,t)~o(t)dt 
+ Op(a 2) + Op(b 2) + Op({(nab) -1 log rip/2), 

where F~i(x, t), i = 1, 2, are 4 x 4-dimensional deterministic functions and continuously 
differentiable with respect to x2 and every element and all the derivatives are uniformly 
bounded. Explicit expressions of f~i, i _> 1, are not necessary in the proof. 
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A similar expression can be derived for the second term of (4.2). We omit the 
details. 

By combining (4.2), (4.3) and the expression of the second term of (4.2), the propo- 
sition is established. [] 

Lemmas 4.5-4.6 are used in the proof of Theorem 2.1. 

LEMMA 4.5. I f  G(x,  t) is a deterministic funct ion,  continuously differentiable with 
respect to x2, and Lipschitz continuous in t uni formly in x2, and G(x ,  t) and the derivative 
are uniformly bounded, then we have 

( ) 1 Za(x l ,X2j (o ) , t  ) x=~(t) x~j(o) 
?7. i = 1  j----1 

X {(Xli(t~ - x l )  

= O p ( ( n a ) - l / 2 ) ,  

I 
Kb(X2i ( t )  - x 2 j ( 0 ) )  

J 

Ka(Xli(t) - X l )  -}- Ka(Xli(t)) Mi(dt) 

where k, l, m = 0 or 1. 

LEMMA 4.6. I f  Z ( x , t )  is predictable and Z ( x , t )  = Op(a 2) 
Op({(nab)  -1 logn} 1/2) uniformly in x2 and t, then we have 

) 1 ~ Z ( x l ,  X2j (0), t )Kb(X2i ( t )  - X2j (0)) 
n i = 1  

• ( K a ( X l i ( t )  - Xl) + K a ( X l i ( t ) ) ) M i ( d t )  
= Op((na) - l /2[a2  + b 2 + {(nab) -1 logn}l/2]). 

+ Op(b 2) + 

Now we prove Theorem 2.1. 

PROOF OF THEOREM 2.1. The expressions in (2.10), Proposition 4.2, and L e m m a  
4.3 imply that  the bias of r x2) - r x2) is given by 

(4.4) a 2 c  "~"~x ~ ~- K2oW1 ~, 1J -- ~ ' (0 ) )  + o(a 2) § o(b2), 

uniformly in x2. The bias part of Theorem 2.1 easily follows from (4.4). The details are 
omitted. 

The rest of the proof consists of the derivation of (4.5) and the proof of the conver- 
gence in law of the sum of the products of (4.5) and the expression in Proposition 4.2. 

First we deal with Ul(~0) in (2.11). By applying Lemma 4.1 and the Taylor series 
expansion with respect to ~ at (r 0, 0) T as in the proof of Proposition 4.2, we 
obtain 

(4.5) U1(3o) = 1 (2~(t) w-l(z,t)f(z,t)9(z,t)er O,O)T)Mi(dt) 
n i = 1  
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a /or + -  
n i=1 

+ -  
n i=1 

a3(x,t)f/Ii(dt) + -b ~ for 
?2 i=l 

R(x, t)Mddt), 

ft4(x, t)2f/Ii(dt) 

where Fti(x, t), i = 3, 4, are defined as in (4.3) and Lipschitz continuous in t uniformly 
in x2, and R(x, t) is predictable and satisfies, uniformly in x2 and t, 

R(x, t) = Op(a 2) + Op(b 2) § Op({(nab) -1 log n}l/2). 

Then we consider the product of (4.1) in Proposition 4.2 and (4.5). Since Ul(fl0) = 
Op(a 2) + Op(b 2) + Op({(nab) -1 log n}l/2), uniformly in x2, Assumption A2 implies that  

the last three remainder terms of (4.1) do no affect the asymptotic distribution of ~1 (x 1). 
Next Assumption A2 and Lemmas 4.5-4.6 imply that term of the RHS of (4.5) 

affects the asymptotic distribution of r (Xl). Besides, from Assumption A2 and Lemmas 
4.3-4.5, we have only to take the first term of (4.1) into account. 

Hence we have 
( -1 

el T1 ~ 02L (fl') (Vl(fl0) Ix2=X2j(0)) 
oflofl T j=l 

n 
_- _1 E ( ~ r ( X l , X 2 j ( O ) ) ) _ l  

n j=l 

X -- W ( x  1 X2j(O), t) K a ( X l i ( t )  -- Xl) 
n i=1 

f ( X l ,  X2j (0), t )g(Xl ,  X2j (0), t)e ~1(xl) ~. 
Ka(Xli(t)) w(xl,  x2j (o), t) ! 

x Kb(X2i(t) - X2j(O))Mi(dt) 
+ Op((na)-l/2), 

where el = (1,0,0,0) T and Ul(~O) [x2=x2j(0) means Ul(fi0) for (Xl,X2j(O)) T and the 
notation applies to other terms.  

The proof is complete from Lemma 4.7 below. We can treat the summation with 
respect to j as in the proof of Lemma 4.5 and the proof of Lemma 4.7 is omitted. 

LEMMA 4.7. 
n 

(?~a)1/2 E(I~r(Xl, X2j  (0))) -1 
n j=l 

1 
X-- 

n 
fo r { f(O, X2j(O),t)9(O, X2j(O),t) Ka(Xli(t) - xl) 

w(xl ,  x2j (o), t) 

f (x l ,  X2j  (0), t )g(Xl ,  X2j  (0), t)e r (xl) 
- W(Xl, X2j (0), t) Ka  ( X l i ( t ) )  J 

X Kb(X2i(t) -- X2j(O))Mi(dt) 
--* N(0, DK2a2(Xl)), 



420 TOSHIO HONDA 

in law as n ---* oc, where 

~(x~) = f (9(x~, x~))-~f~(x2, O)dx2. 

We begin to prove lemmas. 

PROOF OF LEMMA 4.1. We just outline the proof. We have uniformly in x2, r~, 
and t, 

(4.6) 
n 

1 E { y i ( t ) e V T 2 , ( t ) ~ b ( X i ( t )  ) _ E ( Y i ( t ) e v T 2 d t ) ~ [ a b ( X i ( t ) ) ) }  
n i=1 

= O p ( { ( n a b )  -1 log n}a/2) .  

This is proved by following the arguments in Masry (1996) and using Assumption 
A6, the monotonicity of Yi(t), the continuity of exp(~T)(i(t)) in x2 and r h and the 
continuity of B2ab(f(i( t))  in x2. The proof is easier since the observations are i.i.d. Then 
just evaluate the expectation in the LHS of (4.6) by employing the symmetry of the 
kernel function. [] 

02L PROOF OF LEMMA 4.2. An expression of - o T - E ( r l )  is (4.2) with/3* replaced by 
r L Just  the outline of the proof is given. 

We apply Lemma 4.1. Then Lemma 4.4 implies that  we should consider only Ao, 
A1, and A2. Lemma 4.2 follows from another application of Lemma 4.4. [] 

PROOF OF LEMMA 4.3. 

(4.7) 

We consider U2(fl0) first. As in Fan et al. (1997), we have 

U2(Zo) = 1 ~ f Y~(t) 2~(t) 
n i=1 Jo \ S(0) (t,/30) ,] 

x [ ( a 6 ( X i ( t ) ) ( e  ~~162 - er 

By the Taylor series expansion, 

(4.8) I4[ab(Xi(t))(er162 -- e #~2(z2)+~ff2i(t)) 

= K a ( X l i ( t )  - x l ) K b ( X 2 i ( t )  - x2)e r 

{ a  2_~_ ~.)[/(x i ) (Xl i (  - ) +_~w2k2) (  b ) Xl 2 b2 2 ~ ~ X2 i ( t )  - x2 x 

+ K a ( X l i ( t ) ) K b ( X 2 ~ ( t )  - x2)e r {a X --~/'ufO~ tt 2 ~1' ' + -5-~2 (X2) t~ 

+ (o(a 2) + o(b2))[ f~b(X~( t ) ) .  

From the definition of )(i(t) and Lemma 4.1, we have uniformly in x2 and t, 

(4.9) 2~( t )  Su)(t, ~o) 
S(o) (t, 90) 
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f(x,t)g(x,t)er Xl~(t) X2~(t)-X2)T + Op(1), 
( -  W(x,t) , O, , b 

Ka(Xl i ( t ) )Kb(X2 i ( t )  -- x2) > 0 
-~ (f(O,x2,t)g(O,x2,t) x l , ( t ) -X l ,0  ' X2dt_)b-~2)T +Op(1), 

W(x,t) ' a 
K~(Xl i ( t )  - x l )Kb(X2i ( t )  - x2) > O. 

Hence as in Lemma 4.1, we have from (4.8) and (4.9), uniformly in x2, 

2 
a ~ tl 

( 4 . 1 0 )  U2(/30)  - -  -~(V(x)CK20(~) l (Xl ) -  ~9~1(0)), 0,  0,  0)  + O p ( a 2 )  + o p ( b 2 ) .  

Note that the two terms of b2o""~x \ ~2 k 2j cancels out each other. 
Next we deal with U~(/30), which is given in (2.11). The first term of Ul(/30) is 

reduced to 

(4.11) -1 ~ fo ' f ( i ( t )~2~b(Xi ( t ) )Mi(d t ) .  
TL i=1 

This is a sum of bounded independent random variables. The variances are evaluated 
by using the fact that  {M~(t)} are martingales. Then the standard argument in non- 
parametric regression applies and we have uniformly in x2, 

1 2 i ( t )Kab(X i ( t ) )Mi (d t )  O p ( { ( n a b )  - 1  log n}l/2). 
rt i=1  

As for the second term of U1(/30), apply Lemma 4.1 to S (j) (t, ~))/n and notice that  

r C Kab(Xi(Ti))  + k~b(2i ( t ) )Ao(dt )  = Op(1), 1 [Mil(dt) <- n n ~ 1 o 
Tt i=1 i=1 = 

uniformly in x2 for some positive constant C. We mean the total variation of {M~(t)} by 
{IM~l(t)}. Then the same argument as for the first term of U~ (/3o) applies again. Hence 
the proof is complete. [] 

PROOF OF LEMMA 4.5. We deal with the case where k = I = m = 0 for notational 
simplicity. In the same way as in Lemma 4.1, we have uniformly in x2 and t, 

(4.12) 1 ~-~G(Xl ,X2 j (O) , t )Kb(x2  - X2j(0)) - G ( x l , x 2 , t ) f 2 ( x 2 , 0 )  = Op(1). 
n 

j = I  

The predictable variation process of 

- G(xx,  X2~(t), t)f2(X2~(t),  O) (K~(X~( t )  - Xx) + K~(Xl~(t)))M~(dt)  
n i=1 

satisfies 

( s0 ) 1 { K ~ ( X l d t )  - x~) + K~(Xl~(t))})~o(t)dt (4.13) Op ~-7 i=~ 

(4.12) and (4.13) together with Lenglart's inequality imply Lemma 4.5. [] 

PROOF OF LEMMA 4.6. The lemma follows from the evaluation of the predictable 
variation process and the application of Lenglart's inequality. The details are omitted. [] 
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