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A b s t r a c t .  In this paper, we study two joint distributions of the numbers of success 
runs of several lengths in a sequence of n Bernoulli trials arranged on a line (linear se- 
quence) or on a circle (circular sequence) based on four different enumeration schemes. 
We present formulae for the evaluation of the joint probability functions, the joint 
probability generating functions and the higher order moments of these distributions. 
Besides, the present work throws light on the relation between the joint distributions 
of the numbers of success runs in the circular and linear binomial model. We give fur- 
ther insights into the run-related problems arisen from the circular sequence. Some 
examples are given in order to illustrate our theoretical results. Our results have 
potential applications to other problems such as statistical run tests for randomness 
and reliability theory. 
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i .  Introduction 

Let  X l ,  X2 , .  �9 �9 Xn be a fixed n u m b e r  of Bernoull i  t r ials  wi th  success (S) p robab i l i ty  
p = P ( X i  = 1) and  failure (F)  p robab i l i ty  q -- P(X~ = 0) = 1 - p ,  i = 1 , 2 , . . . , n .  
T h e  concept  of success runs  has been  used effectively in a wide range  of areas  such 
as rel iabil i ty theory,  s t a r t - up  d e m o n s t r a t i o n  tests  and  s ta t i s t ica l  qual i ty  control  (see 
Chao  et al. (1995), Ba lak r i shnan  et al. (1997), Shmueli  and  Cohen  (2000) and  references 
therein) .  T h e  d is t r ibut ion  theory  of success runs  has  been  developed by  m a n y  au thors  
under  various enumera t ion  schemes.  T h e r e  are different ways of count ing  the  n u m b e r  of 
success runs  of length k in the  l i t e ra ture  (see Fu and  K o u t r a s  (1994) and  Ba lak r i shnan  
and Kou t r a s  (2002)). I t  depends  on the  prac t ica l  p rob lem which way of count ing  should 
be  adopted .  The  four bes t -known types  of  the  ways of count ing  the  n u m b e r  of  success 
runs  of length k are as follows. 
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(i) Type I enumeration scheme: the way of counting the number of non-overlapping 
and recurrent success runs of length k, in the sense of Feller's (1968) counting, 

(ii) Type II enumeration scheme: the way of counting the number of success runs 
of length at least k, in the sense of Goldstein's (1990) counting (see Gibbons (1971)), 

(iii) Type III enumeration scheme: the way of counting the number of overlapping 
success runs of length k, in the sense of Ling's (1988) counting, 

(iv) Type IV enumeration scheme: the way of counting the number of success runs 
of size exactly k, in the sense of Mood's (1940) counting. 

In the case where the n Bernoulli trials are arranged on a line (linear sequence), 
the distribution theory of success runs has been developed very actively (see Aki and 
Hirano (1988), Koutras and Alexandrou (1995), Antzoulakos and Chadjiconstantinidis 
(2001), Godbole et al. (1997) and Han and Aki (1998)). On the other hand, in the case 
where the n Bernoulli trials are arranged on a circle (circular sequence), although the 
need to study the circular success runs was recognized very early (see Derman et al. 
(1982) and Asano (1965)), the development of the relevant distribution theory was very 
slow and insufficient. Here, we assume that the outcomes of the n Bernoulli trials 
are bent into a circle so that additional success runs may be formed by combining 
successes at the beginning and end of the sequence. Several authors have made effort 
to establish formulae for the evaluation of the probability function and the probability 
generating function (p.g.f.) of the distribution of the number of success runs in the 
circular binomial model (see Charalambides (1994), Makri and Philippou (1994), Koutras 
and Papastavridis (1993) and Koutras et al. (1995)). However, the formulae obtained 
were usually complicated, and the higher order moments of these distributions have never 
been examined. 

Our purpose of the present paper is to develop the formulae for the derivation of 
the joint probability function, the joint p.g.f, and the higher order moments of the joint 
distribution of the numbers of success runs of several lengths in the circular binomial 
model. We provide the perspectives on the run-related problems arisen from the circular 
sequence. We elucidate the relation between the joint distributions of the numbers of 
success runs in the circular and linear binomial model. 

For k = ( k l , k 2 , . . . , k r )  and a = ( a l , . . . , a r ) ,  let N(n ,k ;w)  and NC(n,k;~)  be the 
r-dimensional random variables (N(n, k l ;a l ) , . . . ,  Y(n ,  kr; a t ) )  and (NC(n, kl ; a l ) , . . . ,  
N C ( n, k~ ; a~ ) ) , where g ( n, k~ ; hi) (NO(n, ki ; hi)) represents the number of linear (circu- 
lar) success runs of length ki (i = 1, 2 , . . . ,  r) in the linear (circular) sequence by engaging 
Type h i (=  I, II, I I I ,  IV) enumeration scheme. In Section 2, we discuss the joint distri- 
bution of the numbers of success runs in the linear binomial model. We present recursive 
schemes for the evaluation of the joint probability function, the joint p.g.f, and the mixed 
m = ( m l , . . .  ,m~)-th moment about  zero of IV(n, k; a). The expression for the double 
generating function of IV(n, k; ~) is given. Section 3 studies the joint distribution of 
1VC(n, k; ~) from the viewpoint of the joint distribution of N(n,  k; ~). We focus on the 
relation between the joint distributions of the number of success runs in the circular 
and linear binomial model. In Section 4, we discuss the joint distribution of the number 
of success runs in the circular binomial model. Recursive schemes for the derivation 
of the joint probability function, the joint p.g.f, and the mixed m -- ( m l , . . .  ,mr) - th  
moment about zero of IvY(n, k; a) are given. The expression for the double generating 
function of IvC(n, k; ~) is given. We derived the exact formula for the joint probability 
function and the joint p.g.f, of IVY(n, k; w). We can obtain useful information from the 
joint distribution of IV(n, k; ~) (IVY(n, k; ~)).  For example, in the linear(circular)-m- 
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consecutive-k-out-of-n:F system, the number  of failure runs of length k and the number  
of failures provide useful clues to the maintenance.  Here, we regard a "success" as a failed 
component.  In Section 5, some examples are given in order to i l lustrate our theoret ical  
results. 

2. Linear binomial model 

In this section, we establish recursive formulae for the evaluation of the joint  prob- 
ability function, the joint p.g.f, and the mixed m -- ( m l , . . . ,  mr ) - th  moment  about  zero 
of N ( n ,  k; oe). The double generat ing function of N ( n ,  k; ~)  is given. 

We define 
(2.1) ~u(i; c~) = (~( i ;  o q ) , . . . , / . t ( i ;  OLr)), 

where 

#(i;  aj)  = I ( i  >_ kj) 
( i -  (kj - 1)) + 

I ( i  = kj) 

c~j = I ,  

eej = I I ,  

cej = I I I ,  

a j  = I V ,  

(i - (kj - 1)) + = max{0, i - (kj - 1)} and 

1 u is true,  

I (u)  = 0 otherwise. 

2.1 The joint  probability functions and generating functions 
For n > 0 and x = ( X l , X 2 , . . . , x r ) ,  let 

Bn(x;(~)  = P ( N ( n , k ; a )  = x)  xi >_ 0 i = 1 , 2 , . . . , r  

be the joint probabil i ty function of N ( n ,  k; a ) ,  wi th  convention 

(2.2) B0(x; = 4 , 0 ,  
/ B n ( x ; ~ )  0 n_>O and if x i < O  for some i, 

where Kronecker del ta  5~,y equals one if x = y and zero otherwise. 

PROPOSITION 2.1. 
Bn(x;  o~) of  N ( n ,  k; o~) 

n - 1  

B n ( x ; o ~ ) = q ~  
i=0 

Bo(x; c~) = ~ , o ,  

~u(i; ~) is as in (2.1). 

Under the condition (2.2), the joint  probability funct ion 
satisfies the following recursive relation: 

p~Bn_i_l (X - tt(i; t~); o~) + p n B o ( x  - tt(n; a);  a )  n >_ 1, 

PROOF. For i = O , 1 , . . . , n -  1, let Ai be the event tha t  the first failure occurs 
at the (i + 1)-th trial and let An be the event t ha t  the first failure does not occur in 
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X 1 , X 2 , . . .  , X n ,  t h a t  is, 

(2.3) A0 --~ { X l  ---- 0}, 
(2.4) Ai = {Xl = )(2 . . . . .  Xi = 1, Xi+l = 0} 

(2.5) An = { X l  = X 2  . . . . .  Xn_ 1 = X~ = 1}. 

Then,  we have 

P(N(n ,  k; a) = x) = 

i = 1 , 2 , . . . , n -  1, 

n - - 1  

E P ( A i ) P ( N ( n , k ; ~ )  = x I Ai) 
i=0 
+ P(An)P(N(n ,  k; c~) = x ] An) 

n - 1  

E q P i P ( N ( n -  i -  1, k ; ~ )  = x - t t ( i ; ~ ) )  
i----0 

+ pnp(N(O, k; ol) = x - i t (n;  c~)) 

The  proof is completed.  [] 

The  joint p.g.f, and the double generat ing function of N(n ,  k; ~) will be denoted 
by Cn(t; c~) and (I)(t, z; c~), respectively, tha t  is, 

r  c~) E[tN(~'kl;~l)t N(mk2;~:) t N(~'k~;~) ] E B~(x; a) t  1~ t2~2 ~ 
X 1 ~X2 ~.., , X r  

O0 O0 

O(t ,z ;o t )  = E Cn(t;~)zn = E E Sn(~C;~ "''tXr'Zn' 
n--~O n ~ O  X l  ,X2 , . . .  ~Xr 

where t ---- (tl ,  t 2 , . . . ,  tr).  Using Proposit ion 2.1, we can obtain  the following proposition. 

P R O P O S I T I O N  2.2. The joint p.g.f. r  of N ( n , k ; a )  satisfies the following 
recursive relation: 

n - - 1  

r (t; ~) = q E Pittt(i;~) r (t; or) + pnttt(n;~) 
i=0 

r  = 1, 

where 

(2.6) tt,(i;~) _ §247 . . t~( i ;~) .  - ~ 1  " 2  " 

n >  l, 

Using Proposi t ion 2.2, we have 

oo 

( I ) ( t ,z ;a)  = 1 + E Cn(t;a)zn 
n----1 

oo oo 

= q z  

i----0 n = i  + l 

= qzP(t, pz; ~ ) ~ ( t ,  z; a) + P(t,  pz; a), 

+ 
n = O  



J O I N T  D I S T R I B U T I O N S  O F  N U M B E R S  O F  S U C C E S S  R U N S  357 

where 
oo 

(2.7) P(t, pz; ~) = ~ ( p z ) i t  "(i;~). 
i=0  

Therefore, we obtain the following proposition. 

PROPOSITION 2.3. The double generating function (I)(t, z; c~) of N(n ,  k; a) is given 
by 

P(t,  pz; a) 
(2.8) (I)(t, z; c~) = 1 - qzP(t, pz; a ) '  

where P(t, pz; el) is as in (2.7). 

2.2 Evaluation of moments 
Let ~,m~ ..... m~(~) = E[1-Ir=l (N(n,  ki; c~i)) m'] denote the mixed m = ( m l , . . . ,  mr)- 

th moment about zero. We can establish a recursive formula for the evaluation of 
~n,m~ ..... m~(~). Replacing ti by e t' (i = 1 , 2 , . . . , r )  in Cn(t;c~), the moment generat- 
ing function (m.g.f.) Mn(t; a) of N(n,  k; ~) is obtained. Since Mn(t; ~) = Cn(eh, . . . ,  
et~;c~), it follows from Proposition 2.2 that  m = ( m l , . . . , m r ) - t h  order derivative of 
Mn(t; ~) satisfies the recursive relation 

n--1 m 

( ) ( l t ( i ; o L j ) ) m ~ - b ~ M n - i - l , b l  ..... b r ( t ; ~ )  M,,m, ..... mr(t;(~) = E E qpieE ;=,tj,(i;~j) m 
i=o b=O b 

r 

j = l  

Mo,m, ..... m ~ ( t ; ~ ) = 0  ( m l , . . . , m r ) # ( 0 , . . . , 0 ) ,  

Mo,ml ..... m~(t;c~) ---- 1 ( m i , . . .  ,mr)  -~ (0 , . . .  ,0), 

where 

n > l ,  

Oml +...+m~ 
Mn,m~ ..... m~(t; a )  ---- Oral.. .Otmr Mn(t; (~), 

H( ) E = E ' " E  and = mi 
b=O bt=O b,.=O i----1 bi " 

Then, we obtain the following proposition. 

PROPOSITION 2.4. The mixed m = (ml , . . . ,mr ) - th  moment about 
~ln,ml ..... m~((~) of N(n,  k; ~) satisfies the following recursive relation: 

7In,m1 ..... m'(OL) = E E qpZ (lt(i;oLj))m~--bJ~n_i_l,bx ..... b.(Ot) 
i=0 

r 

+ pn H(#(n;(~j))m j n >_ 1, 
j=l 

,o ,ml  ..... = o r ( 0 , . . . , 0 ) ,  

?~0,mt ..... rn,(( :~)  ---- 1 ( m l , . . .  ,mr)  = (0 , . . .  ,0). 

zero 
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Remark 2.1. Recently, for the linear sequence, Aki and Hirano (2000) introduced a 
generalized enumeration scheme which is called g-overlapping counting (see Antzoulakos 
(2003) and Inoue and Aki (2003)). Setting 

. ( j ; . , )  = max {0, [ j - e, ] / 
[ki - s I ~ '  

where 0 <_ gi <_ ki - 1, the results presented in Propositions 2.1-2.4 can be extended to 
cover this case easily. 

3. Relation between the circular and linear binomial models 

In this section, we s tudy the joint distribution of NO(n, k; a)  through the joint 
distribution of N ( n ,  k; ~). We elucidate the relation between the joint distributions of 
the number of success runs in the circular and linear binomial models. 

We define 

(3.1) 

where 

v(i; a )  = (v(i; o~1),... , u(i; c~r)), 

I i 
v(i; a j )  = I(i  >_ kj) aj = I I ,  

i I( i  > kj) o~j = I I I ,  

I(i----kj) c~j = IV. 

3.1 The joint probability functions and generating functions 
For n > 0 and x = ( X l , X 2 , . . .  ,Xr) ,  let 

B ~ ( x ; a ) = P ( N C ( n , k ; a ) = x )  xi>_O i = l , 2 , . . . , r  

be the joint probability function of NC(n, k; a ) ,  with convention 

B~)(x; a) = ~,o ,  
(3.2) B ~ ( x ; ~ ) = O  n > O  and if x i < 0  for some i. 

THEOREM 3.1. Under the conditions (2.2) and (3.2), the joint probability functions 
B~(x; ~)  and B~(x; (~) satisfy the following recursive relation: 

n - 2  

B~(x; a )  =q2  ~ ( i  + 1)piBn_i_2(x - it(i; a);c~) 
i=O 

+ nqpn- lBo(x  - tt(n - 1; (~); c~) + p~Bo(x - v(n; a ) ;  c~) 

B~(x; ~)  = a~,o, 

n >  l, 

tt(i; a),  v ( i ; a )  are as in (2.1), (3.1). The summation ~-~ia=b is ignored for b > a. Such 
a convention is frequently used in the following. 
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PROOF. For j = 0, 1 , . . . ,  n - 2, let Cj be the event that  the last failure occurs at 
the ( n - j ) - t h  trial and for i = 1, 2 , . . . ,  n, let Di be the event that  only one failure occurs 
at the i-th trial, that  is, 

c 0  = = 0 } ,  

C j = { X n - j = O ,  X n - j + l  =Xn-- j+2 . . . . .  X n = I }  j = 1 , 2 , . . . , n -  1, 

D i = { X i = O ,  X i , = l , l < _ i ' 7 ~ i < n }  i = 1 , 2 , . . . , n .  

Then, we have 

p(NC(n ,  k; ~) = x) 

= E P ( A i ) P ( C j ) P ( N ( n ,  k; a)  = x I Ai A Cj) 
O~_i+j~_n--2 

n 

+ E P ( D i ) P ( N ( n , k ; ~ )  = x I Di) 
i=1 

+ P ( A ~ ) P ( N ( n ,  k; a )  = x I An) 
n--2 

= E (i + j + 1 ) q 2 p i + J P ( N ( n -  i - j - 2, k ; ~ )  = x -  tt(i + j ; ~ ) )  
i+j=0 

+ n q p n - l p ( N ( O ,  k; a )  = x - t t (n  - 1; ~)) 

+ pnp(N(O,  k; (~) = x - v(n;  c~)) 

Ai (i = 0, 1 , . . . ,  n) are as in (2.3), (2.4), (2.5). The proof is completed. [] 

The  methodology employed for establishing the recursive relation in Theorem 3.1 
has been introduced by Makri and Phil ippou (1994). They tackled the univariate case 
of ~ = I, I I I  (see also Makri and Phil ippou (2003)). 

The  joint p.g.f, and the double generating function of NO(n, k; a )  will be denoted 
by r a )  and (~c(t, z; a) ,  respectively, that  is, 

r  E[tN~ Nc(~'k2;~2) = E B~(x,~ . a)tlxlt~2 . .. x~ 
- -  . * *  t 7  . , 

X l ~ X 2 ~ . . . ~ X r  

O 0  O 0  

X l  X 2  (I)~(t'z;c~) = E r  E E S~(x;(~)tx t 2 . . . t ~ z  ~. 
n = O  n ~ 0  X 1 ~X2~...~Xr 

Using Theorem 3.1, we can obtain the following theorem. 

T H E O R E M  3.2.  

sire relation: 

n--2 
r ~) = q2 E (  i + 1)pit.(i;~)r (~) 

i=0  

+ nqpn-l t"(~-1;~) + p~t~(~;~) 

Cg(t; a )  = 1, 

The joint  p.g.f. 's r  a )  and Cn(t; c~) satisfy the following recur- 

n _ > l ,  
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where 

(3.3) 

and t ~(i;~) is as in (2.6). 

tv(~; ~) = t~(~;~)t2(i;~2).., t~(~;a~), 

It is interesting to note that the double generating function (I)c(t, z; (~) can be easily 
captured through (I)(t, z; (~). The next theorem provides the details. 

THEOREM 3.3. 
by 

(3.4) 

where 

(3.5) 

(3.6) 

The double generating function Oc ( t, z; (~ ) of NO(n, k; v~ ) is given 

(I)~(t, z; c~) : (qz)2Q(t, pz; (~)O(t, z; c~) + qzQ(t, pz; a)  + R(t ,pz; (~), 

oo 

Q(t ,pz ;a)  = ~-~(i + 1)(pz)~t ~(i;~), 
i=O 

i = 0  

and ~(t,  z; a)  are as in (2.8). 

PROOF. Using Theorem 3.2, we have 

oo 

c t I ' c ( t , z ;~ )  = 1 + ~ Cn(;c~) z'~ 
n = l  

= i + 1)(Pz) E 
i = 0  n = i + 2  

oo oo 

+ ~ nqpn-ltt~(n-1;~) + Z Pntv(n;~)" 
n = l  n = 0  

Therefore, the proof of (3.4) is completed. [] 

3.2 Evaluation of moments 
c Let ~n,ml ..... m~(Ol) ---- E[1-[r=l(NC(n,k~;(~i)) m'] denote the mixed m = ( m l , . . . ,  

mr) - th  moment about zero. We can evaluate ~ ,ml  ..... ,n~(a) through the ~n,m~ ..... m~(a). 
Replacing ti by e t~ (i -- 1, 2 , . . . ,  r) in the recursive formula provided by Theorem 3.2 and 

. ,  , . .  ; considering the m = (ml , . .  mr)- th  order derivative of the m.g.f, c t~ . ,etr  c~), 
we may easily obtain the following theorem. 

THEOREM 3.4. The mixed m = ( m l , . . . , m r ) - t h  moments about 
~]~,ml ..... m~ (V~) and Yn,m~ ..... m, (a) satisfy the following recursive relation: 

•X,m, ..... mr (a) = Z Z (i + 1)qpi (#(i;aJ))mJ-bJ'n-i-2,bl'"',b~(a) 
i=O b = O  

z e r o  
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T r 

+ nqp n- '  1 - [ ( , (n  - 1;.j))mJ + pn H(~(n; .~ ) )m3 
j=i j=l  

~,m, ..... mr(~) = 0 ( m l , . . . , m r )  # (0 , . . . , 0 ) ,  

~]~,rni ..... m.(O~)---- 1 ( m l , . . . , m r ) = ( 0 , . . . , 0 ) .  

n > _ l ,  

4. Circular binomial model 

In Section 3, we consider the joint distribution of NC(n, k; a) from the viewpoint 
of the joint distribution of N(n,  k; a). In this section, we examine the joint distribution 
of NO(n, k; c~) directly. 

4.1 The joint probability functions and generating functions 
To begin with, we consider the double generating function @c(t, z; c~) of NO(n, k; ~). 

By making use of Theorem 3.3, we can establish compact formulae for the double gen- 
erating function @c( t, z; a ). 

THEOREM 4.1. 
by 

The double generating function Oc(t, z; ~) of NC(n, k; ~) is given 

qzQ(t, pz; c~) 
(4.1) (I)~(t, z; cz) = 1 - qzP(t,pz; c~) + R(t, pz; a) ,  

or, equivalently, 

cO log[1 - qzP(t ,  pz; a)]  + n( t ,  pz; c~), (4.2) ~ ( t , z ; a )  = - z ~  

where P(t ,  pz;c~), Q(t,  pz;c~), n( t ,  pz;c~) are as in (2.7), (3.5), (3.6). 

PROOF. From the equations (2.8) and (3.4), the proof of (4.1) is easily completed. 
The proof of (4.2) is completed if we take into account that 

D 
~---(zP(t,pz; ~) ) = Q(t,pz; a). 

COz 
[] 

We will establish recursive schemes for the evaluation of the joint p.g.f. r  (t; a )  and 
probability function B~,(x; c~) of NC(n, k; c~). From the equation (4.1), we have 

(1 - qzP(t, pz; a))@c(t, z; a)  = qzQ(t,pz; a) + (1 - qzP(t,pz; ~) )R(t, pz; ~). 

Equating the coefficients of z n on the both sides of the above equation, we obtain the 
following theorem. 

THEOREM 4.2. The joint p.g.f. r c~) of NC(n, k; ~) satisfies the following re- 
cursive relation: 

(4.3) 
n-1  

r a) = q ~ pitU(i;a)r i (t; o~) + nqpn-it  u(n-1;a) + pnt~(n;a) 
i-----0 
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n - 1  

_ qpn-1 E tt~(n-i-1;~)+v(i;~) 

i = 0  

(4 .4 )  : 1, 

where t "(i;~), t u(i;~) are as in (2.6), (3.3). 

n _ > l ,  

Equat ing  the coefficients x~ x~. x~ of t 1 t 2 �9 �9 t~ on the bo th  sides of the equat ions  (4.3) and 
(4.4) in Theorem 4.2, we obtain  the  following theorem. 

THEOREM 4.3. Under the condition (3.2), the joint probability function BC(x; or) 
of NO(n, k; (~) satisfies the following recursive relation: 

n - 1  

B C n ( x ; c ~ ) = q E i p  Bn_i_l  c (x  - t t ( i ; a ) ; a )  +- n qp n-15 ~,t,(n-1;a) + P n5 ~,~,(n;a) 
i = 0  

n - 1  

_ qpn-1 E 5~,~(n-i-1;~)+~,(i;~) n >_ 1, 
i=O 

B (x; a )  = 5 ,o, 

where it(i; a ) ,  v(i ;  c~) are as in (2.1), (3.1). 

4.2 Evaluation of moments 
We will establish a recursive formula for the  evaluation of the mixed m = 

( m l , . . . , m r ) - t h  moment  abou t  zero r/C,m~ ..... raw(a). Replacing ti by e t' (i = 1 , 2 , . . . , r )  
in the recursive formula provided by Theorem 4.2 and considering the m = ( m l , . . . ,  mr) -  
th  order derivative of the  m.g.f, c t~ Cn(e , . . . , e t~ ;c~) ,  we may  easily derive a recursive 

c scheme for the mixed rn  = ( m l , . . . , m r ) - t h  moment  abou t  zero 7ln,m ~ ..... m~(a)" 

THEOREM 4.4. The mixed m = ( m l , . . . , m r ) - t h  moment about zero ~?C,m ~ ..... m~(V~) 
of NO(n, k; a)  satisfies the following recursive relation: 

n - - I  rrL 

o ~n,ml ..... m,( ) =  qP b (#(i;c~j))m~-bJ~cn-i-l'bl ..... b~(tX) 
i = 0  = 

r r 

q_ nqpn-I I-[(it(n - 1; O~j))m~ q_ pn yI(v(n;oLj))m ~ 
j = l  j = l  

n - -1  r 

-- qpn-i E 1-I (#(n -- i -- 1 ; ~ j ) +  u(i; (xj)) m~ 
i = 0  j----1 

~),m, ..... m ~ ( a ) = 0  ( m l , . . . , m r ) r  

?~(~,mx ..... rn~(O~) : 1 ( m l , . . . , m r )  = ( 0 , . . . , 0 ) .  

n > l ,  
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4.3 Closed form expressions 
Expanding the equation (4.1) in a power series of z and picking out the coefficient 

of z n, we may easily obtain the expression for the joint p.g.f. r c~). 

c t "  THEOREM 4.5. The joint p.g.f. Cn( , c~) of NO(n, k; ~) is given by 

( . (q) nl + n2 q- �9 �9 �9 + nn~ nl-F...-~nn~-I 

m = l  n lq-2n2~- . . . -~nnn=n--m Hi,n2,.  �9 ,nn ] 

X t E ~=2 n~t~(i--1;a)Ttt(m--1;cx) _~_ pntV(n;a ) n > O, 

where p~(i; a ) ,  v(i; a )  are as in (2.1), (3.1). 

Xl :~2 . X r  C ~. Picking out the coefficient of t 1 t 2 -. t r in Cn( , ~)  provided in Theorem 4.5, we 
may obtain an explicit form of the joint probability function BC(x; (~). 

THEOREM 4.6. The joint probability function B ~ ( x ; a )  of N C ( n , k ; a )  is given by 

UC(x;Ol)  . ~ p n m ~ l m ~  ( n  I _~_n2_~.. ._~_nn~ _ n l + . - . T n n + l  n ~  

= 1 \ n l , n 2 ,  �9 �9 , n n  ] q-  p x,~,(n;a) 

n > 0 ,  

where the inner summation ~ 1  is over all non-negative integers {Hi}in1 satisfying the 
conditions 

n 

i=l 
n 

~ - ~ n i t t ( i -  1 ; a ) +  t t ( m -  1 ;~)  = x, 
i=2 

and ju(i; ~) ,  v(i; ~ )  are as in (2.1), (3.1). 

The expressions given in Theorems 4.5 and 4.6 may be unsuitable for the calcula- 
tions, since the exact formulae involve the multinomial coefficients and the inner sum- 
mations on index sets determined by the solutions of the conditions. However, we think 
that they are very helpful for explaining the combinatorial meanings. 

Remark 4.1. We mention the circular-m-consecutive-k-out-of-n:F system where 
the circular binomial model is appropriate (see Chang et al. (2000)). This system 
fails whenever at least m non-overlapping failure runs of length k occur (suppose we 
define a "success" as a failed component). Then the system's reliability is given by 

m - 1  ~x=o P(NC( n, k; I) = x) and can be easily calculated by making use of Theorem 4.3 
for r = 1, kl = k, a l  = I. Furthermore we can obtain useful information for the more 
efficient s tudy of this model. In addition to the reliability, the numbers of failure runs 
of length s (s = 1, 2 , . . . ,  k - 1) provide useful clues to the maintenance. 

Remark 4.2. Our results presented in Section 4 are useful for circular statistical 
problems in many fields. Recently, Agin and Godbole (1992) proposed a non-parametric 
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test for randomness by making use of the number of non-overlapping linear success runs 
of length k. Koutras and Alexandrou (1997) suggested a test for randomness based on 
the number of linear success runs of length k by engaging Type I ,  I I ,  I I I  enumeration 
schemes. An analogous run test for a circular distribution can be established based on the 
number of circular success runs of length k by engaging Type I ,  I I ,  I I I ,  I V  enumeration 
schemes. More details on this topic will be presented in a subsequent paper. 

5. Examples 

In this section, we present computational results for the distributions of run statis- 
tics. Theorems and propositions obtained in Sections 2-4 are useful for the numerical 
and symbolic calculations. To illustrate our theoretical results for deriving the joint 
distribution of the numbers of success runs, several examples are given below. 

5.1 Multivariate distributions as special cases 
For r = 4, kl = k2 = k3 = ka = k and ~ = (I,  I I ,  I I I ,  I V ) ,  we consider 

the joint distributions of (N(n ,  k; I) ,  N ( n ,  k; I I ) ,  N ( n ,  k; I I I ) ,  N ( n ,  k; IV ) ) ,  (NO(n, k; I) ,  
NC(n, k; I I ) ,  NO(n, k; I I I ) ,  N~(n,  k; IV ) ) .  The double generating functions are given by 
the expressions (2.8) and (4.2) with 

1 - (pz) k 1 - (pzt3) k (pz)ktl t2t3 
(5.1) P( t ,  p z ; a )  - + (pz)ktlt2t3(ta -- 1) + 

1 -- pz 1 -- pzt3 1 -- (pzt3)ktl  ' 

1 -- (pz) k 1 -- (pzt3) k (pzt3)ktlt2 
(5.2) R( t ,  p z ; a )  -- + (pzt3)ktlt2(t4 - 1) + 

1 - pz 1 - pzt3 1 - (pzt3)ktl  ' 

where t = (tl, t2, t3, t4). 
The marginal distribution of N~(n,  k; a) (a = I,  I I ,  I I I ,  I V )  is called circular bino- 

mial distribution of order k. For a = I, the corresponding distribution has studied by 
several authors (see Charalambides (1994), Makri and Philippou (1994) and Koutras et 
al. (1995)). For a = I I I ,  Koutras et al. (1994) have given formulae for the probability 
function. 

5.2 Correlation coefficients 
The correlation coefficients between N ( n ,  k l ;~1)  and N ( n ,  k2; c~2), N c (n, kl; c~1) and 

NO(n, k2; c~2) will be denoted by Pn,kl,k2(O0, Ol2) and pCn,kl,k2((~l , (~2), respectively, for 
al ,  ~2 = I,  I I ,  I I I ,  I V .  

For the special case kl = k2 -- 3, the correlation coefficients are plotted in Figs. 1- 
12. 

5.3 Numerical examples 
We consider the joint distribution of (NO(n, kl; I),  NC(n, k2; I I ) ) .  For n -- 10, kl -- 

2, k2 = 3 and p -- 0.7, the joint p.g.f, is 

r a )  = 0.0102122451 + 0.038662029tl + O.043535961tlt2 + 0.043174782t 2 

+ 0.175097727t12t2 + 0.0365300145t~t22 + 0.009529569t 3 

+ 0.267886773t3t2 + 0.096354531t13t 2 + 0.0259416045t~t 2 

+ 0.2248272390t4t2 + 0.02824752490t5t2. 

For n = 100, we give Fig. 13, which is the three-dimensional plot of the exact joint 
probability function of (N~(100, 2; I),  NC(100, 3; I I ) ) .  
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