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A b s t r a c t .  We consider  the  p rob lem of e s t ima t ing  the  var iance of a sample  quan-  
t i le  ca lcula ted  from a r a n d o m  sample  of  size n. The  r - th -o rde r  kerne l - smoothed  
b o o t s t r a p  es t ima tor  is known to yield an impressively small  re lat ive error  of  order  
0(n-~/(2~+1)). It  nevertheless requires s t rong smoothness  condi t ions  on the  under ly-  
ing densi ty  function, and has a per formance  very sensi t ive to the  precise choice of the  
bandwid th .  The  unsmoothed  b o o t s t r a p  has a poorer  re la t ive  error  of  order  O(n-1/4), 
but  works for less smooth  dens i ty  functions.  We invest igate  a modif ied form of the  
boo t s t r ap ,  known as the  m ou t  of n boo t s t r ap ,  and  show tha t  it yields a relat ive error  
of order  smaller  t h a n  O(n -1/4) under  the  same smoothness  condi t ions  required by  
the convent ional  unsmoothed  b o o t s t r a p  on the dens i ty  function,  provided  t ha t  the  
b o o t s t r a p  sample  size m is of  an app rop r i a t e  order.  The  e s t ima to r  pe rmi t s  exact ,  
s imulation-free,  compu ta t ion  and has accuracy  fairly insensi t ive to the  precise choice 
of m. A s imula t ion  s tudy  is r epo r t ed  to  provide  empir ica l  compar ison of  the  various 
methods .  
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i .  Introduction 

Suppose that  X1,. �9 �9 Xn constitute a random sample of size n taken from a distri- 
bution F. Let X(j) denote the j - th  smallest datum in the sample. For a fixed p E (0, 1), 
assume that  F has a continuous and positive density f on F -1 (O) for an open neighbour- 
hood O containing p. Denote by ~p = F-l(p)  the unique p-th quantile of F .  The p-th 
sample quantile X(r) is a natural and consistent estimator for ~p, where r = [np] + 1 and 

2 Var(X(r)) [-] denotes the integer part function. Standard theory establishes that  a n - 
admits an asymptotic expansion 

(1.1) 2 = n-lp(1 p)f(~p)-2 +o(n-1).  6r n 

A general discussion can be found in Stuart and Ord ((1994), w Although (1.1) 
provides an explicit leading term useful for approximating a2~, its direct computation 
requires the value of f(~p), which is usually unknown and is difficult to estimate. The 
conventional, n out of n, unsmoothed bootstrap draws a large number of bootstrap 

2 by the sample variance of samples, each of size n, from X 1 , . . . ,  Xn, and estimates a n 
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the bootstrap sample quantiles calculated from the bootstrap samples. Hall and Martin 
(1988) show that  the theoretical n out of n bootstrap estimator ^ 2 which is based on a n ,  
infinite simulation of bootstrap samples, has an explicit expression 

n 

(1.2) an̂ 2 = Z ( X ( j )  _ X(r))2Wn,j, 
j = l  

^ 2 has a large relative where Wn,j = r(n) I'i/n xr- l (1  - x)n-rdx.  They prove that  a n J( j -1) /n  
error of order O(n-1/4), that  is an/a  n ^ 2  2 _~ 1 + 0(n-1/4).  Maritz and Jarret t  (1978) 
note that  ^ 2 may be more accurate than the leading term in the asymptotic formula a n 
(1.1) for p = 1/2 in small-sample cases, even if the true f(~p) is employed to calculate 
the latter. The smoothed bootstrap modifies the n out of n bootstrap procedure by 
drawing (smoothed) bootstrap samples from a kernel density estimate of f rather than 
from the empirical distribution of X 1 , . . . ,  Xn. Hall et al. (1989) show that the smoothed 
bootstrap estimator has a smaller relative error, of order O(n -r/(2r+l)) based on a kernel 
of order r, under much stronger smoothness conditions on f ,  provided that  the smoothing 
bandwidth is chosen of order n -1/(2r+1). 

The m out of n bootstrap, as pioneered by Bickel and Freedman (1981), provides 
a method for rectifying bootstrap inconsistency in many nonregular problems: see, for 
example, Swanepoel (1986) and Athreya (1987). It is, however, generally less efficient 
than the n out of n bootstrap when the latter is consistent: see, for example, Shao 
(1994) and Cheung et al. (2005). Exceptional cases have been found though. Wang and 
Taguri (1998) and Lee (1999) improve the n out of n bootstrap by suitably adjusting the 
resample size m in estimation and confidence interval problems respectively. Arcones 
(2003) shows that  the n out of n bootstrap provides a consistent estimator for the 
distribution function of sample quantiles with error of order 0(n-1/4),  whilst the m out 
of n bootstrap reduces the error to order O(n -1/3) by use of m (x n 2/3. Janssen et al. 
(2001) obtain independently similar results for U-quantiles. We shall show in the present 
context that  the m out of n bootstrap is also effective in reducing the relative error of 
^ 2 under the minimal smoothness conditions same as those required by the n out of n O" n 

bootstrap on f .  
The rest of the paper is organized as follows. Section 2 reviews the smoothed boot- 

strap method for variance estimation for sample quantiles. Section 3 studies the conver- 
gence rate, as well as the asymptotic distribution, of the m out of n bootstrap variance 
estimator. Section 4 describes a computational algorithm for empirically determining 
the optimal m. Section 5 presents a simulation study to compare the performances of 
the various variance estimators. Section 6 concludes our findings. Technical details are 
given in the Appendix. 

2. Smoothed bootstrap 

2 Instead of re- We review the smoothed bootstrap procedure for estimating a n . 
sampling from the empirical distribution of X 1 , . . . , X n ,  the smoothed bootstrap sim- 
ulates smoothed bootstrap samples from a kernel density estimate ]b of f ,  given by 
h ( x )  =(nb)  -1 ~-]in=_l K( (x  - X~)/b), where b > 0 denotes the bandwidth and K is an 
r-th-order kernel function for r _> 2. The smoothed bootstrap estimator an, b ^2 of an2 is 
then obtained by calculating the sample variance of the p-th-order smoothed bootstrap 
sample quantiles. 
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Let f(J) be the j - th -der iva t ive  of f .  Assume tha t  f ( r )  exists and is uniformly 
continuous,  f(J) is bounded  for 0 ~_ j < r, f is bounded  away from 0 in a ne ighbourhood  
of ~p and EIXI v < co for some ~ > 0. Then  Hall et el. (1989) show tha t  a~, b^2 has the 

opt imal  relative error  of order  0(n-~/(2~+1)), achieved by set t ing b c~ n -1/(2~+1). In 
principle, the relative error  can  be made  arbi t rar i ly  close to  O(n -1/2) by choosing a 
sufficiently high kernel order  r.  

It should be noted  tha t  when r > 2, ]b(X) necessarily takes on negative values for 
some x and poses pract ical  difficulties if smoothed  boo t s t r ap  samples need be s imulated 
from lb. Negat ivi ty  correct ion techniques of some sort  must  be incorpora ted  into the 
smoothed  boo t s t r ap  procedure  to make it computa t iona l ly  feasible: see, for example,  
Lee and Young (1994). In the case where r = 2 so tha t  ]b is a proper  densi ty  function,  
the  opt imal  relat ive error  of 52b is of order  0(n-2 /5) ,  which a l ready improves upon  the 

unsmoothed  n out  of n boo ts t rap ,  which has a relat ive error  of order  O(n-1/4).  

3. m out of  n bootstrap 

The  m out  of n boo t s t r ap  modifies the n out  of n boo t s t r ap  by drawing boo t s t r ap  
samples of size m, instead of n, from the empirical  d is t r ibut ion of X 1 , . . . ,  Xn,  where m 
satisfies m = o(n) and m ~ co as n ---* co. The  corresponding variance es t imator  a m ^ 2 is 
then  defined as m / n  t imes the sample variance of the  p- th  boo ts t rap  sample quantiles. 

Recall tha t  X(j) is the j - t h  order  stat ist ic of X 1 , . . . ,  X,~ and X(r) is the p- th  sample 
quantile.  The  m out of n boo t s t r ap  variance es t imator  a m ^ 2 admits  an explicit,  d i rect ly  
computable ,  formula: 

n 

(3.1) a m 2̂ = (re~n) E ( X ( j )  - X(r))2wmj,  
j = l  

where Wm,j = k(~)  f~i/21)/n xk-1 (1--x)m-kdx and k = [mp]+l .  Our main theorem below 

establishes asympto t ic  normal i ty  of 5 2 together  with the corresponding convergence rate.  
Its proof  is out l ined in the Appendix.  

THEOREM 3.1. Assume m oc n ~ for some ~ C (0, 1), ]EIXI v < co for some ~7 > O, 
f = F' exists and satisfies a Lipschitz condition of order v = �89 + ~, with E e (0, �89 in a 
neighbourhood of ~p, and f(~p) > O. Then 

(3.2) n3/2m-1/4(52 m - -  (T 2) = Sn -4- Op(ml /4n  -1/2 -4- m-1 /2-e /2n l /2 ) ,  

where Sn converges in distribution to N ( O , 2 ~ - l / 2 [ p ( 1 -  p)]a/2f(~p)-4). 

The  expansion (3.2) enables us to deduce the opt imal  choice of m by which ^ 2 (:7 m 

achieves the fastest  convergence rate,  as is asserted in the following corollary. 

COROLLARY 3.1. Under the conditions of Theorem 3.1, a m ^ 2 has an optimal relative 
error of order O(n-(l+2~)/(4+4E)), achieved by setting m c< n 1/(1+~). 

Hall and Mar t in  (1988) show tha t  n5/4(52 n - a2n) has the same asympto t ic  normal  
d is t r ibut ion as does n3/2m-1/4(6~m - a2n) under  exact ly  the same condit ions of Theo-  

2 at a faster ra te  t han  does ~ 2 which has a rem 3.1. It  is clear t ha t  a m 2̂ converges to a n an, 
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relative error of order O(n -1/4). Although the smoothed boots t rap  est imator  an,b^2 has 

an even smaller relative error, of order 0(n-~/(2~+1)), t han  ^ 2 for any r > 2, it requires O" m 

tha t  f be at least twice continuously differentiable in a neighbourhood of ~p, a condit ion 
much stronger than  those of Theorem 3.1. Moreover, tha t  no such computable  expres- 
sion as (3.1) exists for ^2 ^2 a~,b means tha t  an, b has to be approximated by Monte Carlo 
simulation, which is computat ional ly  more expensive and is not  immediate ly  feasible if 
r > 2 due to the problem of negativi ty of lb. 

Arcones (2003) establishes versions of Theorem 3.1 and Corollary 3.1 for m out 
of n boots t rap est imation of the distr ibution of X(~). He shows, under  the stronger 
assumption tha t  f is differentiable at  ~p, tha t  the fastest  convergence rate, of order 
n -1/3, is a t ta ined by setting m c< rt 2/3. Our results apply to the variance of X(~) and 
to densities f under less stringent smoothness conditions. Densities violating Arcones' 
but  satisfying our smoothness conditions include those which are Lipschitz continuous 
of order u e (1/2, 1) near ~p. A simple example is f ( x )  = (7/6)(1 - Ixl3/4), for Ix[ < 1, 
which is Lipschitz continuous of order 3/4 at x = 0. 

4. Empirical determination of m 

It follows fi'om Corollary 3.1 tha t  fixing m = cn ~, for some constants  c and V 
independent  of n, yields the best convergence rate for a m. ^ 2 In practice V is unknown and 
so is the opt imal  value of c. We sketch below a simple algorithm, based on the bootstrap,  
for empirical determinat ion of bo th  c and V and hence the opt imal  choice of m. 

First  fix S distinct boots t rap  sample sizes m l , . . . , m s  < n, for some S > 2. For 
each s = 1 , . . . ,  S, calculate a .2 = ( n / m s ) 6 2 ,  the variance of the p-th boots t rap  sample 
quantile induced by the drawing of boots t rap  samples of size ms. Generate  a large 
number,  B say, of boots t rap  samples X~*I,... , 2d~*B, each of size ms, from X 1 , . . . ,  Xn. 
For each X~*b, calculate the e out  of ms est imate  of a*2s , namely 

ffs,b,e -~ (g /ms )  E ( X f f , ( j )  - ~'b,(r'))Y* ~21.*~ x k ' - I  (1 -- X) e-k• dx,  
j = l  J ( j - 1 ) / m .  

where k* = [@] + 1, r* -- [msp] + 1 and X'b,(0 denotes the i - th  smallest d a t u m  in 2d*s,b. 
The mean squared error of the g out of m8 boots t rap  variance es t imate  is then  es t imated 
by MSE~(g) B_I  B ^,2 _ a~2)2 = E b = l ( a s , b , g  . Select e = es which minimizes MSE~(e) 
over e E { 1 , . . . ,  ms }. Asymptot ical ly  es ~ cm~, so t ha t  log e, ~ log c + ~/log ms, for 
s = 1 , . . . ,  S. S tandard  least squares techniques yield tha t  c ~ exp{D -1 (M2L1 - M I K ) }  

s ES_l(lOg and V ~ D - l (  S K  - MIL1), where M1 = )-~s=l logms,  M2 = ms) 2, L1 = 
S S )-~s=l log/s ,  K = ~s=l(logms)(loges) and D = SM2 - M 2. Finally calculate the 

opt imal  m to be m = [cn~], wi th  c and 3' fixed at  the above approximate  values. 

5. Simulation study 

We conducted a simulation s tudy  to compare the mean  squared errors of 62, a m ^ 2 and 
an,b , ^  2 for p = 0.1, 0.5 and 0.9 and for fixed values of m and b. Random samples of sizes n = 
50 and 200 were generated from three distributions: (i) the s tandard  normal  distribution,  
N(0,  1), (ii) the chi-squared dis tr ibut ion with 5 degrees of freedom, X52, and (iii) the 
double exponential  distr ibution with  density function f ( x )  = (1 /2 )exp( - Ix l ) .  All three 
distributions have densities satisfying the Lipschitz condit ion of order one, so tha t  the 
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Fig. 1. Normal  Example :  m e a n  squared errors of &n ~, &2 m (p lot ted  against  m )  and  an, bA 2 (p lot ted  
against  b) for n -- 50 and 200, and  p --- 0.1, 0.5 and  0.9. 

2 8 3  

conditions of Theorem 3.1 hold for e = 1/2. For the smoothed bootstrap estimator 
an,b , ^ 2  the second-order Epanechnikov kernel function k( t )  -- max{(3/4)(1 - t 2 ) , 0 }  was 
employed. Note that the first derivative of the double exponential density function does 
not exist at ~0.5 = 0, so that the density there lacks the smoothness condition sufficient 
for proper functioning of the smoothed bootstrap method based on the kernel k above. 
Each smoothed bootstrap estimate ^2 an, b was derived from 1,000 smoothed bootstrap 

samples. The estimates ^ 2 and ^ 2 a n a m were directly computed using explicit formulae (1.2) 
and (3.1) respectively. Each mean squared error was obtained by averaging over 1,600 
random samples drawn from F.  

Figure 1 plots the mean squared error of a m ^2 against m (bottom axis) and that of 
an,b̂  2 against b (top axis) for the normal distribution. Similar comparisons for the chi- 
squared and double exponential distributions are given in Figs. 2 and 3 respectively. The 
mean squared error of a N ^ 2 is also included in each diagram for reference. 

For the N(0,  1) data, as predicted from asymptotic results, the n out of n bootstrap 
yields for ^2 the largest mean squared error, except for cases of large b or m, for all a n 

combinations of n and p. The mean squared error of the smoothed bootstrap estimate 
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Fig .  2. Ch i - squared  E x a m p l e :  m e a n  squared  errors  of  &2n, ~r2 m (p lo t t ed  a g a i n s t  m )  and  ^2 O'n, b 
( p l o t t e d  aga ins t  b) for n = 50 a n d  200 ,  a n d  p = 0.1,  0 .5  a n d  0.9.  

an,b  ̂2 varies w i th  b parabolical ly .  A l t h o u g h  it is a symptot i ca l ly  less accurate,  the  rn out  of  

n b o o t s t r a p  es t imate  &2 m has m e a n  squared error comparable  to  that  of  on, b ^ 2 cons truc ted  

using an opt imal  b, and mainta ins  a more  stable  performance  than  O'n, b ^ 2 for n = 200. 
A m o n g  the  values  of  p studied,  all three e s t imators  tend to  be m o s t  accurate  at p = 0.5 
for b o t h  n = 50 and 200. 

For data  drawn from the  a s y m m e t r i c  X52, the  m e a n  squared errors of  the  e s t imators  
are in general  larger than  those  observed in the  N ( 0 ,  1) example ,  and increase as p 
increases.  As in Fig. 1, we see from Fig. 2 that  ^2 is general ly  the  least accurate ,  O" n 
while  the  m e a n  squared errors of  ^ 2 and ^ 2 o m O'n, b a r e  of  similar magni tudes .  The  opt imal  

choice  of  bandwidth ,  which  yields the  m i n i m u m  m e a n  squared error for ~Tn,b, ^ 2 increases  

cons iderably  as p increases; the  opt imal  choice  of  m for o" m ^ 2 , by constrast ,  s tays  wi th in  
the s a m e  range as p varies, rendering its empirical  de terminat ion  less difficult than  that  
of  the  opt imal  bandwidth .  

Figure 3 displays the  findings for the  double  exponent ia l  data.  For p = 0.1 and 0.9, 
we  see that  an, b ^ 2 and o- m ^ 2 have  comparab le  m e a n  squared errors, which  are no tab ly  smal ler  

than  that  of  an,  ^ 2 provided b and m are se lected sensibly. For p = 0.5, the  m e a n  squared 
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Fig. 3. Double  Exponent ia l  Example:  mean squared errors of  &2, ~2 m (plotted against  m)  and 
O.n, b^2 (plotted against  b) for n = 50 and 200, and p = 0.1, 0.5 and 0.9. 
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^2 error of  On, b ^ 2 increases significantly as b increases,  and is much  larger than  those  of a n 

and a m ^ 2 for n = 200, due plausibly to the lack of  s m o o t h n e s s  of  the  double  exponent ia l  
dens i ty  at ~0.5 = 0. In general  the  m out  of  n boot s t rap  performs much  bet ter  than  
the  n out  of  n boot s trap  for n = 200, except  for a smal l  m -- 9. Similar to the  N ( 0 ,  1) 
example ,  all three m e t h o d s  are m o s t  accurate  at p -- 0.5 a m o n g  the  values  of  p studied.  

We note  that  in m o s t  of  the  invest igated cases the  accuracy  of  the  m out  of  n 
b o o t s t r a p  deteriorates  markedly  for s o m e  very smal l  values of  m.  A heurist ic  exp lanat ion  
is as follows. We see from the  proof  of  T h e o r e m  3.1 that  a s y m p t o t i c  propert ies  of  a m ^2 
depend  critically on the weights  Wmj for j c lose  to  r. L e m m a  A.1 shows  that  the  wm,j 
sequence,  for j c lose to  r, resembles  a symptot i ca l ly  the  central  shape  of  a normal  density.  
Thus  our a s y m p t o t i c  findings can reliably predict  f ini te-sample  behav iour  only  w h e n  the  
Wm,j atta ins  its m o d e  at some  j strict ly  be tween  1 and n. E x a m i n a t i o n  of  the  wm,j in 
detai l  shows  that  the  latter condi t ion  holds  only  w h e n  m exceeds  a certain value,  M ( n ,  p) 
say, depending  on bo th  n and p. Under  the  set t ings  of  our s imula t ion  study,  we  find that  
for b o t h  n = 50 and 200, M ( n , p )  = 9, 2, 10 for p = 0.1, 0.5 and 0.9 respectively.  Indeed 
Figs. 1 -3  all suggest  that  the m out  of  n boot s t rap  per formance  begins  to  stabi l ize  once  
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T a b l e  1. M e a n  s q u a r e d  e r r o r s  o f  v a r i o u s  v a r i a n c e  e s t i m a t e s .  I n  t h e  c a s e  o f  &2m, r e s u l t s  a r e  

s h o w n  fo r  b o t h  t h e  s m a l l e s t  e r r o r  o b t a i n e d  in t h e  s i m u l a t i o n  s t u d y  u s i n g  f ixed  m a n d  t h e  e r r o r  

g i v e n  b y  e m p i r i c a l l y  s e l e c t i n g  m u s i n g  t h e  a l g o r i t h m  in  S e c t i o n  4. M e a n  a n d  s t a n d a r d  d e v i a t i o n  

o f  t h e  e m p i r i c a l  m a r e  a l so  i n c l u d e d .  

N o r m a l  e x a m p l e  

n = 50 n = 200 

p = 0 . 1  p : 0 . 5  p = 0 . 9  p = 0 . 1  p = 0 . 5  p = 0 . 9  

(~2 2.7 • 10 - 3  4.1 • 10 - 4  4.2 • 10 - 3  7.5 • 10 - 5  1.2 • 10 - 5  9 .0  • 10 - 5  

&~2b (f ixed b) 6.7 • 10 - 4  1.2 • 10 - 4  9.8 • 10 - 4  1.6 • 10 - 5  2.5 • 10 - 6  1.4 • 10 - 5  

d ~  (f ixed m )  6.0 • 10 - 4  7.8 • 10 - 5  1.1 • 10 - 3  1.8 • 10 - 5  1.5 • 10 - 6  1.6 • 10 - 5  

~ ( e m p i r i c a l  m )  1.5 • 10 - 3  1.2 x 10 - 4  2.0 x 10 - 3  2.3 x 10 - 5  3.0 x 10 - 6  3.5 x 10 - 5  

mean  o f  empirical  m 8.0 5.9 7.9 11.5 7.8 13.5 

s.d. o f  empir ical  m 6.5 4.2 6.2 11.3 8.8 14.5 

C h i - s q u a r e d  e x a m p l e  

n = 50 n = 200 

p = 0 . 1  p = 0 . 5  p = 0 . 9  p = 0 . 1  p = 0 . 5  p = 0 . 9  

( ~  1.2 x 10 - 2  3 .7  • 10 - 2  3.4 • 10 ~ 3.3 • 10 - 4  9.4 • 10 - 4  4.8 • 10 - 2  

d 2 b  (fixed b) 3.9 • 10 - 3  9.8 • 10 - 3  4.7 • 10 - 1  6.1 • 10 - 5  1.6 • 10 - 4  4.8 • 10 - 2  

5 ~  (f ixed m )  3.4 • 10 - 3  8.4 • 10 - 3  6.0 x 10 - 1  4.5 • 10 - 5  1.4 • 10 - 4  1.4 x 10 - 2  

5 2  ( e m p i r i c a l  m )  3.5 • 10 - 3  1.4 • 10 - 2  1.4 • 10 ~ 1.0 • 10 - 4  3.3 • 10 - 4  2.5 • 10 - 2  

mean  o f  empir ical  m 8.3 7 . 7  10.1 8.2 7.6 13.9 

s.d. o f  empir ical  m 4.2 8.9 7.1 5.8 9. 4 12.3 

D o u b l e  e x p o n e n t i a l  e x a m p l e  

n = 50 n = 200 

p = 0 . 1  p = 0 . 5  p = 0 . 9  p = - 0 . 1  p = 0 . 5  p = 0 . 9  

52  3.5 • 10 - 2  4.0 • 10 - 4  7.2 • 10 - 2  8.6 • 10 - 4  7.4 • 10 - 6  1.0 • 10 - 3  

&2~, b (f ixed b) 4.1 • 10 - 3  2.3 • 10 - 4  8.7 • 10 - 3  5.9 • 10 - 5  5.4 • 10 - 6  5.7 • 10 - 5  

&2  (fixed m )  7.8 • 10 - 3  2.8 • 10 - 4  1.2 x 10 - 2  3.0 • 10 - 4  4.8 • 10 - 6  2 .7  • 10 - 4  

~ 2  ( e m p i r i c a l  m )  2.9 x 10 - 2  3.5 • 10 - 4  3.2 • 10 - 2  3.9 • 10 - 4  8.3 • 10 - 6  6.3 x 10 - 4  

mean  o f  empir ical  m 9.1 15.7 10.3 13.1 34.6 14.8 
s.d. o f  empir ical  m 7.8 19.3 7.3 11.1 34.2 13.5 

m exceeds M(n,p),  especially for n = 200. On  the  o ther  hand,  the  op t ima l  choice of 
b a n d w i d t h  for an, b ^ 2 depends  crucial ly on F ,  n and  p, and  its m e a n  squared error  increases 
cons iderably  if b devia tes  f rom its op t i m a l  value. 

Table  1 compares  numerical ly  the  m e a n  squared  error  of 5_2 wi th  those of a m^ 2 and  
~Tn, b^2 at  the  op t im a l  choices of m (among  values g rea te r  t h a n  M(n,p)) and b as observed 

f rom the s imula t ion  study. In the  case of ^ 2 am,  we include also results  ob ta ined  using m 
selected by  the  a lgor i thm descr ibed in Sect ion 4, in which 1,000 pilot b o o t s t r a p  samples  
were s imula ted  to e s t ima te  the  m e a n  squared  er ror  of  the  g out  of ms b o o t s t r a p  var iance  
es t ima te  and  the  ms were chosen to be  2s + 8 for n = 50 and  12s - 2 for n -- 200, 
s = 1 , . . . ,  8. T h e  m e a n  and s t a n d a r d  dev ia t ion  of the  empir ica l  choice of m are r epo r t ed  
alongside the  m e a n  squared  error  findings. We see t h a t  the op t imal ly  cons t ruc ted  a m ^ 2 and  
(Tn,b,̂  2 at  fixed m and  b respectively,  have  c o m p a r a b l e  errors.  B o t h  of t h e m  are cons iderably  

more  accura te  t h a n  an. ^ 2 In general ,  our  a lgor i thm for empir ica l  de t e rmina t ion  of m 
worked sat is factor i ly  and  p roduced  es t ima tes  more  accura te  t h a n  a N ^ 2, albei t  to a lesser 
extent  t h a n  its f ixed-m counte rpar t .  
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6. Conclusion 

We have shown, both theoretically and empirically, that  the m out of n bootstrap 
variance estimator ~ ~ is notably superior to the conventional n out of n bootstrap estima- o,rn 

^2 t o r a  n.̂ 2 For densities satisfying a Lipschitz condition of order within (1/2, 1] near ~p, o.,~ 
incurs a relative error of smaller order than o.n,.. 2 provided that  m is chosen appropriately. 
The smoothed bootstrap estimator 6~, b may yield an even smaller relative error using an 
optimal bandwidth b, but requires much stronger smoothness conditions on the density 
f .  The rn out of n bootstrap therefore offers a convenient alternative which is more 
accurate than the n out of n bootstrap and more robust than the smoothed bootstrap. 
Under a smooth f for which both smoothed and uusmoothed bootstraps work properly, 
we have that  o.n,A2 o'm 2̂ and o,n, b^2 generate relative errors of orders O ( n - I / 4 ) ,  O(n  -~/3) and 

O(n  -2/5) respectively, provided that  m o< n 2/3, b c( n -1/5 and a second-order kernel is 
used in constructing ^ 2 O-n, b �9 

Our simulation results agree closely with the asymptotic findings. Both the 
smoothed and the m out of n bootstraps, when constructed optimally, yield compa- 
rable accuracies and outperform the n out of n bootstrap method substantially. The 
optimal choice of bandwidth for the smoothed bootstrap varies considerably with the 
problem settting. The mean squared error of o.n, b ^  2 is also very sensitive to the bandwidth. 
A slight deviation from the optimal value of the bandwidth may greatly deteriorate 
the accuracy of the estimate. One therefore requires a sophisticatedly-designed, data- 
dependent, procedure for calculating the optimal bandwidth in practice. On the other 
hand, the observed mean squared error of 62 m remains relatively stable over awide  range 
of m beyond M ( n ,  p), especially for large n. Also, the optimal choice of m tends to stay 
within a stable region which varies little with the problem setting. This suggests that  
the precise determination of m is less crucial an issue than is the choice of bandwidth for 
o ,n ,b"  ^ 2 We have proposed a simple bootstrap-based algorithm for empirically determining 
the optimal m and obtained satisfactory results in our simulation study. 

Unlike most bootstrap-based estimates, o. n ^ 2 and 6 2 can be evaluated directly using 
formulae (1.2) and (3.1) respectively, so that  no Monte Carlo simulation is necessary, 
making their computation exact and very efficient. The smoothed bootstrap estimate 
O-n, b ^  2 must, however, most conveniently be approximated using Monte Carlo simulation. 
Use of a higher-order kernel, which effects in an improved error rate, further complicates 
the Monte Carlo procedure due to negativity of the kernel estimate ]b- 

Appendix 

A.1 Proof of  Theorem 3.1 
The proof is modelled after Hall and Martin's (1988) arguments. 
Let r denote the standard normal density function, Yn,j = (j - 1 ) /n  and bran = 

(rny,,,y - k){my, , , j (1  - Y n , j ) }  -1/2. The following lemma states a useful asymptotic ex- 
pansion for the weight Wm,y. 

LEMMA A.1. Assume  that m ~ n ~ for  some A C (0, 1). There exists some constant  
C > 0 such that 

Wm,j = m'/2n-1{Yn, j(1 - yn,j) }-U2r + O(n - ]  e-Om(Y"J-P)2). 
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PROOF. Note tha t  wm,j = I j / n (k ,m  - k + 1) - I ( j_ l ) /~(k ,m - k + 1), where 

Iy(a,b) -- 5 -'a+b-1 (a+b-l)yJ(1 y)a+b-l-j  Withou t  loss of generality, consider j = 
np + q with  q _> 0. ~he  proof is completed by considering the Edgeworth  expansion 
of the binomial  distr ibution function for the case 0 <_ q <_ Dnm-1/2( lnm)  1/2, for some 
D > 0, and Bernstein's  inequality for the case q > Dnm-1/2( lnm)  1/2. [] 

We first consider the summat ion  over j in (3.1). The expansion for am 2̂ then  follows 
trivially after multiplication by m/n.  The summat ion  is divided into two parts ,  for some 
(f > 0 and fl < A/12: (i) IJ - r] > 5nl+~m-1/2; and (ii) IJ - rl <- 5nl+~m-1/2. 

For par t  (i), we note tha t  max{(X(j)  - X(r)) 2 : j <_ n} <_ 4n 4/v in probability: see 
Hall and Mar t in  (1988). Lemma A.1 implies that ,  for some constant  C2 > 0, Wmj < 
C2ml/2n-le-Cm(ynJ-P)2. Thus, with probabili ty tending to one, we have tha t  for some 
constant  C3 > 0 and any ~ > 0, 

(A.1) E (X(j) - X(r))2wm,j < 4 C2ml/2na/oe -Can2€ = O(n-r 
[j--rl>~nl+f~m-1/2 

For part  (ii), we assume throughout  tha t  IJ - r[ < ~nl+f~m-1/2, and tha t  ~-~j refers to 

summat ion  over j satisfying the above, unless specified otherwise. Let H(x)  = F - l (e  -x) 
and I"1,---, Yn denote independent  and identically dis t r ibuted exponential  variables with 
unit  mean. Define sj = s g n ( r - j ) ,  m0j = min ( r , j ) ,  mlj  = m a x ( r , j ) - l ,  Ar = )-~n= r U -1. 

1 Suppose t ha t  f satisfies a Lipschitz condit ion of order v -- 7 + ~ in a neighbourhood 
of ~p, so tha t  a - H'(A~) = _pf(~p)-I  + O(n-1).  Following Hall and Mart in ' s  (1988) 
arguments,  we have 

(A.2)  E ( X ( j )  - -  X ( r ) ) 2 W m , j  = S1 -~- $2 -~- T1 -~- T2 -~- T3, 
J 

where S 1 = a 2 E j  b2wm,j, $2 ---- 2a2 ~-~j bj(Bj - b j ) w m j ,  T1 = a 2 ~-~j(Bj -b j )2Wmj,  T2 = 
2 ~-]~j DjRljWm,j,  T3 = ~'~j R21jWm,j, Bj = Eu=mojmlj u-lye, ,  bj -- E(Bj ) ,  Dj = 8jaBj, 

Rl j  = R2j + R3j, R2j = s jB j [g '  (A~ ) -a]  and Raj = s jBj  f l  [g, ( A~ + ts jBj  ) _  H, ( A~)]dt. 
Note also t ha t  Br = br = 0 and tha t  

(A.3) bj = [j - rl r - 1  § 2-1( j  - r)2r -2 + O([ j  - rlar-3). 

Using L e m m a  A.1 and (A.3), we have 

(j-rS  ll) E b2wm'j = rr~l/2n-l E k,--~p ] ~ ~  ~ -~p~F--~ =- p; 
J J 

( ( m l / 2 ( j - r - - l ) ) )  
§  E jj - 

3 
= m - l p - l ( 1  _ p) + 0(m-3/2) ,  

so that 

(A.4) S1 = m - l p ( 1  _ p)f(~p)-2 + 0(m-3/2) .  
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Consider next 

r--1 u 

= 2a ( _ Z 
k u=r--Snl +f~m-1/2 j=r_Snl +~m-1/2 

r+Snl+Bm-1/2_l r+Snl+f~m-l/2 } 
+ E u - l ( y u -  1) E bjwm'j ' 

u=r j=u+ l  

so that, by Lyapounov's central limit theorem, 

(A.5) m3/4nl/2s 2 ~ N(O, 27r-1/2[p(X -- p)]3/2 f(~v)-4 ). 

We note, using Lemma A.1 again, that for any t > 0, 

(A.6) ~_~ IJ - npltwm,j  
J 

ml/2nt f p+6n~m-~/2 
dp--Sn~m-i/2 

= O(m-t/2nt). 

ml/2(y -- p) 
lY - pit[y( 1 - y)]-1/2r ~ ~ - 3  ] 

It follows by substituting appropriate values for t in (A.6) that 

EIT2I = O ( Z '[n-2( j  - r)2n-ll4-~12 + (n-ll j  - rl)5/2+s]wm'j ) J 

-_ O(m-5/4-e/2) 

and / 

~[F~(T3) = O ~ E [ T t - 2 ( j  - -  r)2Tt - 1 / 2 - e  
~ j '  

so that, by Chebyshev's inequality, 

(A.7) T, = Op(m-1/2rt-1), 7"2 = Op(m-5/4-s/2), 

Recall, by Hall and Martin's (1988) Theorem 2.1, that 

dy 

\ 
"}- ( 7z-1 lJ 3+2r / - rl) ]~,r,,j = 0 ( m - 3 / " - %  

] 

T3 = O p ( . ~ - 3 / 2 - ~ ) .  

2 = n - l p ( 1  _ p)f(~p)-2 + O(n-3/2-e). (A.8) (9- n 

Subtract ing (A.8)  from a m ^u , and expanding  the s u m m a t i o n  in (3.1) using (A.1) ,  (A.2) ,  
(A.4) ,  (A.5)  and (A.7),  we prove (3.2). 

A.2 Proof of Corollary 3.1 
Note that m ~ n ~. It follows from (3.2) that the optimal value of A is obtained 

by minimizing max{A/4 - 3/2,-A(1/4 + e/2) - 1} over A C (0, 1). Corollary 3.1 then 
follows by using standard linear programming to obtain the optimal A. 
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