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Abstract .  In the paper we prove strong consistency of estimators as solution of 
optimisation problems. The approach of the paper covers non-identifiable models, 
and models for dependent samples. We provide statements about consistency of 
M-estimators in regression models with random and with non-random design. 
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i .  Introduction 

The main goal of this paper is to provide a concept for proving strong consistency 
of estimators which are obtained as a solution of an optimisation problem or as an 
approximate solution of it. This concept uses ideas from stochastic optimisation and is 
based on the idea of epi-convergence. The application of the concept is demonstrated in 
the case of M-estimation. 

In his pioneering work Wald (1949) proved consistency of maximum-likelihood esti- 
mators and had so an impact on later consistency proofs for parametric estimators. In 
the last decades three main techniques have been developed for proving strong consis- 
tency of estimators as solution of optimisation problems. The first one goes via uniform 
laws of large numbers (aft Shorack and Wellner (1986), Pbtscher and Prucha (1997)). 
The second technique uses a statement on convergence of convex functions (Andersen 
and Gill (1982)). The third one applies the idea of epi-convergence. Epi-convergence al- 
most surely was considered by Salinetti and Wets (1986) and since then, it has been used 
in several further papers, for example Dupa~ovs and Wets (1988), Artstein and Wets 
(1994), Korf and Wets (2001) etc. Strong consistency of estimators arising from optimisa- 
tion problems was studied in papers by Pfanzagl (1969), and Dupa~ovs and Wets (1988). 
Hess (1996) proved strong consistency of approximate maximum-likelihood estimators. 
Dudley (1998) showed strong consistency results under a bracketing condition. 

Asymptotic normality of estimators coming from optimisation problems is examined 
in papers by DupaSova and Wets (1988), Shapiro (1989, 1991), Geyer (1994) and Pflug 
(1995). In settings which are different from ours, King and Rockafellar (1993) derived 
consistency results and statements on asymptotic normality. 

*The research was partially supported by the Deutsche Forschungsgemeinschaft (project number 
436TSE113/40) and by the Grant Agency of the Czech Republic under Grant 201/03/1027. 
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In this paper we employ the approach using epi-convergence. So we avoid deriving 
uniform strong laws of large numbers. Providing such laws could be a problem in situ- 
ations of complicated dependence structures of the sample. We work with convergence 
properties of the objective function which are similar to but  slightly weaker than epi- 
convergence almost surely. A general theorem on the strong convergence of minimizers of 
stochastic minimisation problems is the starting point of our concept. Subsequently, we 
provide sufficient conditions for the conditions of this general theorem. The advantages 
of our approach are the following: 

(i) Our approach covers discontinuous and non-identifiable models, and cases 
where a unique optimum of the underlying limit problem does not exist. 

(ii) The results can be applied to samples of independent random variables as well 
as to samples with complicated dependence structure. 

(iii) The space of parameters is not restricted to ~d, e.g. it could be a separable 
metric space of real functions. 
So we obtain generalisations of statements of several earlier papers. Furthermore we 
consider approximate estimators which are defined similarly to Hess (1996) and Dudley 
(1998). Our definition includes the situation where an approximate value of the optimiser 
is supplied by a certain numerical estimation algorithm. This situation often occurs in 
applications. 

The paper is organised as follows: In the first part of Section 2 we introduce some 
notions connected with epi-convergence almost surely and follow the presentations by 
Vogel (1994), and by Vogel and Lachout (2003a, 2003b). The main results of the present 
paper are given in the second part  of Section 2. 

In Sections 3 to 5 we consider several applications. Section 3 deals with M-estimation 
in random design regression models where the sample is a part of an ergodic sequence. 
In Section 4 it is discussed how we can get consistency even when the aspect of model 
selection is incorporated. The consistency of M-estimators in fixed design regression 
models is studied in Section 5. 

2. General theory 

Let (~, J[, F) be the probability space and {fn} be a sequence of functions f~ :~= x 
u which can be regarded as a sequence of random functions { f n ( . ) }  where 

fn(x) stands for fn(x,  "). We equip the space ~ with a metric d. In the sequel we give 
some definitions for the convergence of {fn} to a deterministic function. These definitions 
were taken from Vogel (1994) and Vogel and Lachout (2003a, 2003b). Moreover, we 
provide two useful lemmas. 

DEFINITION 2.1. The sequence {fn} of random functions is a lower semicontinuous 

approximation almost surely to f : ~ ~ 1~ U {+c~} on O C ~ (symbol: fn l -a .~ ,  f )  if 
o 

and only if for F-almost all w, all x0 E O and for all sequences {x~} tending to x0, 

l iminf fn(xn,w) > f(xo).  
n-- -~  0 0  

LEMMA 2.1. fn Z-a.~. ~ f is equivalent to 
o 

(2.1) P ~ sup liminf inf fn(t) > f(00)V00 C O~ 
( v~Ar(eo) n ~  toY J 

----1. 
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A;(Oo) is the system of neighbourhoods of t~o. 

DEFINITION 2.2. The sequence {f~} of random functions is an epi-upper approxi- 

mation almost surely to f :  ~ --~ 1~ tO {+oo} on O C E (symbol: fn epi-u-a.8, f)  if and 
O 

only if for P-almost all w and all Y0 �9 (9, there is a sequence {Yn} such that 

Yn ---* Yo and limsUpfn(Yn,W) < f(Yo). 

LEMMA 2.2. fn epi-u-a.s. , f is equivalent to 
0 

( 1 
P ~ sup limsup inf fn(t)<_ f(00)V00E O }  = 1. 

[ VEJV(Oo) n--~oo t E V  ) 

It is straightforward to establish an "upper" version of the first definition and an 
"epi-lower" version of the second one, but  we need only the above definitions in our paper. 
Lemmas 2.1 and 2.2 can be found in similar versions in several papers (see Rockafellar and 
Wets (1998), p. 242). In the subsequent theorem, we employ the two above definitions 

for different sets. If the sequence {fn} satisfies both fn t-a.s. ~ f and fn epi-~-a.8. ~ f 

then it epi-converges almost surely (cf. Salinetti and Wets (1986), Hess (1996)), i.e. for all 
w E ~t, the sequence of deterministic functions {fn(',w)} epi-converges where P((~) = 1. 
Thus, to explain the relationship between epi-convergence almost surely and several kinds 
of convergence of sequences of random functions, it suffices to consider the relationship 
between the corresponding types of convergence for sequences of deterministic functions. 
Uniform convergence implies epi-convergence provided that the limit function is lower 
semicontinuous. Thus our concept uses weaker assumptions in comparison to the concept 
of uniform convergence. For a sequence of convex functions on D C II~ n, epi-convergence 
to a function f is equivalent to uniform convergence to f on compact sets in the interior 
of D (cf. Proposition 7.17 in Rockafellar and Wets (1998)). Concerning epi-convergence 
of sequences of deterministic functions, we refer to the monograph by Rockafellar and 
Wets ((1998), Chapter 7B). Several stochastic versions of epi-convergence are discussed 
in Salinetti and Wets (1986) and Pflug (2003). 

Let ~n be an estimator for the unknown parameter 00 E O where (9 is the parameter 
set of some model. Assume that t~n is an ~n-minimiser of fn, i.e. 

(2.2) fn(0n) -< rnn + en for n �9 N 

where {en} is a sequence of positive random numbers tending to zero almost surely and 
rnn = inf0eo fn(O). This definition includes many cases in applications where a numerical 
approximate minimiser 0n is computed by a numerical algorithm. An other argument 
for using approximate minimisers is that the infimum rnn need not be measurable. The 
following theorem provides some sufficient conditions for the consistency of the estimator. 
Let 

d ( x , A ) = i n f { d ( x , y ) : y � 9  for x � 9  A C ~ .  
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THEOREM 2.1. Suppose that (2.2) is satisfied, and either 0 is compact or there is 
a compact set K C O, an a C R, such that with probability one, 

(2.3) O y ~ { X : f n ( X ) < a } c K  for all n > no(w). 

Furthermore, assume that there is a function f : 0 ~ ~ U {+cr such that 

fn t--a.s. > f ,  
0 \ r  

fn ~m-u-a.~. f for some 0 E kV := argminf(O), 
{0} o~e 

(2.4) 

(2.5) 

and �9 # O. 
(a) Then 

(2.6) 

(2.7) 

l imsupmn ~ ~ i~  f(O) 
n ' - - ' *  O 0  

lim d(On, kO) = 0 a.s. 
n-- -~  O 0  

(b) Moreover, if in addition, q2 = {0o} holds, then 

lim 0,~ = Oo a . s .  
n --"~ ( X )  

a.s. and 

Remark 1. This theorem is closely related to Theorems 4.1 and 4.2 proved by 
Vogel (1994). We require the convergence of fn on a smaller set here. A similar result 
where (2.4) and (2.5) are replaced by the more restrictive assumption of epi-convergence 
a.s., follows from Theorem 7.33 of Rockafellar and Wets (1998) as discussed in Korf and 
Wets ((2001), Sections 7, 8). Other related results are due to Robinson (1987). 

Remark 2. We need the compactness assumption on O or the validity of (2.3) 
to ensure the existence of a convergent subsequence of {t~n}. The existence of such a 
sequence is often explicitly assumed instead of compactness. Alternatively, one can work 
with other more complicated (but weaker) assumptions ensuring the existence of such a 
subsequence (see also King and Rockafellar (1993), p. 151). 

Remark 3. Assumptions (2.4) and (2.5) concern a lower approximation outside 
the set of minimisers of f and an upper approximation on the set of minimisers of f for 
the sequence {fn}, respectively. 

Remark 4. From the proof below, it can be recognized that the following assertion 

is true: If fn t-a.8. > f is assumed instead of (2.4) and the other assumptions of Theorem 
e 

2.1 are satisfied, then 
lim m n =  ~ ' ~  f(O) a.s. 

n - - - ~  O O  

PROOF. We assume O to be compact, since the case where (2.3) is satisfied can 
easily be transferred into the compact case. By virtue of (2.4) and (2.5), there is a set 
~* c ~, P ( fF )  = 1 such that the following three conditions are fulfilled: 
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(i) en(w)  --* 0 for all co E f F ,  
(ii) for all w Ef t* ,  x0 E O \ ~ ,  and for all sequences {x~} tending to xo, 

(2.8) lim inf f~ (Xn, co) ~ f (Xo)  
n--*c~ 

and 
(iii) for every co E f F ,  there is some sequence {Yn(co)} wi th  Yn(CO) -~ 0 and 

(2.9) l imsup fn(Yn(co), co) <_ f(O).  
n ---~ O 0  

Let us fix co E a* and write fn ( ' )  instead of fn(' ,co), and On instead of 0n(co). Now we 
assume tha t  there is a subsequence {Onk}k=l,2 .... of {0n} with  d(Onk,q2) ~ D > 0 as 
k ~ oc. Since O is compact,  there is a subsequence {Ot~}k=1,2 .... of {0~ k} such tha t  
Ot~ -~ 0* ~ ko as k ~ cc and by (2.2), 

lim inf inf fnk (0) = lim ftk (Otk). 
k-.-,oo OE@ k----,~ 

Therefore, by (2.2) and (2.8), 

(2.10) lim inf mnk 
k---~ oo 

= lim flk(Olk) >__ l iminf  fn(0n) _> f(O*) > m 
k - ' * o o  n - - ~  o o  

where m = min0ee f (0) ,  0n = 0lk if n = lk for some k E N, and 0n -- 0* otherwise. On 
the other hand,  by (2.9), 

l i m s u p m n  < l imsup fn(Yn) < f (0)  - - m  
n - - - * O O  n- - -~  OO 

which contradicts (2.10). Hence the claim d(Onk, k~) --~ D > 0 is not t rue and (2.7) is 
satisfied. [] 

Obviously, condition limsupn__.oo fn(O) ~-- f(O) a.s. is sufficient for (2.5). In her paper 
(1994) Vogel established Theorem 5.1(i) which gives sufficient conditions for the lower 
semicontinuous approximation almost surely in N n. We prove now a similar theorem for 
separable metric spaces O. Let B(O,p)  := {t E O : d(t,O) < p} denote the open ball 
around 0 with radius p. 

LEMMA 2.3. Suppose that 0 is a separable metric space and f is lower semicon- 
t inuous on 0 .  I f  for  all 0 E O, e > 0, there is some p -- p(O,c) > 0 such that 

(2.11) l iminf  inf fn ( t )  >_ f(O) - ~  a.s., 
n--*oo tEB(O,p)  

then fn  t-a.~. ~ f holds true. 
0 

PROOF. In view of Lemma 2.1, we have to show that (2.1) holds true. 
(i) First we construct an appropriate ~* c ~. Let c = ~, m E N. According 

to the assumptions, for each 0 E O, there is an open ball B(0, p(0, ~)) such that (2.11) 
holds for co E ~e,m and p(0, e) < e with some set ~e,m C ~, P(~e,m) = I. These balls 



296 P E T R  L A C H O U T  ET AL. 

B(O, p(0, 6)) form an open cover of 0 which is a separable metric space. Therefore there 
is a countable open subcover of 0 consisting of sets B(0, p(8, 6)), 0 �9 Fm. Now 

mEl%i,OEFm 

(ii) Now let O0 �9 O a n d 6  = 1 ,  m �9 N be arbi t rary  but  fixed. Since f is lower 
semicontinuous, there exists a # �9 N, # _> m such tha t  

1 
f ( t )>_f (Oo) -e  for all t � 9  O 0 ) < - .  

# 

There is some 0 �9 F ,  and some fi �9 (0, 1/p) such tha t  80 �9 B(0, fi) and by (2.11), 

1 for all w C f l * .  l iminf  inf f , ( t ,w)  > f(O) - -fi 
n-*oo t6B(O,fi) 

Moreover, there is some/5 > 0 wi th  B(80,/5) C B(0, fi). Fur ther  

sup lim inf inf fn (t, w) = sup lim inf inf 
V6flf(8o) n--*oo t 6 V  r>O n-*oo t6B(Oo,r)  

= sup l iminf  inf 
r :~>r>O n--*oo tEB(Oo,r) 

_> l iminf  inf fn(t,w) 
n-*oo teB(#,Z) 

>_ f ( ~ )  _ 1__ >_ f ( O o )  - 2 
# m 

for all w 6 fF .  Consequently by m --o oc, (2.1) is fulfilled. [] 

fn(t, ) 

Let Pn and P be a random and a nonrandom measure on E,  respectively. Now we 
turn  to prove strong consistency in the special case where 

fn(t) = /E ~(t ,  x)dPn(x), f(t) = / E  ~(t, x)dP(x) 

for t 6 (9, and ~ : O x E ---* ]R is a measurable function. We assume tha t  these Lebesgue 
integrals exist. The case where Pn is the empirical measure of a sample X 1 , . . . ,  Xn is 
impor tan t  for applications. 

CONDITION S. For every 0, function ~( . ,x )  is lower semicontinuous at 0 for all 
x 6 E\Ve where Ve has P-measure  zero. Fur ther  for all 8 E O, 

E~(O , x)dP(x) < +oc  and 

for all 8 6 0 ,  there is some p > 0 such tha t  

f 
(2.12) / inf ~(t ,  z ) d P ( x )  > - c ~ .  

JE teB(e,p) 
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The following Theorem 2.2 on strong consistency of/}n gives a generalisation of 
Theorem 3.9 in Dupa~ovs and Wets (1988): 

THEOREM 2.2. Suppose that 0 is a compact metric space, and Conditions 8 and 
(2.2) are satisfied. Moreover, assume that for any 0 6 (9\k~, p > 0, and some 0 6 ko, 

(2.13) 

(2.t4) 

t iminf  [ inf ~(t,x)dPn(x)>_ s inf 
n---~oo J E  t6B(O,o) t6B(O,p) 

limsupn__.oo/E ~(O,x)dPn(x) <_ s ~(O,x)dP(x) 

~(t,x)dP(x) a.s., 

a.s . ,  

q2 as above. Then conclusions (a) and (b) of Theorem 2.1 hold true. 

PROOF.  

(2.15) 

Let 0* �9 O\ko, e > O be arbitrary but fixed. By (2.13), 

l iminf  inf fn(t)  _> l iminf f inf ~(t,x)dPn(x) 
n--+c~ t6Uk n-~oo J E  teUk 

> / inf ~(t,x)dP(x) a.s. 
J E t6uk  

for k 6 N, Uk = B(O*, 1/k). By Condition 8, for any x E E\Vo., 

l iminf  inf ~(t, x) > ~(0", x). 
n-*oo t6Un 

Hence by (2.12) and Fatou's lemma, there is some m such that  

(2.16) f inf ~(t,x)dP(x) >_ f ~(0", x)dP(x) - 
J E t6Um JE 

6. 

(2.15) and (2.16) imply (2.11). By Condition 8,  f is lower semicontinuous, and �9 ~ 0 
since (9 is compact.  Therefore applying Lemma 2.3, it follows that  (2.4) is fulfilled. 
Furthermore,  (2.14) implies (2.5). Now the theorem is a consequence of Theorem 2.1. [] 

The following example shows that  the described technique works even in such cases 
where Pn is not the usual empirical measure. Moreover, an uniform convergence tech- 
nique is not available in this case. 

Example 1. We consider the model of right censoring. Let X 1 , X 2 , . . .  and Y1, 
Y2,.. .  be two independent sequences of i.i.d, random variables. )2/ and Yi are the 
lifetime and the censoring t ime of the i-th sample item. We denote the distribution 
functions of Xi and Yi by F and G, respectively. The variables Xi and Yi are not 
explicitly given. We only observe pairs (Z1,51) , . . . ,  (Zn,bn) where Zi = min{Xi,  Yi}, 
(~i = I ( Z i  <-~ Y i ) .  g(1) _< Z(2) <- "'" <- Z(n)  denote the order statistics of Z1,. . . ,  Zn, and 
5(i) is the concomitant  of Z(i). We introduce the Kaplan-Meier distr ibution function F~: 

i=1 n - i +  l 
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Pn is the corresponding measure on JR. We assume tha t  the function F belongs to a 
parametr ic  family {F(- I 0)}0ee of distr ibutions and F( .  I 00) = F .  Let us s tudy  the 
M-est imat ion problem 

/? On = argmin fn(O), fn(O) := ~(O,x)dFn(x) 
OCO co 

with a function ~ : 0 x N -~ [0, +co)  satisfying 

f_ ~ ~(t, x)dF(x)  < c~ inf 
oo tGB(O,p) 

for some ball B(O, p) and every 0 C O. Further  assume tha t  for every 0, the function 
p(x, .) is lower semicontinuous at  0 for all x except for a set Vo of P-measure  zero, P is 
the corresponding measure to F .  Suppose tha t  (a) TF < Ta or (b) 7F = r a  and F is 
continuous at  TF where ~-L = inf{x : L(x) = 1}. Hence by L e m m a  1 of Wang (1995), 

lim [co  inf ~(t,x)d~(z)= [co inf qo(t,x)dF(x) a.s. 
n--~co J - c o  t eB(O,p)  J _ c o  t eB(O,p)  

Thus (2.13) is satisfied. In the same way one shows the validity of (2.14). In view of 
Theorem 2.2, we obtain 

lim d(0,~, ~ )  = 0 a.s., where ~ := argmin ~(0, x)dF(x) .  
n---~ co 0 c O  J - c o  

This s ta tement  can be regarded as a generalized version of Theorem 1 in Wang (1995). 

Let {Xn} be a s ta t ionary  sequence of Rm-valued random variables, and Pn be the 
empirical measure of the sample X 1 , . . . ,  Xn such tha t  

1 n 

- E  fn(t) = n : ( t ,  Xi). 
i = 1  

Using the not ion of ergodicity for s ta t ionary  sequences and applying the s trong law of 
large numbers,  we obtain the following corollary. Here we take into account tha t  P is 
the s ta t ionary  measure and f ( t )  = f ~(t, x)dP(x)  (t e 0).  

COROLLARY 2.1. Assume that {Xn} is ergodic (in the sense of ergodicity of sta- 
tionary processes), 0 is a compact metric space, and Conditions S and (2.2) are satisfied. 

(a) Then 
/ N 

lim d(On,argminf(O)~ = 0  a .s .  
n ---* co \ E O 

(b) Moreover, if in addition, f(O) > f(Oo) holds for all 0 e O\{00}, then 

lim 0n = 00 a.s. 
n--*co 

In her paper  Kafikov~ (1978) t reated the special case where ~ is continuous and 
~(0,-) is concave. Considering the case of samples of i.i.d, r andom variables, par t  (b) 
of this corollary is essentially the same as Theorem 1 of Wang (1995) and similar to 
Theorem 1.12 by Pfanzagl  (1969). 
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3. M-estimators in regression models with random design 

Here we consider the regression: model 

(3.1) Y / =  9(Xi ] 0o) + Zi (i = 1, 2 , . . . )  

where {Zk}k=l,2 .... and {Xk}k=l,2 .... are two sequences of real respective lRm-valued 
random variables such that  Xi and Zi are independent  for each i. Let g : ]~m x O ~ R, 
O C ~P be a measurable  function. 00 C (9 is the t rue paramete r  of the model.  Let 

n 

f . ( o )  = ! _ g(x  I o)) 
n 

i=1 

with a nonnegative continuous function p, and let 0n be  an es t imator  for 00 satisfying 

(3.2) f n ( 0 , )  _< inf fn(O) + en and en > 0, en --~ 0 a.s. 
0EO 

This es t imator  0n is called an r M-estimator for 0o. One special case is 
given by the Cn-approximate maximum likelihood es t imator  which was examined in Hess 
(1996). In the sequel we use the nota t ion 

EpH(Y ,  X )  = f H(y,  x)dP(y,  X),  
JR m + l  

where X and Y are random variables, and P is the dis t r ibut ion of (Y, X) .  Let P x  denote  
the dis t r ibut ion of X.  An application of Theorem 2.2 leads to the following s ta tement .  

THEOREM 3.1. Suppose that there is a distribution measure P on R m+l such that 

(3.3) lim -1 ~ h(Yi ,Xi )  = f h ( y , x )dP(y , x )  a.s. 
n--*cx) n i=1 JRm+z  

for any function h : ~ • R TM ~ R with fRm+l Ih(y ,x)[dP(y,x)  < oc. Let Z and Y 
be random variables having joint distribution P,  and Z :-- Y - g ( X  I 0o). Moreover, 
assume that 0 is a compact metric space, ]Epp(Y - 9 ( X  I 0)) < +oc for all 0 E 0 ,  and 
for every 0 C 0 and Px-almost  all ~, g(~ I ") is continuous at O. Suppose that Oo C ko 
where ~ = argmin0c o E p p ( Y  - g (X  [ 0)). 

(a) Then 

(3.4) lim d(On, q2) = 0 a.s. 
n - - ' *  OO 

(b) I f  in addition, 

(3.5) 

and 

(3.6) 

are satisfied, then 

E p p ( Z + a )  > E p p ( Z )  for all a •O,  

 p{g(x i0o) # g (x  10)} > 0 

lim t~n = 0o 
n - - ~  OO 

f o ra l l  O E O ,  0 5 0 o  

a.8. 
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PROOF. Let 

~(0, (xl,  x2) T) = p(xl  - g(x2 [ 0)) and f(O) = E p p ( Y  - g ( X  [ 0)). 

It can easily be shown tha t  (3.5) and (3.6) imply f(O) > f(00) for all 0 e ~ \{00}  and 
thus ko = {0o} (cf. Lemma  5 of Berlinet  et el. (2000)). Now Theorem 3.1 is a consequence 
of Theorem 2.2. [] 

Condit ion (3.3) represents a type  of ergodicity assumpt ion  on { (Yk ,Xk ) } .  If 
{ ( Y k , X k ) }  is s ta t ionary  and ergodic then (3.3) is fulfilled. Condi t ion (3.5) can be  re- 
garded as a contrast  condit ion and (3.6) ensures the identifiability of the parameter  0o. 
Theorem 3.1 may be immedia te ly  applied to nonlinear autoregressive models  which are 
covered by model  (3.1) (cf. Liebscher (2003)). In the  i.i.d, case convergence rates a.s. of 
M-est imates  are examined in the  paper  by Arcones (1994). 

Let us consider a couple of examples which il lustrate the  applicabil i ty of the Theorem 
3.1 in different settings, especially in cases where common approaches fail. Example  2 
deals with the s i tuat ion where the sample  is not necessarily stat ionary,  g has a discon- 
t inuity point  and the set �9 of minimisers consists of more than  one point (model  is not  
identifiable). Example  3 describes a model  function which is not  identifiable. Example  4 
shows tha t  our concept  works even in cases where uniform convergence technique does 
not work. Here let p(x) = x 2, and 0,~ -- (0n l , . . - , 0~ l )  T. In the Examples  2 to 4 we 
assume tha t  E p Z  ---- 0, E p Z  2 < ~-oo and E p ( g ( X  ] 00) - g ( X  [ 0)) 2 < +o(~. 

Example 2. Here we deal with a threshold regression model,  more precisely, with  
model  (3.1) where 

g(x [ O) = [ a l x  W a2 for x ~ r ,  

[ a3x + a4 for x :> r. 

Here {Xk }, {Zk } are two sequences of r andom variables such tha t  Xk,  Zk are independent  
for each k, the variables Zk are independent  and {Xk} forms a Markov chain. 0 = 
(al, a2, a3, ca,r) T is the paramete r  vector. We assume tha t  {Xk} is a Markov ergodic 
sequence with s ta t ionary  dis t r ibut ion ~ x  satisfying ~ x  ( [ -  ~, a]) = 0, ~ x  ( ( -  a -  5, - a))  > 
0, r / ( ( g , a +  5)) > 0 for all 5 > 0 where a > 0. Let 00 = (a l ,a2 ,a3,54,0)  T with 51 ~ 53 
or a2 ~ 54 and (~ -- {0 E R 5 :[a~[ < ~i, [r[ < 4} with given a l , . . . , a d , r  > a. This model  
is not identifiable and 

E p p ( Y  - g ( X  I 0)) = E p ( g ( X  I 00) - g ( X  I 0)) ~ + EP Z2 

= E p Z  2 for all 0 E ko = {(51,52, 53, 54, r )T:  r C [--~, tr 

Epp(Y - g ( x  10)) > E p z  2 for all 0 r r  

Then  by Theorem 3.1, ident i ty  (3.4) and 

nlimcr Onj = 5j (j  = 1 , . . . ,  4) a.s. hold true. 

Example 3. Let  O = [al, a2] x [bl, b2] x [cl, c2] with bl < 0 < b2. In this example,  
we consider the regression model  (3.1) with regression function 

g(x]O)  = a + b e  cz, 
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where 0 = (a, b, C) T C (~. Let  Oo = (ao,bo,co) T ~- e be the  t rue  pa rame te r  vector.  In 
the case bo = 0 we have �9 = {0 : b = 0, a = ao, c C [cl,c2]}. Th en  by T h e o r e m  3.1, we 
obta in  (3.4) and 

lim 0nl = a0, l i m  0n2 = 0. 
n - - - + O O  n ---> (~3  

Example 4. Here let O = [0, 1] and let X have a uniform dis t r ibut ion on [ -1 ,  11. 
For 0 > 0, we define the regression funct ion of model  (3.1) by  

1 Ixl for I x l < O ,  ~ - -g~- 

g(x 10) = 0 otherwise. 

Let  0o = 0. Now a na tura l  definit ion of g(x I 0) is given by 0 since it is the pointwise 
limit of g(x l 0) for 0 ---* 0 except  for x = 0. For x r O, g(x I') is continuous.  Moreover,  

l i m E p ( Y  - 9 ( X  I 0)) 2 = l imlE(g(X I O) - g ( X  ] 0)) 2 + ]r~pZ2 
0~o o~o 

/; (0 _ _ 1 lim 02 dx -t- EpZ  2 
2 o$o o 

= lim ~^ + E p Z  2 = +oc 
0s 3(] 

and 
IEp(Y - g ( X  I 0)) 2 = IEP Z2 = m i n E g ( Y  - g ( X  I 0)) 2. 

0 
The  funct ion fn is cont inuous almost  surely for each n and cannot  uniformly converge 
to the discontinuous f .  Thus  the technique of uniform convergence does not  apply  in 
this case. On the o ther  hand,  an appl icat ion of T h e o r e m  3.1 implies 

lim 0n = 0o a.s.  
n - - - ~  O O  

In the following we derive two lemmas s ta t ing sufficient condit ions for (3.5) in the 
case of a convex funct ion p. An o ther  way to  find sufficient condit ions for (3.5) is de- 
scribed in Liese and Vajda  ((1994), L e m m a  2b). Every  convex funct ion p has derivatives 
from the right O+p and from the  left O-p which are nondecreasing and cont inuous from 
the right and from the left, respectively. Moreover we have 

(3.7) 

and 

(3.8) 

f z + a  / z + a  
p(z + a) - p(z) = O+ p(t)dt = O-p(t)dt  

J Z  J Z  

p(z + a) > p(z) + aO+ p(z) for z , a  e •. 

for all z, a C N  

Here F is the dis t r ibut ion funct ion of Z.  

LEMMA 3.1. Assume that EO+ p(Z) = 0, and there are real numbers bl < b3 < 
ba < b2 such that 

O+ p(z2) > O+ p(zl) for  all z2 > zi ,  z l , z2  E [bl,b2] and 

lit{b3 < Z < b4} > 0. 



3O2 

Then (3.5) is satisfied. 

PROOF. By (3.7), we obtain 

p(z + a) > p(z) + aO+ p(z) 

Further by (3.8), 

PETR LACHOUT ET AL. 

for z �9 a r  

Example 6. Let p(z) = Iz[ p, p > 1. Here by Lemma 3.1, 

(3.9) EIZI p-1 sgn(Z) = 0 

implies (3.5). For example, identity (3.9) is satisfied for symmetric F.  

3.1. 

/ / (p(z + a) - p(z))dF(z)  > a O+p(z)dF(z) = 0 
o o  

which is (3.5). [] 

In Lemma 3.1 one can work with O-p instead of O+p. If p is twice differentiable 
on ~, Ep'(Z) = 0 and p~(z) > 0 for all z E l~, then the assumptions of Lemma 3.1 are 
satisfied which in turn implies the validity of (3.5). 

LEMMA 3.2. The conditions 

O < F~O+ p(Z + a) < + o o  for a > O and 

-cr /or a < 0 ,  

are sufficient for (3.5). 

PROOF. The function 

/? a M(a) = (p (z  + a)  - p ( z ) ) d F ( z )  
o o  

is convex and M(O) = 0. By Lebesgue's theorem on dominated convergence, 

// O+M(a) = l ih~h-l(p(z  + a + h) - p(z + a))dF(z  ) 

// = O+p(z + a)dF(z)  (a �9 R). 

Therefore O+M(a) > 0 for a > 0 and O+M(a) < 0 for a < 0 which completes the 
proof. [] 

At the end of this section we study several examples of functions p. 

Example 5. Let p(z) = z 2. Condition (3.5) follows from EZ = 0 in view of Lemma 



S T R O N G  C O N V E R G E N C E  O F  E S T I M A T O R S  303 

Example 7. Let p(z) = N ,  and F be the dis t r ibut ion function of Z.  Assume tha t  
the median of Z is unique and med(Z)  = 0, i.e. F(t) < 0.5 for t < 0, F(t) > 0.5 for 
t > 0. In this case we apply Lemma 3.2. Since 

EO+ p(Z + a) : E( I (Z  + a > O) - I ( Z  + a < 0)) 

= 1 - 2 P { Z + a < O } = I - 2 F ( - a - O ) ,  

the assumptions of Lemma 3.2 are fulfilled and (3.5) holds true. 
Let us now consider the case where the densi ty A of Z is given by 

1 for z E [ - 1 , - � 8 9  U [1,1), 

A(z) = 0 otherwise. 

In this case the median is not unique and we have 

3 for a e [-�89189 // 4 

p(z  + a ) d F ( z )  = 1 - lal + a for lal e (�89 1), 

[a[ for [al > 1. 

Therefore (3.5) is not satisfied. In the regression model  (3.1) wi th  independent  random 
variables X and Z, and the above dis t r ibut ion of Z,  the minimising properties of f 
depend heavily on the shape of g. Let  g(x [ (a,b) T) = ax + b, and a0, b0 be the true 
parameters  of the model (3.1). Assume tha t  X has a density on IR which is everywhere 
positive. Then we have 9 -- {(a0, b) : b E [b0 1 1 - 5, b0 + 5]}" According to Theorem 3.1, 
we cannot  expect tha t  the est imator for b is consistent,  but  (3.4) holds true. 

4. M-estimation and model selection 

In this section we consider the model selection problem in connection with  parameter  
est imation for the model (3.1). Among the papers dealing with  model selection criteria 
in connection with M-estimation, we refer to papers by Burman  and Nolan (1995) and 
Rao and Wu (1989) were strong consistency was proved. The effects of model selection 
on consistency and the asymptot ic  dis t r ibut ion of the es t imator  was s tudied in P6tscher 
(1991). Here for simplicity, we assume tha t  {Xk} and {Zk} are two independent  se- 
quences of i.i.d, random variables. We incorporate various model functions g l , .  �9  g~ in 
one model with function g such tha t  gj : If{ m x (gj ~ l~, and Oj C ]l{m is compact.  The 
dimension of Oj can differ from model to model. The first component  of the parameter  
vector 0 gives the number  of the model function such tha t  

g(x [ O) = gj (x I O) for x C ]I{ m if 0 = (j, t~) T, 0 C (~j. 

Moreover, O = Uj=I {J} • Oj. 00 = (j0, 0o) T is the true parameter ,  and j0 is the number  
of the t rue model. The distance d(., .) is in t roduced by 

d(01,02) -- ~ 1101 - 0211 if 011 = 021, 

t a otherwise, 

where a > 0 is a given quantity. Let the es t imator  0n ^ ~T T = (0nl ,0n)  satisfies (3.2). Thus 
the model selection is realised via minimising fn.  Now one can apply Theorem 3.1(b) to 
obtain 

lim 0n = 00 a.s. 
n---*oo 
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COROLLARY 4.1. 
asymptotically correct: 

Under the assumptions of Theorem 3.1(b), the model is selected 

lim ~nl = jo a.s. 
n - - - - ~  ( X )  

In applications the situation very often occur where the regression function of the 
true model belongs to several partial models. In this case Theorem 3.1(a) can be applied 
instead of part  (b) of this theorem. In this way we obtain Corollary 4.2. 

COROLLARY 4.2. Let the assumptions of Theorem 3.1(a) and (3.5) be satisfied. 
Assume that g l , . . . ,  g~ are continuous and X has a density on ~m which is everywhere 
positive. Moreover 

g(x180) = g(x ] 81) for all x �9 R m, 81 � 9  

and for all 81 e O \eo ,  there is an x �9 I~ m such that g(x I 80) # g(x 101). Then 

t~ 

a . s .  

We demonstrate the application of these corollaries in the following example. 

Example 8. Let 

g(x [ 8) = ~ a + be cx for 81 = 1, 8 = (1, a, b, c) T, 
a + d x  for 0 1 = 2 ,  8 = ( 2 ,  a,d) T [ 

be the regression function of (3.1) including two models. Assume that  X has a density 
which is everywhere positive. Here O1 C ~3, and O2 C R 2. In the case 80 E O1, let 
80 = (jo, ao, bo, c0) T, j0 = 1 and 0o =- (jo, ao, do) T, jo = 2 otherwise. 

Case 1. Either jo --1,  b o ~ 0 ,  C o ~ 0 o r j o = 2 ,  d o ~ 0 .  
Theorem 3.1(b) yields that 

lim /}n = 8o a.s. and lim t}nl = jo a.s. 
n ' - - ~ O O  n - - ~ O O  

Case 2. E i t h e r j o = l ,  b 0 = 0 o r 8 1 0 = 2 ,  d o = 0 .  
Both situations lead to the same model function. From Corollary 4.2, it follows that  

lim &n = ao a.s. 
n ---~ ( :X) 

lim Dn = 0 a.s., Dn = ~ ~/(hn -- ao) 2 + b2n for ~nl ---- 1, 

n ~  [ V/((~n _ ao)2 + ~2 f o r  ~ n l  = 2. 
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5. Estimators in regression models with fixed design 

The fixed-design regression mode] reads as follows: 

Yk = g(xk I Oo) + Zk (k = 1, 2 , . . . )  

where {Zk}k=l,2 .... is a sequence of independent  random variables, x l , x 2 , . . ,  is the 
sequence of determinist ic design points. Let 9 : Rm • O -~ R, O C l~p be a measurable 
function. Suppose tha t  t~n is an est imator for 0o with  proper ty  

fn(On) < inf fn(O) + Cn 
- -  OEO 

(5.1) 

where en _> 0, en --+ 0 a.s., 

(5.2) 
n 

fn(0) = a ;  1 ~ p ( ~  -- g(x, I 0)) 
i = 1  

and {an} is a suitable sequence of positive real numbers tending to c~. Let p : R ~ R 
be a nonnegative function and Ai(t)  := g(xi [ 0o) - g(xi I t). First  we provide a ra ther  
general theorem about  convergence of 0n. 

THEOREM 5.1. Assume that 0 is compact and the function f defined by 

f(O) := l iminfEfn(O) 
n --'* O0 

is not equal to ~ on O. Suppose that inftsB(O,R) p(Zi + Ai( t ) )  is a random variable for 
each 0 E @, i C { 1 , . . . , n } ,  and for every 0 E 0 and e > 0, there is some R > 0 such 
that 

(5.3) l i m i n f a n  1 ~ ( E  inf 
n- -*c~  i = i  t E B ( O , R )  

(5.4) l i m a  n 1 teB(O,R) 
i = 1  

(5.5) n----~oolim (fn(O) bn(O))an 

where 

n 

b.(0) := ~ sp(z~ + ~,(0)), 
/ = 1  

Let (P := argmin0e o f(O) r O. Then 

p(Z/ + A/(t)) - Ep(e,  + A/(O))) 

p ( Z / +  A,(t)) - ~ ( 0 ) )  = 0 a.s., 

= 0  a.s. 

n 

~n(0) := E E  inf p(z ,  + ~ , ( t ) )  
i = l  t E B ( O , R )  

lim d(On, q2) = 0 a.s. 
re ---+ OQ 
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PROOF. Assumption (5.5) implies fn epi--u--a.s. 
{Oo} 

(5.3) and (5.4), 

, f .  Let 0 E 0 and e > O. By 

lira inf inf f n ( t ) - f ( O )  
n---*oo tGB(O,R) 

n - ~ c ~  - s  inf l iminf an I k teB(O,R) 
i=1  

> -~ a.s. 

\ 
p(Zi+ A i ( t ) ) - E  inf p(Zi + A i ( t ) ) |  - 

tcB(O,R) / 

By virtue of Lemma 2.3, we obtain fn 

to Theorem 5.1. [] 

1 - - a , 8 .  

O 
f .  An application of Theorem 2.2 leads 

In several applications sufficient conditions for (5.3) and (5.4) can be obtained by 
applying strong laws of large numbers (cf. Petrov (1995), Chapter 6). 

Next we study strong consistency of approximate M-estimators in the case of convex 
functions p. We assume that the convex function p fulfils 

(5.6) p(z + a) >_ p(z) + aO+ p(z) + rl(a)r 

with nonnegative measurable functions rl, r Considering p(z) = z 2, inequality (5.6) is 
valid with ~?(a) -- a 2, r  -- 1. For other special cases see below. Condition (5.6) is 
fulfilled if 

i z+a(O+ p(t) - O+ p(z) )dt > rl(a)r 

If the second derivative of p is continuous on IR and infz p"(z) _ d > 0, then Taylor 
expansion leads to 

a 2 
p(z + a) >_ p(z) + ap'(z) + -~d 

which shows the validity of (5.6) with ~(a) = a2/2, r = d, s(z) = p'(z). The result 
for convex functions p is given by the following theorem: 

THEOREM 5.2. Suppose that 0 is compact, the convex function p satisfies (5.6) 
and {Zi} is a sequence of i.i.d, random variables with Er > 0, Es(Z1) = 0, 
Es2(Z1) < +co, 1Igr < +oo. Moreover, assume that for any 0 r 0o, 0 E O, 
for any e > O, there is some R > 0 such that 

oo  2 1 

(5.7) sup zxk(t) < 
k = l  tGB(O,R) T - - ~  

(X) 

(5.8) E sup r/(Ak(t)) 2 1 
k=l t~B(O,R) T- -~  < +c~, 

n 

(5.9) limsupa;ln-~c~ ~ teB(O,R)sup JAk(t) - Ak(0)l < e 

and 

(5.10) liminf anlTn(O) > 0 
n--*oo 
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where 

Then 

n 

Tn(O) := 
k = l  

lira 0n = 0o a.s. 
n - - - * O O  

Remark 5. Wu (1981) proved a similar s ta tement  for least squares estimators 
(Theorem 3). In contrast to that  theorem, no Lipschitz conditions are required in Theo- 
rem 5.2. In the papers by Liese and Vajda (1994, 1995) and by Berlinet et al. (2000), the 
authors derived necessary and sufficient conditions for weak consistency of M-estimators. 

PROOF. Here we prove that  for a l l 0  C O, 0 # 0o and a l l f >  0, there is some 
R > 0 such that  

l iminf  inf fn(t) >_ f(O) - g 
n--~oo tEB(O,R) 

(compare with condition (3.1) of Wu (1981)) where 

n 

]n(O) = a~ 1 E ( p ( Y k  - g(xk I 0)) - P(Yk - 9(xk ] 0o))) 
k = l  

n 

= a-~ a E ( p ( Z k  + Ak(O)) -- p(Zk)), 
k = l  

{ Er  lim infn-+~ a~lTn(O) for 
f(O) := 0 for 

Inequality (5.1) is also fulfilled if fn is replaced by fn. We have 

(5.11) inf fn(t) 
tEB(O,R) 

where 

Further 

E 

0r 
0 = 0o. 

- \ k = t  (~--~' inf (Ak( t ) s (Zk) )+~-~ iBnfo,R)rl(Ak(t))r > an 1 . . - - . .  

k=l 
>_ a~lTn(O)(An + Bn + Er + Dn 

An :- Tn(O----)l ~-~(te i-nf-lzt(o,R) (Ak ( t ) s (Zk ) )  -- E iBnf, R ) (Ak ( t )S (Zk ) ) )  , 
k=l tc 

n 

._ 1 ~-- inf ~(/kk(t))(~)(Zk)--Er 
Bn . -  Tn(O) ~=l teB(O,R) 

n 
1 

Dn :-- - -  
an k = l  tC 

inf (Ak(t)s(Zk)) 
tEB(O,R) 
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= E i~ ,R)(~( t ) s (Zk))I (8(Z~)> O) + ~ i~,~)(~(t)8(Zk))I(~(Z~) < O) 

= Es(Z1)I(s(Z1) > 0) inf Ak(t)  +Es(Z1)I (s (Z1)  < 0) sup Ak(t) 
tEB(O,R) tEB(O,R) 

_>0) [ inf Ak( t ) - -  sup A k ( t ) ~ .  

\ 

Es( Z1)I ( s( Z1) 
ktEB(O, R) teB(O,R) ] 

Therefore (5.9) implies 

Since by (5.7) and (5.8), 

Dn >_ -eEs(Z1) I ( s (Z1)  _> 0) =: -g .  

O 0  

E sup A2(t)Es2(Z1) 1 
k----1 tEB(O,R) ~ < +C~, and 

oo 1 
sup ~ ( ~ k ( t ) ) ~ E r  < + ~  

k = l  tEB(O,R) 

hold, an application of Theorem 6.7 of Petrov (1995) leads to 

An = o(1) and Bn -- o(1) a.s. 

Consequently, (5.10) and (5.11) yield 

l iminf  inf in(t) ~_ Er l iminfan lTn(~)  - g 
n--*oo tEB(O,R) n--*oo 

a.S. [ ]  

In the remainder of the section we s tudy one example of functions p and the power 
curve model. 

Power functions p: Let p(x) = ]xtP. 
(i) If p E (1,2), then for 5 > 0, we obtain 

(5.12) Ix + al p ~ Ixl p + patx] p-1 sgn(x) + min{a 2, ]alP}O(x) (a, x E I~) 

where r  = 0 Vx E [-5, 5], r  = C11xl p-2 Vx: Ixl > 5 > 0 and C1 > 0 is a constant 
not depending on a or x. 

(ii) Case p > 2: It can be proven that  

(5.13) Ix + al p ~ Ixl p + palxI p-1 sgn(x) + a2r (a, x E IR) 

with r  = p(p - 1)2-p-31x[ p-2.  
The proofs for (5.12) and (5.13) can be found in the Appendix. Therefore the power 

function p satisfies the inequality (5.6). 

Power curve model (cf. Wu (1981), Example 3): We consider the model 

Yk = (k + e0) ~ + zk  (k = 1, 2 , . . . )  
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with d _> 1, i.e. Xk = k, g(x I o) = (x + o) a and Ak(t)  = (k + 0o) d - (k + t) d. Let 
O = [01,02], 01 _> 0 and 00 �9 (~. The  pa ramete r  00 is es t imated by 0 n  according to 
(5.1) and (5.2) with p(x) = [x[ p. Now we introduce an = n pd-p+I for p �9 (1,2), and 
an = n 2d-1 for p > 2. In the following C1 , . . .  ,Cs denote  positive constants which do 
not depend on k and n, but  on 0 (we drop the  dependence on 0 in the notation).  We 
have 

(5.14) 
n 

l i m s u p a n l E  sup I/Xk(t)--exk(O)l 
n--*oo k = l  tcB(O,R) 

- ~ k d - 1  _< C'1 l i m s u p a n  I sup It - 0 I. 
n---*oo k = l  tcB(O,R) 

For d > 1, the right hand side of (5.14) is equal to zero and we choose R _< 100 - 0l/2. 
In the case d = 1, we can choose R such tha t  (5.9) is fulfilled for some e > 0. 

Case (i) p _> 2. By (5.13), r/(a) = a 2. Obviously, Tn(O) >_ C'3n 2d-1 such tha t  
(5.10) is satisfied (see Lemma  A.3 in the Appendix) .  Observe tha t  

sup Ak(t )2T[2(O) <_ C4k -2d, 
tEB(O,R) 

sup n(ZXk(t))2TZ2(O) < Ohk -2 
tEB(O,R) 

Thus  (5.7) and (5.8) are satisfied and the M-est imator  0n is strongly consistent. 
Case (ii) p e (1,2). Here we have r/(a) = min{a 2, [el v} by (5.12) and Tn(O) >_ 

C6n pd-p+I (see Lemma  A.3). Moreover, 

sup Ak(t)2Tk2(O) < CTk q, sup rl(Ak(t))2Tk2(O) < Csk -2 
tEB(O,R) teB(O,R) 

(q = - 2 p d  + 2d + 2 p -  4) which implies (5.7) and (5.8). Hence the assumptions of 
Theorem 5.2 are fulfilled and the M-est imator  0n is strongly consistent. Therefore these 
considerations generalise Wu's Example  3 where p(x) = x 2. 
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Appendix 

LEMMA A.1. For p C (1,2) and 5 > 0, we have 

[x + a]p > [xl p + pa]x[ p-1 sgn(x) § min{a 2, la[P}r 

where r  = 0 Vx �9 [-5,  5], r  = C x  p-2 Vx :  Ix[ > 6, and C, 5 are positive constants 
not depending on a or x.  

PROOF. Since the function a ~-* Ix § a[p is convex for each x, we obtain 

Ix + alp >_ Ix[ p + palx[ p-1 sgn(x) Vx �9 [-5,  5]. 
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Therefore, it remains to prove the lemma in the case Ix[ > 5. Wi thou t  loss of generality, 
let x > 0. We have 

I x + a [  p - x p - apx  p-1 l + a P - 1 
z 

a2xp -2  ( a / x )  2 

O(a) = a-2(]1 + a[p - 1 - ap). 

Cas e 

Cas e 

a 
P 

x = q~(a/x) ,  

[a[ < x: �9 is bounded away from zero on compact  intervals such tha t  

Ix + a]p > x p + p a x  p-1 + C l a 2 x  p-2 .  

a > _ x :  

[ x + a [ P - x P - p a x p - 1  = a P ( ( l + X ) p - ( x ) p - p ( X )  p - l )  

> C2a p >_ C252-PaPx p-2  

with an appropriate constant  C2 > 0. 
Case a < - x :  Similarly to the previous case, 

]xq-alP--x p -pax  p-1 =-[al p ((1-t- x)P (x )P_t_p  ( x)P -1) 
> C3[a F > C352-p la lPxp-2  

with a suitable constant  C3 > 0. Thus the proof is complete. [] 

LEMMA A.2. For p > 2, we have 

Ix + al p > Ixl p + palxl p-1 sgn(x) + a2r  

with  ~ ( x )  = p(p  - 1)2-p-3]xl p-2. 

PROOF. Wi thou t  loss of generality, let x > 0 and a # 0. We obta in  

I ~ Ix+a[ p = [xtP+palx[P-lsgn(x) + p ( p -  1) ( a - t ) l x + t F - M t .  

Case a > O: Obviously, 

1 
Ix + a]p >_ ]xl p + palxl  p - t  sgn(x) + -~p(p - 1)a2lx] p-2. 

a x for t e [2,0], we have Case - 2 x < a < O :  S i n c e x + t > _ _ x + x >  g 

]x-+-a'P >-- 'x[P + p a ' x ] P - ' s g n ( x )  + p ( p - 1 )  f a i 4 ( t - a ) d t  2 p -2  

= ]x[ p +pa[x[  p-1 sgn(x) + 7p(p - 1 )2 -p -3a2[x l  p-2 .  

Case a <_ - 2 x :  Then  

Ix + al p >_ Ix[ p + palxl  p - '  sgn(x) + p(p  - 1) f a a / 4  (t - a ) d t  x o 
p-2 

d a  

= Ix[ p + pa[xl p-1 sgn(x) + p(p  - 1 ) 2 - p - a a 2 l x l P - 2  
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_ - ~  for t C [a, ~ ] .  [3 since x + t < x + ~ _< 

LEMMA A.3. Let Oo E e and the settings of the power curve model are valid. Then 
for  each 0 ~ 00, there is an R > 0 and a C > 0 such that 

Tn(O) > C n  v for  all n >  1, 

where v = 2 d - 1  if  p > 2, u = p d -  p + l if  p E (1,2). R and C may  depend on O. 

PROOF. Here Ak(t)  = (k + 0o) d - (k + t) d. Let R e (0, min{[00 - 0]/2, 1}). 
Case (i) p _> 2 and ~/(a) = a2: Let tl = rain{00, 0 - R} and t2 = max{00, 0 + R}. 

Then  

T~(O) = ~ inf (Ak(t))  2 
teB(O,R) 

n 

E inf . (d(k + t)d-1) 2 
k=l tE[tl ,t2] 

d2 n-1 
> - (00 - 0)  2 k 2 e - 2  

k=l 

inf (0o - t) 2 
tcB(O,R) 

which implies the lemma in Case (i). 
Case (ii) p e (1,2) and 7/(a) -- min{a 2,[alp}: Let R < [00 - 01/2. 

ko = ko(O, 00) such tha t  ]Ak(t)l _> 1 for t E B(0, R). Analogously to above, 
There  is a 

k=l 

-> E inf [d(k + t )d - l [  p 
k=ko tC[tl,t2] 

0 0 - - 0  p n--1 
>-- dP ~ E kPd-P 

k=k0-1 

inf [0o - t[ p 
tcB(O,R) 

which implies the lemma in Case (ii). [] 
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