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Abstract .  This paper introduces the "piggyback bootstrap." Like the weighted 
bootstrap, this bootstrap procedure can be used to generate random draws that 
approximate the joint sampling distribution of the parametric and nonparametric 
maximum likelihood estimators in various semiparametric models, but the dimen- 
sion of the maximization problem for each bootstrapped likelihood is smaller. This 
reduction results in significant computational savings in comparison to the weighted 
bootstrap. The procedure can be stated quite simply. First obtain a valid random 
draw for the parametric component of the model. Then take the draw for the non- 
parametric component to be the maximizer of the weighted bootstrap likelihood with 
the parametric component fixed at the parametric draw. We prove the procedure is 
valid for a class of semiparametric models that includes frailty regression models aris- 
ing in survival analysis and biased sampling models that have application to vaccine 
efficacy trials. Bootstrap confidence sets from the piggyback and weighted bootstraps 
are compared for biased sampling data from simulated vaccine efficacy trials. 

Key words and phrases: Biased sampling, bootstrap, censored data, confidence sets, 
empirical process, Monte Carlo inference, semiparametric efficiency, survival analysis. 

1. Introduction 

We propose a computationally quick alternative to the weighted bootstrap in a 
general class of semiparametric models, which we call the "piggyback bootstrap". The 
semiparametric models for which the methodology is applicable include frailty regression 
models arising in survival analysis and biased sampling models that  have application to 
vaccine efficacy trials. In the general set-up, the model consists of a parametric compo- 
nent 0 and a nonparametric component A. More specifically, we consider likelihoods of 
the form 1-Lnl g(0, A)(D~). Here the contribution of the i-th subject to the likelihood, 
g(0, A)(Di), depends upon the data  vector Di corresponding to the i-th subject, a vector 
0 E ]~d, and a nonnegative function of bounded variation A(t)  defined for t in some finite 
interval [0, T]. In our survival analysis applications A(t)  is a cumulative hazard, and in 
our biased sampling application A(t)  is a cumulative distribution function (cdf). Our 
regularity conditions given in Section 5 will further constrain the likelihood. 

Simulation methods such as the bootstrap provide a way to use information from a 
sample of size n to generate random draws which accurately approximate the Gaussian 
limit process of the maximum likelihood estimates (MLEs), t~n and -4n, of 8 and A. These 
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draws should be realizations of random variables 0~ and AN that  satisfy the following 
asymptotic property: v/-~(0~ - 0 ~ ,  An - 4 ~ )  converges weakly, given the sample data, to 
the same distribution that  v/-~(0n - 00, 4n  - A0) does unconditional on the sample data, 
as n --* c~. We make this statement precise in Section 2. 

Computationally simple simulation methods have been developed for the Cox model 
for right censored data. Kim and Lee (2003) propose an empirical Bayes method. The 
regression coefficients 0n are drawn from a posterior distribution for 0 given the data. For 
each draw so obtained, one samples A for from the posterior distribution of A given 0n, 
which conveniently involves only generating gamma random variables. Unfortunately, 
this technique relies on the special structure of the Cox partial likelihood, a feature 
not shared by other semiparametric survival models. Shen (2002) gives conditions on 
appropriate priors for the parametric and nonparametric components in a more general 
semiparametric setting. However, no general method is given for finding these priors, 
if they even exist. And there is no guarantee that the posterior distributions will be 
computationally easy to sample from. 

Lin et al. (1994) propose a Monte Carlo method for the Cox model. In their scheme 
the MLEs are computed, and then independent standard normal variables are plugged 
in to a simple expression involving the MLEs to obtain the random draws. Although 
this method is very simple eomputationally, it is unclear if an analogous approach can 
be devised for other semiparametric settings. 

In contrast to these two simulation methods, the weighted bootstrap (Rubin (1981), 
Praestgaard and Wellner (1993)) is broadly applicable to many semiparametric models. 
Each term of the likelihood is weighted by a positive random variable satisfying specified 
moment conditions. The resulting bootstrap likelihood is maximized over 0 and A to 
give a random draw. Unfortunately, this maximization is computationally intense in 
most semiparametric models, and must be repeated for each desired draw. 

Tsodikov (2003) recommends using profile likelihood maximization in order to re- 
duce the computational difficulty in obtaining the MLEs. Let tn(0, A) = nPn~(O, A) de- 
note the log-likelihood function based on a sample of size n, and t~ (A, 0) = IP~t(0, A) -- 
IPnr~t(O, A)/(F~rl) denote a corresponding bootstrap log-likelihood. The profile bootstrap 
log-likelihood is defined by 

pe~ (0) -- sup e~ (0, A) = tn(0,~ Ao)̂  ~ 
A 

where 4~ = arg maxA t~ (0, A). Then the value of 0 which maximizes pf~ (0) coincides 
with the 0 component of the joint maximizer of t~ A), and is thus the bootstrap MLE, 
which we will denote by A~ 0n. And for the full parameter r --- (0, A), the bootstrap MLE 
is thus r - (t?~, A? 0~)" Dropping the superscript "o", the above applies to the original 

likelihood. 
In Tsodikov's scheme, one must use a search algorithm, such as Newton-Raphson 

or the Powell method (Press et al. (1994)) employed by Tsodikov, to find the value of 
0 which maximizes pl~ And for each candidate search value 0", one must compute 
4~. ,  which we call a "profile computation". In the Cox Proportional Hazards model, 4o 
and 4~ have explicit forms in terms of 0. For instance, A0 is Breslow's estimator. In the 

^ 

other models we consider, the most explicit expression we have for A~ is a self-consistency 
equation: 

4~(t) : fn(t; O, 4~), 
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where fn(t; 0, A) is based on the n observations. And so we must accomplish the profile 
computation by iterations of a fixed point algorithm, which we describe in detail in Sec- 
tion 2. Tsodikov (2003) presents ways to obtain the relevant self-consistency equation in 
a variety of semiparametric settings. He points out that  this procedure can be viewed as 
an MM or EM algorithm. Since the fixed point algorithm often requires many iterations 
(see the simulation study in Section 4 for some specific average iterations), it ends up 
being the main source of computational cost in the weighted bootstrap. 

The contribution of our paper is to take advantage of the profile structure elucidated 
by Tsodikov to perform computationally efficient inference for semiparametric models. 
In our proposed piggyback bootstrap, we assume that  draws for the parametric component 
On are readily available (we discuss methods of obtaining such draws in Section 2) and 
that  v~n(0n - 0n), given the sample data, converges in distribution to the unconditional 
limiting distribution of x/~(~n - 00). Then, for each parametric draw 0n, the piggyback 
bootstrap draw is An -- arg maxA g~(0n, A), resulting in the pair (0n, An). 

Thus the piggyback bootstrap decreases the dimension of the maximization problem 
for each set of bootstrap weights. This method requires only one profile computation for 
each set of bootstrap weights. In contrast, the full weighted bootstrap requires a profile 
computation for each candidate value in the search for the parametric maximizer. Since 
the profile computations are accomplished using computationally costly iterations of a 
fixed point algorithm, we use the number of profile computations required by a procedure 
as a measure of its computational complexity. We show that  the piggyback bootstrap is 
significantly less computationally complex than the weighted bootstrap. 

Section 2 describes our method in more detail. Section 3 presents several example 
models for which the piggyback bootstrap works. In Section 4, we provide a numerical 
study comparing the weighted and piggyback bootstraps in a biased sampling analysis 
of simulated vaccine efficacy data. Sufficient regularity conditions are given in Section 5, 
and Section 6 contains a brief discussion. Details on the proofs of the results are given 
in Appendix A, and Appendix B discusses verification of the regularity conditions. 

2. The piggyback bootstrap 

In this section we introduce our piggyback bootstrap approach to obtaining appro- 
priate random draws for semiparametric inference. 

The main idea is to first obtain valid random draws for the parametric component 
of the model. Usually, it is possible to do this in a manner that  is computationally 
much less intense than repeatedly maximizing profile likelihoods. The second step is 
to piggyback the draws for the nonparametric component onto the parametric draws, 
by plugging the parametric draws into a bootstrap likelihood and maximizing over the 
nonparametric componeat holding the parametric part fixed. That  is, for each 0 (k) 
drawn, k = 1 , . . .  ,m, we generate i.i.d, random bootstrap weights ~1, . . - ,~n,  and com- 
pute A~(k) = arg maxA e~ (k), A), where ~ is the bootstrapped log-likelihood using the 

given bootstrap weights. We assume that these bootstrap weights are nonnegative, with 
mean and variance 1 and with f o  v/P[~ 1 > x]dx < c~. The bootstrap weights should 
be generated so that they are independent of the data. Further, the draws for 0n should 
be i.i.d, and independent of the bootstrap weights. 

Due to measurability issues which may arise in applying our theory to specific cases, 
we use empirical process results from van der Vaart and Wellner (1996) (hereafter abbre- 
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viated VW). The precise form of the bootstrap log-likelihood is g~(A, 8) = P~g(8, A) = 
Pn~e(8, A)/(Fn~?). Hoffmann-Jcrgensen (H J) weak convergence is denoted by ~-~. 

Section 1.12 of VW gives a useful characterization of HJ weak convergence in a 
metric space D to a tight limit. For a metric space D, define BL1 to be the set of 
all f : D ~-, IR with IIflID - sup~:c~lf(x)l _< 1 and I f ( x ) -  f(Y)l <- d(x,y)  for every 
x ,y ,  where d is the metric on D. Then Xn -~ X,  where X is tight if and only if 
supfeBL, IE* f ( X n )  - E f (X) I  - .  O. 

Loosely speaking, we define B ,  ~ Cn to mean that Bn has a limit law conditional 
on the data equal to the limit law of Cn. In specific, if G denotes the limit law of 
Cn, we require SUPheBL1 IE, Th(Bn) - Eh(G)I  - ,  0 in outer probability and that Bn 
is asymptotically measurable unconditionally. This has the form of the conclusion of 
Theorem 2.9.6 of VW, which we employ in Appendix A. 

Now we state the main theorem. If we consider 8 (1) 8(~ "~) to be realizations of a n , . . - ,  

random vector 8n, then the following establishes the validity of the new approach: 

THEOREM 2.1. U n d e r  r egu lar i t y  c o n d i t i o n s ,  
^ 

- 8n, Ao,~ - fiO~ ) ~ v~(O,~ - 80, AO~ - Ao). 

The regularity conditions are given in Section 5, and Appendix A contains the proof. 
Appendix B provides an outline for verifying the regularity conditions in applications, 
with specific detail given for the biased sampling model introduced in Section 3. 

Before utilizing this result, it is necessary to obtain draws 8 (k), k = 1, . . . ,  m, that 
have the right conditional distribution. The regularity condition that  0n is efficient 
implies that x/~(0n - 80) is asymptotically mean zero normal with v a r i a n c e  I o  1, where 
Io is the efficient Fisher information for 0. Thus one way to obtain the desired draws is 
to estimate I o  I with a consistent estimator V0, and then let 0 (k) = On + n-1/2V(~/2Z(k), 
k = 1 , . . . ,  rn, where the Z (k) are independent standard normal vectors of length p, where 
p is the dimension of 8. 

In some settings, such as the Cox model for right-censored data, a consistent es- 
t imator of ll0 is not difficult to construct. Corollary 3 of Murphy and van der Vaart 
(2000) can be used to consistently estimate this covariance matrix in a number of other 
semiparametric settings. For the biased sampling example, we verify in Appendix B that 
the hypotheses of Corollary 3 of Murphy and van der Vaart hold, justifying our estimate 
described in Section 4. 

An alternative Monte Carlo approach is presented in Lee (2000). This method 
builds on the results of Murphy and van der Vaart (2000). The proposed MCMC scheme 
generates 8n from the density proportional to exp{pgn(8)}. Provided the draws stay suf- 
ficiently close to 0n, we have vfn(Sn - 0n) ~ x/n(0n - 80). See Lee (2000) for numerical 
studies of this algorithm, and Dixon (2003) for an implementation of this method in 
applying the piggyback bootstrap to an odds-rate regression on a Non-Hodgkin's Lym- 
phoma data set. 

In order to piggyback the draws for A onto the draws for 8 we use the fixed point 
algorithm discussed in the Introduction. The same fixed point algorithm is used in imple- 
menting Tsodikov's (2003) method for computing the MLEs in the weighted bootstrap, 
as described in the Introduction. Before giving details on the algorithm, we mention 
that in the models we consider, we take the estimator for the nonparametric piece to be 
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a step function with jumps only at observation points. In the biased sampling models A 
is a cdf, and Vardi (1985) shows that the maximizer puts mass only at the observation 
points. In the survival analysis settings, the jumps are at observed failure times only. 
Murphy (1994) and Parner (1998) provide nice discussions of this issue. We will denote 
the jump at an observation t by AAo(t). Here and in what follows, for a right continuous 
function f we define A f ( t )  ---- f ( t )  - f ( t - ) .  

Then the fixed point algorithm for evaluating AA0(t) for a fixed 0 at each observa- 
tion t is as follows: 

�9 Step 1: Set A.40(t) (~ -- g(t) for all observations t, where g is some initial guess 
function. 

�9 Step 2: Compute 

AAo(t) (r+l) -= fn(t; O, A~ r)) 

at each observation t. 
a(r+l)  Otherwise �9 Step 3: I f supt lAA~r+x)( t ) -AA( ' ) ( t ) ]  < ,, stop and set A0 _=..0 . 

repeat step 2 with r replaced by r + 1. Where e is some tolerance level. (We took 
e -- .0001 in our simulation s tudy in Section 4.) 

In our simulation study the algorithm described above always converged. And for 
the biased sampling model we consider in that  study, Vardi (1985) has shown the self- 
consistency equation has a unique solution. Thus we know the resulting step function is 
the nonparametric MLE. 

The next section describes several models that satisfy the regularity conditions of 
Theorem 2.1. 

3. Examples 

In this section we describe several models for which the piggyback bootstrap is 
applicable. The first example is the Cox model for right censored data. While compu- 
tationally efficient inference for this model can be done with empirical Bayes (Kim and 
Lee (2003)) or the Monte Carlo approach of Lin et al. (1994), the example provides a 
straightforward illustration of the methodology. The next two examples are the odds-rate 
regression for right-censored data, and the correlated (and shared) gamma frailty model 
for right-censored data. A final example is the biased sampling model. The regularity 
conditions for this last example are established in Appendix B. Technical restrictions 
which simplify or are necessary in the verification of the regularity conditions are given 
for the biased sampling model in Appendix B, and also for the odds-rate model in Ap- 
pendix B of Dixon, Kosorok, and Lee (2004) (hereafter abbreviated DKL). See Dixon 
(2003) for technical restrictions on the other models, as well as a detailed verification of 
the regularity conditions for these models. 

3.1 Cox proportional hazards model 
Efficient inference for 0 in the Cox model for right censored data  is based on the 

profile likelihood which is equivalent to the partial likelihood. The data  consists of n 
i.i.d, realizations of (X, 5, Z), where X - T A C is the smaller of a failure time T and 
right censoring time C, Z(-) is a d-dimensional caglad (its components are left-continuous 
with right-hand limits) covariate process, and 5 -- I{T <_ C} is the censoring indicator, 
where I{.} is the indicator function. The survival function for this model is given by 

S(t I Z) - P ( T  > t I Z) -- e x p { -  fo e~ �9 Here 0 is a d-vector of regression 
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coefficients, and A(t), the cumulative baseline hazard, is a cadlag (right-continuous with 
left-hand limits) function of bounded variation on some finite interval [0, T]. Let 0n be 
the partial likelihood estimator for 00 and let Vo be the corresponding estimator of the 
variance of v/n(On - 0o). The baseline 
estimator AO,  where 

A o ( t )  = 

hazard function can be estimated with Breslow's 

9fo t PndN(s) 
pny(s)eO'Z(8) ' 

N(t)  = I { X  _< t, 6 = 1}, Y(t)  = I { X  > t}, and Pn is the empirical measure based on 

the data. A piggyback bootstrap is accomplished by drawing On = ~,~ + n-1/2Vo-1/2Z, 
where Z is a p-variate standard normal deviate. Then An is obtained by computing 
Breslow's estimate with bootstrap weights po(.) - Pn~(')/(Pn~) replacing the empirical 
weights Pn(')- 

3.2 Odds-rate model 
A flexible regression model for right-censored data, which includes the Cox propor- 

tional hazards model and the proportional odds model as special cases, is the odds-rate 
regression model considered in Dabrowska and Doksum (1988), Scharfstein et al. (1998), 
and Lee (2000). The survival function for this model is defined as S(t  I Z) - P ( T  > 
t I Z) = E [ e x p { - W f  t e~'Z(s)dA(s)} I Z], where fl is a d-vector of regression coeffi- 
cients, W is an unobserved nonnegative gamma frailty with mean 1 and nonnegative 
variance ~, and A(t), the cumulative baseline hazard, is a cadlag function of bounded 
variation on some finite interval [0, ~-]. After integrating over W, the survival function 
simplifies to S(t  I Z) -- g~(ft e3,Z(s)dA(s)) ' where g.r(u) = (1 + "~u) -1/~ for 3' ~ 0 and 

go(u) - l im~0g- r (u)  = e -~. By multiplying the baseline hazard eZ'Z(t)dA(t) by the 
random variable W, we are making an adjustment for misspecified or omitted covariates. 
Setting V = 0 results in the Cox model, while setting V = 1 yields the proportional odds 
model. We will focus on the case where ? is unknown. 

Letting 0 - (% fl) and assuming that censoring is independent of T given Z, the 
log-likelihood function for r - (8, A) in the odds-rate model is given by 

{// } gn(r = nPn [vlogg.~(H~(r)) + fl 'Z(s) + loga(s)]dN(s) + loggT(H$(Y)) , 

where H~( f )  - f t  f(s)e~,Z(8)dA(s) and a = dA/dt.  
As discussed in the Introduction, we consider A constant except for jumps at the 

observed failure times, replacing a(s) with AA(s)(--  A(s) - A( s - ) ) .  Then the boot-  
strap MLE may be computed in two steps via profile likelihood, as discussed in the 

^ 

introduction. For fixed 0, the self-consistency equation for A~ is given by 

f A (t) = 

where G~(u) = P n ~ I { X  _< u} and W,~(u;O,m) = Pn[7?(1 + 57)e3'Z(~)Y(u)/(1 + 
v H f ( 1 ) ) ] .  Taking the boots t rap weights to be equal to 1 with probability 1, we have a 
self-consistency equation for the ordinary MLE. 

DKL (2004) shows that under some additional technical restrictions, the piggyback 
bootstrap is applicable to this model. As discussed in Section 2, the MCMC approach 
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of Lee (2000) can be used to generate the parametric draws. See Dixon (2003) for an 
implementation of this method in applying the piggyback bootstrap to an odds-rate 
regression on a Non-Hodgkin's Lymphoma data set. 

3.3 Correlated (and shared) gamma frailty model 
Much of the theory for the odds-rate model is derived in a manner similar to the re- 

sults of Parner (1998). Parner considers the correlated gamma frailty model for clustered 
data. The data is right censored with the observations for each of n clusters (e.g., family, 
pair of twins, group) consisting of m realizations of (Xi, 6i, Zi(u)), i = 1 , . . . ,  n. We as- 

sociate with the i j- th individual, i = 1 , . . . ,  n, j = 1 , . . . ,  m, a frailty W (j) - Wio + Wij. 
The frailty components Wio, W i l , . . . ,  Wire are assumed to be independent, unobserv- 
able, gamma-distributed random variables with parameters (v, ~), (L,*, r / ) , . . . ,  (v*, ~), re- 
spectively. We adopt the parameterization used by Parner by considering the frailty 
parameters of the model to be 0 -- var(Wo) = u/~ 2 and 0" - var(Wj) = u*/~ 2. When 
8" is set equal to 0 we have the shared frailty model. The full parameter for the model 
is r --- (8, 8",/3, A). The log-likelihood function is given by 

} [hij(fl'Zij(Xij) + loga(Xij))] + log E a i ( k , r  , 
i = l  ( j = l  k E K i  

where k -- ( k l , . . . , k m )  and Ki = {k I kj C {0,6i j} , j  = 1 , . . . , m } .  And the c~i(k,r are 
given by 

O~.~F(OS-2 + Si. - k.) { r(8*872 + k~) 1 } 
F(80-2-2--~-0.A~.(6) ~ + & - k  IT[ F(8"0 -2) (1 + O.Aij(r176 

j----1 

where Aij(r  -- foYij(s)exp(/3PZij(s))da(s), Yij(t) - I{Xij  >_ t}, 8. - 8 + 8", and 
otherwise a subscript "." denotes summation over the corresponding index, e.g. 5i. = 

m ~'~j=l 6ij. Using the bootstrap which assigns weight to the i-th cluster, i --- 1 , . . . ,  n, the 
bootstrap self-consistency equation for A is given by 

~0 t n m 
~{o(t) = 1 ~ Z!J)(8 8",/3, A~ exp(/3PXij(s)) dfil~ - -  ~ i z . . ~  ~ x , .. 

n i=1 j = l  

Here Z}J)(r -- 2/o(r + Zij(r  with 

~0(~/) ) ~___ EkEKi ai(k , r162 and Zij(r = ~-~keK, a i ( k , r162  
r r ' 

where 
b~0(k,r = 88-1 + 0.(5i. - k.) 8*8 -1 + 8.kj 

1 + 0.Ai.(r and bij(k, r  - 1 + 0.Aij(r ' 

m 19.o. = ~-~i~=1 ~i Y~j=I Nij, and (analogously to the odds-rate model setting) Nij(s) - 
I{Xij  < s, 5ij = 1}. Taking ~i = 1 with probability 1, we have the self consistency 
equation for .4~ previously revealed by Parner (1998). 

We omit verification of the conditions here, but with some additional technical 
restrictions, the piggyback bootstrap can be shown to be readily applicable to the cor- 
related gamma frailty example. See Dixon (2003) for details. 
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3.4 Biased sampling model 
As a final application, we consider a class of biased sampling models (Gilbert (2000)). 

Here the data consists of n i.i.d, realizations of X = (I, Y). Here I E {1 , . . . ,  s} is a 
random stratum, taking on the value i with selection probability Ai > 0, i = 1 , . . . ,  s, 

8 with ~ i=1  Ai -- 1. Given I = i, Y E [0, T] has distribution Fi defined on a sigma 
field of subsets B of [0, T] by Fi(B, O,A) - W ( I ( 0 ,  A ) f B  wi(u,O)dA(u) for B �9 B. The 
wi, i = 1 , . . . ,  s, are nonnegative (measurable) s t ra tum weight functions assumed to be 
known up to the finite dimensional parameter 0 �9 O. W/(0, A) - foWi(u,O)dA(u) is 
assumed to be finite for all 0 �9 O. The probability measure A is the unknown infinite 
dimensional parameter of interest. The goal is to estimate it based on information from 
samples from the Fi distributions, i -- 1 , . . . ,  s. Thus the semiparametric log-likelihood 
is given by 

(v, o) 
n ' n  { A I w I ( O , A )  d A { Y }  ) " 

Denote the number of observations belonging to the i-th s tratum by n/, the total 
sample size by n (=  }-]~s=l n~), and the i-th sampling fraction by An~ -- n j n .  Furthermore, 
let tj, j -- 1 , . . . ,  h, denote the distinct observed realizations of Y, each with multiplicity 
rj, and let nij be the number of observations from the i-th stratum with value tj. The 
semiparametric likelihood is then proportional to 

L , ( O [ d a t a )  = 
i=l j : l  [ Wi(O'A) J 

As demonstrated in Vardi (1985), we may instead maximize the partial likelihood defined 
by 

f l h  r wij(O)B~ 1 I 
L , I ( 0 , / )  [ d a t a ) :  I I  8 - - - - -  - 1  ' 

i=l j : l  L:~'-k:lA,~kwkj(O)Bk ] 

where B : {B1 , . . . ,Bs} ,  subject to Bi > 0, i : 1 , . . . , s -  1 and Bs : 1, and wij(O) :- 
w~ (tj, 0). Again the MLE is computed in two steps via the notion of profile (partial) 
likelihood. The profile partial log-likelihood is given by pg.n(O) :- sup h log Ln~ (0,/~) _: 
log Ln~(O, JBo) where /~e : arg maxh log Lnl(0, B). The MLE for 0 coincides with the 
profile-partial-MLE obtained by maximizing p~.n(O) with respect to 0. Then we take 

Cn = (0,,A0o)- 
As demonstrated in Vardi (1985), we may compute Ae by the following procedure. 

First f i nd / )  defined as the solution to the self-consistency equation 

h rjwij (0) 
Bi(e ) = ~__~ ~"~.sk= 1 nkwkj(O)B;l(o)  

j = l  

i ---- 1 , . . . ,  s subject to the constraints Bi > 0, i : 1 , . . . ,  s - 1 and Bs : 1. Then we take 

s ^ ^ - -1  r [ k=l  .kwk (O.)Bnk 
dAo(tj) : h 

Ej=I  r J [ E ~ : l  ~nkWkj(~n)Bnl(~n)] -1 

In the weighted bootstrap case, we replace nij with the sum ni~ of nij boots t rap weights 
o h n.O. in the above equations, and the other terms are modified accordingly, i.e., n i - ~-~j=l ~3, 
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n~ - ~-]~=1 n~ = n (since all bootstrap weights add up to n by construction), r~ - 
~-]~s__ 1 n9. and A~i - n~/n.  Note that the use of the partial likelihood is for computational 
purposes only. It affects none of the theory because the nonparametric partial likelihood 
maximizer coincides with the nonparametric maximizer of the full likelihood. 

The weighted bootstrap can be used to obtain draws for the parametric and nonpara- 
metric components of the model, as justified in Gilbert (1996). But,  again, maximizing 
over both the parametric and nonparametric pieces in this approach is computationally 
intense. However, our piggyback approach applies in this situation, simplifying compu- 
tations. To obtain draws for the parametric component, 0, Murphy and van der Vaart's 
(2000) Corollary 3 can be used to consistently estimate/~0. Then the draws for the non- 
parametric piece are piggybacked on these draws as described in Section 2. The next 
section provides a simulation s tudy using this approach, and verification of the regularity 
conditions is given in Appendix B. 

4. Simulation study 

We simulated vaccine efficacy trials in order to evaluate the coverage probabilities of 
confidence bands constructed using draws from the weighted and piggyback bootstraps. 
The simulated response represents percent divergence in the V3 loop amino acid sequence 
between the strain of HIV found in an infected subject versus the prototype strain used 
in the vaccine. These simulated data  sets are modeled after ones found in Gilbert (1996). 

We generated 200 data sets consisting of 400 independent observations. Half of 
the 400 observations in each data  set come from a placebo group, and the other half 
from a vaccine group. The placebo group response was uniformly distributed on the 
interval [0, 35], and the stratum bias functions are given by wl (y, 0) = exp(y0/35) and 
w2(y, 0) = 1. Here group 1 is the vaccine group and group 2 is the placebo group. Thus 
the cdf for the vaccine group is given by 

f~  e~~176 I[0,351 ( s)ds 
F(v) = / o  es~176 

e y0~ - -  1 

e ~ - 1 ' 

and the cdf for the placebo group is the Uniform[0, 35] cdf. 
The choice of the Uniform[0, 35] distribution is inspired by the use of this distribution 

in the simulation in Gilbert (1996). The value 35 corresponds to the suspected maximum 
possible percent divergence, and the true value of 0 was taken to be 00 = 7.89, arbitrarily. 
See Gilbert et al. (1998) for a scientific interpretation of the parameter 0. 

For the parametric draws in our piggyback approach, we estimated the variance of 
the MLE 0~ and then drew standard normal deviates with this variance and added them 
to t~n for each data  set. To estimate the variance of t~n, we applied Corollary 3 of Murphy 
and van der Vaart (2000). That  is, we calculated 

lim _21ogpgn~nl + h) - logp,.n~Vn/e l~ a =-- ]0, 
h---*0 400h 2 

and took the variances of the normal deviates to be (400]0) -1. See DKL for details on 
how this limit was computed in the simulations. 

In order to maximize over the parametric component of the model in the weighted 
bootstrap (and in finding 0n to apply the method described in the previous paragraph for 
the piggyback bootstrap),  we used a search algorithm that returns a value which is the 
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parametric MLE plus or minus .01. This algorithm is a modified grid search algorithm 
and does not compute any derivatives. 

We performed 2000 bootstrap repetitions for both the piggyback and weighted boot- 
straps for each of the 200 simulated data  sets. For reasons discussed in the Introduction, 
we use the number of profile computations required by each bootstrap procedure as a 
measure of computational complexity. In the weighted bootstrap, we profiled (maxi- 
mized) over the nonparametric component of the model on average 58189.755 times per 
data  set. The mean number of iterations of the fixed point algorithm for computing 
these A values was 35.758 with standard deviation 12.375. In order to obtain the vari- 
ance estimates for the parametric component for use in the piggyback bootstrap, we 
profiled over the nonparametric component of the model on average 31.995 times per 
data set. (Note that  this includes the profile computations needed to find the MLE for 
each data set.) The mean number of iterations for computing each A was 36.909 with 
standard deviation 12.468. In piggybacking the draws for A on the 2000 vMues of 0 so 
drawn for each of the data  sets, the mean number of iterations was 43.468 with standard 
deviation 9.867. Thus in the piggyback bootstrap we profiled over the nonparametric 
component of the model an average of 2031.995 times per data  set compared to the 
average of 58189.755 times for the weighted bootstrap, a ratio of 1 to 29. It might be 
possible to streamline our maximization algorithm to decrease the number of times we 
must profile over the nonparametric component in the weighted bootstrap. But to beat 
the piggyback bootstrap in this sense, we would need to profile over the nonparamet- 
ric component on average less than 2031.995/2000 times for each of the 2000 bootstrap 
likelihoods. This would require that  the first candidate value we try in each bootstrap 
likelihood search happens to be the MLE (plus or minus some small error) almost all the 
time, which is clearly beyond even the best search algorithms. 

In constructing confidence bands for the cdfs of the vaccine and placebo groups, we 
considered only the middle 75 percent of the observations. The reason for this is that  
the bands narrow towards the ends of the data  set due to the nature of the estimate. 
Indeed, the estimated value of the cdf for the largest observation will always be 1, and 
so the confidence band at that  point will never contain the true value. To construct a 
level a pointwise confidence interval at an observation y, we find the middle a percent of 
the 2000 cdf estimates induced by the draws at y. A 95 percent simultaneous confidence 
band is constructed by finding the smallest value of a so that  95 percent of the cdfs 
induced by the draws are contained within the level a pointwise confidence intervals for 
all observations y in the middle 75 percent of the observations. 

See Fig. 1 for the resulting confidence intervals and bands for one of the simulated 
data  sets. Since the piggyback and weighted bootstraps only specify the values of the 
intervals and bands at the observation points, we interpolated to create these figures. We 
tried two interpolation schemes, which we call leftpoint and midpoint. In these schemes, 
the estimates were extended to the range of the data  by creating a step function, with the 
observations in the data  set taken as either the left endpoint or the midpoint, respectively, 
of each step. See DKL for a precise description. 

Table 1 presents the coverage of these bands so defined for the piggyback approach 
and the weighted bootstrap for three interpolation schemes: none, leftpoint, and mid- 
point. The values for "none" are obtained by only considering whether or not a confidence 
band contains the true cdf at each observation in the data  set, and not between obser- 
vations as is the case for interpolation. Note that  we prove in this paper that  the two 
methods are asymptotically equivalent. Even for this moderate sample size, we see that  
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Fig. 1. MLE cdfs for placebo and vaccine groups with 95% confidence intervals and confidence 
bands, for a simulated biased sampling data set. 

Table 1. Coverage of 95% confidence bands generated with the piggyback bootstrap (pb) and 
weighted bootstrap (wb) approaches for three different interpolation schemes. 

pb wb pb wb 
Interpolation placebo placebo vaccine vaccine 
none 92.5% 93.5% 93% 92.5% 
leftpoint 91% 92% 9 1 . 5 %  90.5% 
midpoint 92% 93% 93% 92.5% 

the two methods perform close to the same. Although the piggyback bootstrap does 
slightly better than the weighted bootstrap for the vaccine group, and slightly worse 
than the weighted bootstrap for the placebo group. 

We also constructed confidence intervals for the parametric component of the model. 
For each data set, the .975 and .025 percentiles of the draws for the parametric com- 
ponent were taken as the ends of the corresponding confidence interval. The coverage 
of these intervals was 94.5 percent using the weighted bootstrap, and 93 percent using 
the piggyback bootstrap, both of which are within 2 Monte Carlo standard deviations 
of 0.95 (0.03 = 2V/0.95 • .05/200). 

5. Regularity conditions 

In this section, we present sufficient technical conditions for the piggyback boot- 
strap to have the desired asymptotic property given in Theorem 2.1. This section may 
be skipped at first reading. Conditions (PB1) through (PB3) are conditions on the struc- 
ture and smoothness of the information operator. Condition (PB4) involves asymptotic 
conditions on the Monte Carlo parameter estimates. Condition (PB5) requires sufficient 
smoothness of the score operator for the infinite dimensional parameter. Condition (PB6) 
requires the estimators to be efficient. 

As noted in the Introduction, we consider likelihoods of the form I]i~=1 6(0, A)(D~). 
Here the contribution of the i-th subject to the likelihood, f(t?, A)(D~), depends upon 
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the da ta  vector Di corresponding to the  i- th subject ,  a vector  0 �9 IR d, and a nonnegative 
function of bounded  variat ion A(t) defined for t in some finite interval [0, 7]. Restr ict ions 
on the paramete r  spaces of 0 and A will be  model  specific. See Appendix  B for restrictions 
on the biased sampling model, Appendix  B of DKL  for restrictions on the odds-ra te  
model,  and Dixon (2003) for restrictions on the other  example models. 

Let h = (h i ,h2) ,  where hi �9 1R d and h2 is a nonnegative function of bounded  
variation on [0, 71. Let I1" I[~ denote  the Euclidean norm for i = 1, the total  variation 
norm for i = 2, and t1" Ill --~ 11" ![2 for i -- 3 (i.e. flr = ll0111 ~-tlAII2) - Let $ be  a set. We 
use OSp(Rn)(s) to denote  a term F~(s) -- RnQ~(s) such that  sup~c s I[Q~(s)[[ converges 
in outer  probabi l i ty  to 0 as n --~ ec (here [[. [[ = [[-[[i for i = 1, 2, or 3 as appropriate) .  
We assume the score operator  for the model,  

/0 un[O,A](h) =- ~tgn O + th l ,d  + t h2(u)dd(u) 

= Ogn(O+thl 'A) t=o 0 (O,A+ fo 'h2(u)dA(u)) t=o + -~ g ,~ t 

exists. Denote  the first te rm in the last line Un,I[O,A](hl) -- nF,~Ul[O, A](hl)  and the 
second U~,2[O, AI(h2 ) - nFnU2[O, A](h2). Let hi �9 R d, and/~2 be a nonnegative function 
of bounded  variation on [0, T]. We assume the following derivative exists 

(5.1) sUi[O -[- Shl, A + sh2](hi) ~=o 

= ff--~Ui[O + shx,A](hi) ,=o +Oui[o'  A + s/~2](hi) s=o' i = 1,2. 

The  following are the regularity conditions: 
(PB1) The negative of the first t e rm of the  right hand side of (5.1) is of the 

form h~&i,l[O,A](h~), and the negative of the second term is of the form 
fo~i,2[O,A](hi)(u)d[12(u) for i --- 1,2, where 5i,l[O,A](hi) is a r andom d-vector de- 
pending upon an observation, and ~i,2[O,A](hi)(u) is a r andom function of bounded  
variat ion on [0, T] depending upon  an observat ion for i = 1,2. Define ~n,i,j[O, A](hi) --- 
IP, hi,j [0, A] (hi), i, j = 1, 2. Then 5 ,# , j  [0, A] (hi) has total  variat ion bounded  by some M 
over all n. 

(PB2) Denote  aib[O,A](hi) =- Po(~ij[O,A](hi), i , j  = 1,2, where P0 is the expec- 
ta t ion under  the  t rue  model. Let  7-I = 7-tl • 7Y2, where 7Y1 -- I~ a and 7-12 is a set of 
functions which includes all h(s) = a2,2100, A0] -1 (I{s < t}) with t �9 [0, T]. And define 

[1" ][~2 ~_ SUPh6~ 2 I[" [Ij, J = 1, 2. Then limo--.Oo,A-~Ao ]lo'2,j[ 0, A](h) -ff2,j[0o, Ao](h)l]y 2 = 
0, j -- 1, 2. 

(PB3) For some c > 0, {~r2,1[o,a](h)i, ll 0 -Ool l l  < c, ll A - Aoll2 < c,h �9 ~t2}, 
i = 1 , . . .  ,d, and {~r2,2[O,A](h)(u), IlO- 00111 <_ c, I tA-  Aol12 <_ c,h �9 T{2,u �9 [0, T]} are 
Donsker  and bounded.  

(PB4) (i) x/~(0n--0n) ~ x/n(0n =00) and the common limiting dis t r ibut ion is tight. 
(ii) x/~(A~o - Aoo) ~ v/-~(Aoo - Ao) and the common limiting dis t r ibut ion is 

tight and cadlag. 
(iii) V~[IA~. - A01[2 ~ ()p(1) q- o~2(1 -b V~l[~n -- t~0[ll). Here and in what  

follows, ~)p(1) denotes a r andom sequence which converges weakly to a tight, 
cadlag limit. 
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(PB5) PoU2(Oo, A0)(.) = 0 and {U2(00, A0)(h), h E 7-/2} is P0-Donsker. 
(PB6) V~(tgn -- 00, 4g ,  -- A0)' is asymptotically linear, regular, and efficient. And 

the information operator 

O'1,2 0"2,2 

is continuously invertible and onto. Here, and in other cases where the full notation is 
not necessary for clarity, we abbreviate 0"i,j [00, A0] = 0"i,j, i, j = 1, 2. 

We assume the boots t rap weights rh , . . . , r l~  above are i.i.d., nonnegative, and 
with mean and variance 1. A technical condition on the bootstrap weights useful 
in establishing the validity of the weighted bootstrap and condition (PB4)(ii) is that  
f j  x/Pit/1 > x]dx < c~. Note that  we assume the bootstrap weights are generated so 
that  they are independent of the data, and that the draws On generated for the parametric 
component are i.i.d, and independent of the bootstrap weights. 

In Appendix B we give an outline of arguments one can use in verifying the reg- 
ularity conditions in models such as our example models. We discuss verification of 
the regularity conditions for the biased sampling example there. Appendix B of DKL 
discusses verification of the regularity conditions for the odds-rate model as well. See 
Dixon (2003) for a detailed verification of the regularity conditions for the other example 
models. 

DKL discuss the relevance of the above conditions in proving the main theorem. 
Here we discuss condition (PB4) only. Condition (PB4)(i) simply states that we have 
valid draws for the parametric component of the model. The tightness of the limit 
distribution allows us to apply Slutsky's Theorem (Example 1.4.7 of VW) in various 
parts of the proof. In Section 2 we discussed methods of obtaining such draws in practice. 
Condition (PB4)(ii) requires that  the boots t rap is valid when 0 is fixed at 00. This should 
hold whenever the bootstrap is valid for the full r Note that  we require the limit in 
(PB4) (ii) to be tight and cadlag. This is useful in various parts of the proofs in light of 
Lemma 5.1 below. 

LEMMA 5.1. Suppose we have an expression of the form 

(5.2) Q~(h) =v/-~ fn(h)(u)dgn(u) 

where fn(h) -- o~2(1)(h) has total variation bounded by some M over all n, and v/-ngn 
converges weakly to a tight, cadlag limit. Then Qn(h) = Op~(1)(h). 

See DKL (2004) for a proof, which employs arguments from the proof of Lemma 
A.3 of Bilias et al. (1997). 

For example we use Lemma 5.1 in the last step of the proof of Lemma A.4, taking 
gn = AOo - Ao and 

fn (h)(u) = 1~nO-2,2 [Oo, Ao + t~ (h)(4Oo - Ao)](h)(u) - a2,2 [00, Ao] (h)(u). 

A similar lemma is useful in going from the second to last to the last line of the 
proof of Lemma A.2. Note that  we first observe 4 ~ - ^ 0N A~ =(4~ Ao)-(4~-Ao), 
and the integral on the second to last line is broken up accordingly. The integral with 
respect to d[x /~(4~ - Ao)] that  results can be dealt with using Lemma 5.1 above. But 
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we do not necessarily have that  v ~ ( A ~  - A0) converges weakly to a tight, cadlag limit. 
Condition (PB4)(iii) is a weaker condition than this, which turns out to be easier to 
verify in our examples. In this case we use the following lemma, taking gn .~o _ A0 On 
and 

f n ( h ) ( u )  = F,~ {~2,2[t~n + tn(h)(On - 0 ~ ) , - ~  + t~ (h ) ( . 4~  - .4~)](h)(u)} 

- a2,2 [00, A0] (h)(u). 

LEMMA 5.2. Suppose we have an expression of the f o rm  (5.2) where f n ( h )  = 
o~:(1)(h) and IIv/-ngnl]2 ~ ()p(1) + Opt2(1 + v/nllOn - 00H1). Then Qn(h)  ~- Op 

See DKL for a proof of this lemma, which is similar to the proof of Lemma 5.1. 

6. Discussion 

We have demonstrated that  in semiparametric models where both the finite dimen- 
sional parameter 0 and the infinite dimensional parameter A are ~ consistent, it is 
possible to significantly decrease the dimensionality of the maximization required for 
Monte Carlo inference compared to the weighted bootstrap. 

The proposed piggyback bootstrap algorithm is easy to implement. First, draws for 
the parametric component On are generated with the same sampling distribution as the 
MLE 0n. Under the regularity conditions, this can often be accomplished by estimating 
the covariance matrix of On and adding normal deviates with this covariance to 0n. In 
some models, such as the Cox model, a theoretical estimate of the covariance is readily 
available. In other models, such as the biased sampling model in the simulation study, 
one can use Corollary 3 of Murphy and van der Vaart (2000) to accomplish the variance 
estimation. This involves computing a limit involving the profile likelihood evaluated 
at various values of 0. We gave details on this method in Section 4. An alternative is 
Lee's (2000) MCMC approach, which is based on other results from Murphy and van 
der Vaart (2000). Next, for each parametric draw 0n, we piggyback the draw for A onto 
the draw for 0 by performing the profile computation An = argmaxAt~(On,  A).  This 
computation can be accomplished using the fixed point algorithm given in Section 2. 
Our main result is that  the resulting pair (0n, An) has the correct limit distribution for 
joint semiparametric inference, as discussed in Section 2. 

The regularity conditions necessary for the method, given in Section 5, are not 
difficult to check in practice. Appendix B provides an outline for verifying the regularity 
conditions for models such as our example models. 

For right censored survival data, the method applies to the Cox proportional hazards 
model, the proportional odds model, and the odds-rate model. In the case of clustered 
survival data, the procedure applies to the shared and correlated gamma frailty models. 
An application not arising in survival analysis is to biased sampling models, which arise 
in vaccine efficacy trials. 

In the odds-rate model, the frailty W is assumed to be gamma distributed with mean 
1 and variance 7. We are confident the method can be proved valid for frailties following 
other distributions with unknown parameters. Asymptotic theory for some such models 
has been worked out by Kosorok et al. (2004), including the validity of the weighted 
bootstrap. In addition, the method should be applicable to the more general proportional 
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hazards random effects regression models for clustered survival data considered in Vaida 
and Xu (2000). However, in the more complex cases, asymptotic theory has not yet 
been worked out. Perhaps the most complex case worked out thus far is the correlated 
gamma frailty model of Parner (1998). 

While the precise choice of the distribution of {rh} in the weighted boots t rap has 
no effect asymptotically, the rate of convergence may be affected. Newton and Raftery 
(1994) discuss different choices in the context of parametric maximum likelihood. They 
demonstrate that  unit exponential weights, which are Dirichlet after standardizing, per- 
form well. Our own experience is that exponential weights also work well for semipara- 
metric inference. 

Our main theoretical result on the validity of the piggyback bootstrap for semipara- 
metric inference was confirmed in the simulation study in Section 4. We saw that for 
simulated vaccine trial data from a biased sampling model, the piggyback boots t rap and 
the weighted bootstrap performed close to the same in semiparametric inference, with 
the piggyback bootstrap providing a dramatic improvement in computational efficiency. 

Appendix A: Proof of main theorem 

In this appendix we prove the main theorem and the intermediate lemmas. 

PROOF OF THEOREM 2.1. This theorem follows from the expansion 

(A.1) v/-n(.4~(t) - A0~(t)) = - v/-~(0n - O~)'a2,1[Oo, Ao][a2,2[Oo,Ao]-l(I{u < t})] 
~ o  _ 

+ v/-~(Oo(t) ftOo(t)) + o[p~ 

which we prove below. Let Un have the distribution of v~(0n - 0o) and let Vn have 
the distribution of v/-~(.4oo(t) - Ao(t)) and let Un and Vn be independent. Since the 
bootstrap weights and the draws 0n are independent given the data, (PB4) implies 

- -  v / - n ( O n  - -  0n)'a2,1 [0.2,1(I{u _< t})] -~- v/-n(A~o (t) - Aoo(t)) 

.~ -U~a2,1[0.~,~(I{u <_ t})] + V~ 

-Z~00.2,1 [0.~,21 (I{u _< t})] + ZA(t), 

where Zo is mean zero Gaussian with covariance (0.1,1 -1 -1 -0.1,2a2,20.2,1 ) and ZA is mean 
zero Gaussian with covariance 0.-1 and Zo is independent of ZA. Thus 2,2, 

^ ^ 

- On, Ao~ - AO~) ~ Z ,  

where Z'  - (Zo, ZA -- 0.~,1al,2Zo)' is mean zero Gaussian with covariance 

[ 1 ] ( 0 . 1 , 1  - - 1  - 1  --  0"2,10"2, 2 

--0.~,10-1,2(01,1 --  0.2,10.2,210.1,2) - 1  0 - -1  2,2 -t- 0.210.1,2(0.1,1 0"2,10.2.10.1,2)--102,10~ 1 

which is the inverse of the information operator. [] 

Before verifying expansion (A.1), we need the following preliminary lemmas in ad- 
dition to Lemmas 5.1 and 5.2 given in Section 5. 
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LEMMA A.1. 
then 

~t2 (1)(h), ]Pn62,j [0n, An] (h) - a2,j [00, A0] (h) = Op 

This result also holds with ~ replacing Fn. 

PROOF. Fixe  > 0 and observe that for j = 1, 2, 

l i m  P* (llli~n~2,j [t~n, fi'n] (h) - a2,j [0o, Ao] (h)tl~ t2 > e) 

m~x~lim n~lim I. ~P* (,[On-OoNI> 1 ) + p .  (U.~ n_AoH2 > 1 )  

+ P* ([]IPn52,j [0., An] (h) - o2,j [0o, Ao] (h) II] 2 > e, 
# 

"On-O~ ]]'An-A~ 1 ) }  

( - ~ ~ h 7-t2 _ < lim lim P* []Fn&2,j[On, fin](h) a2,j[On, An]( )[]j 
n ---~ o o  

k 

+ H~r2,j[t~n,.4~](h) - ,:r2;j[Oo,Ao](h)]l~ ~ > e, 

]l~n- 
m / 

lim lim P * ( l l P n S ' 2 , j [ O n , A n ] ( h )  - - ~ < - o 2 , y [ O . , A n ] ( h ) l l y  > ~, 
m ---* o o  n ....-~ ( x ~  \ 

Ilo. 0ollx_  lifo-go,  m m /  

for some ~ > 0 by condition (PB2). The last expression equals zero by condition (PB3) 
and the fact that a Donsker class is also Glivenko-Cantelli. For the case of IP~ replacing 
Fn, make the same replacement in the proof, and note that condition (PB3) implies 
{r162,j[O,A](h),I]O- 0oil _< c , I [A-  Zol] <_ c,h E 7-t2} is Donsker and hence Glivenko- 
Cantelli for j = 1, 2. [] 
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Under conditions (PB2) and (PB3), if On ---~p Oo and -An ---~p Ao, 

j =1 ,2 .  

v ~ ( O n  ^ ' ~  = - 0 n )  2,1 [0o, Ao](h) 

LEMMA A.2. 

v~(]P ~ - IPn)U2(0n, Ao~)(h) 

+ ~ 9fn T a2,2 [0o, A0] (h)(u)d(A~. - AO~ )(u) 

+ Opn2 (1)(h). 

PROOF. By definition of A~ and A0. we have 

0 = (17~ - l?n)U2(0n, Ao~)(h) + l?~(U2(0n, .4~)(h)  - U2(0n,-40~)(h)). 

Using 2.4.8 of Abraham, Marsden, and Ratiu (1988) (hereafter abbreviated AMR) to 
expand the rightmost term of the preceding equation, under condition (PB1), we obtain 

( ~  - ~n)v2(s A~o)(h) 
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=--]~{ ~--~U2[~n-FS(On-~n)'~'~ +S(2~'~-'~'~)](h) s=t,~(h)} 

= P~{(0n - 0~)'~2,119~ + t~(h)(O~ - 0n),-A~ + t n ( h ) ( . 4 ~  - A ~ ) ] ( h ) }  

o{/0 + 17~ ~2,2[0n + tn(h)(O~ - 0~), 

"40,~ + tn(h)( f~ ,~  - .AO.)](h)(u)d(A~,~ - A0~)(u)},  

for some tn (h)  e [0, 1]. Note tha t  
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_ ^ ^ n2(1)(h)  a2,j[9o,Ao](h) = F~(~2,j[0n + t~(h) (gn  9 n ) , A ~  + tn (h ) ( -A~  - A~.)](h)) + Op 

by Lemma A.1 and conditions (PB2),  (PB3) and (PB4). This, condit ion (PB4),  and 
Lemmas 5.1 and 5.2 imply, 

and 

Y/-n(On -- ~n)'O2,1 (h) 

= v/-nP~{(0~ - 0~)'a2,1 [0n + tn(h)(O~ - 0~), AO~ + t n ( h ) ( A ~  - A#~)](h)} 

~t2 (1)(h), + Op 
{/o r v/~P~ ~2,2[t~,~ + tn (h) (9~  - On), 

.AO. + tn (h ) ( f l~ .  - f iO~)] (h ) (u )d ( f t~  - .A~.)(u)} 

// = I?~{~2,2[0n + t~(h)(On - On), 

) t s  + t~(h)(Ao~^~ _ f t O n ) ] ( h ) ( u ) } d [ v ~ ( ~  ~ _ ~0,~)](u ) 

// = v ~  a2,2[0o, A o ] ( h ) ( u ) d ( A ~  - .40~)(u) + Opn2(1)(h). [] 

LEMMA A.3. 

v/-n(F ~ - F~)U2(gn, .Aa~)(h) ~ v/-n(Pn - Po)U2(Oo, Ao)(h) .  

PROOF. If we show that  

~2(1)(h),  v/-n(P~ - Pn)U2(0n, A ~ ) ( h )  = v/~(P~ - IPn)U2(9o, Ao)(h)  + Op 

then the conclusion follows as a consequence of Theorem 2.9.6 of VW. To see this, note 
tha t  by Slutsky's Theorem (Example 1.4.7 of VW) and condit ion (PB5), 

V ~ ( P  ~ - -  Pn)U2(Oo, Ao)(h)  = v/-nPn~U2(0~ Ao)(h)  _ v/-~pnU2(0o ' Ao)(h)  
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n~(1)(h) = v/-nPn,U2(Oo, A o ) ( h )  - x/nF~U2(00, A o ) ( h )  + Op 

= v/-nP~(~ - 1)(U2(0o, A o ) ( h )  - PoU2(0o, A o ) ( h ) )  

v ~ ( ] P ,  - Po)U2(Oo, Ao ) (h ) .  

The last line follows by the aforementioned theorem from VW. Thus all that remains is 
to prove the first display of the proof. 

To establish the first display of the proof, note that 2.4.8 of AMR reveals 

v/-~(P~ - s  A ~ . ) ( h )  - v/-~(IP~ - iP~)U2(0o,  Ao)(h) 

= -v/-n(P~ - P~){(t~ - 0o)'b2,x [8o + tn(h)(O~ - 80), Ao + t ,~(h)(AO. - Ao)](h)} 

- v'~(l?~ - IP~)  02,2[0o + tn(h) (On - 0o), 

t ~ ( h ) ( . 4 s  - A o ) ] ( h ) ( u ) d ( A s  - Ao)(U)}, Ao + 

for some t n (h )  �9 [0, 11. Note that (I?,~ - IPn)~2j[0o + t n ( h ) ( 8 n  - Oo),Ao + t~ (h ) ( f tO .  - 

A0)J(h) = o~2(1)(h) for j = 1,2 by by conditions (PB2), (PB3) and (PB4), and 
Lemma A.1. This, Lemma 5.1, and condition (PB4) completes the proof of the first 
display, and hence, the lemma. [] 

LEMMA A.4. 

/o V'-~(I?n -- Po)U2(Oo,Ao)(h) = v ~  a2,2[Oo,Ao](h)(u)d(Aoo - A o ) ( u )  + o~2(1)(h). 

PROC~. By condition (PB5), the definition of A0o, and 2.4.8 of AMR, 

v~(Pn  - Po)V2(80, A o ) ( h )  

= v/-nPn(U2(80, A o ) ( h )  - U2(80, Aoo) (h ) )  

{fo  r } 7~2 (1)(h)' = v/-~Pn b2,2IOo, Ao + tn(h) ( f too  - Ao)] (h ) (u )d( f ioo  - Ao)(U)  + %  

for some t n ( h )  e [0, 1]. Note that  

~nO'2,2 [80, AO + tn (h)(Aoo - Ao)] (h) = cr2,2 [80, Ao] (h) + Op ~2 (1)(h) 

by conditions (PB2), (PB3) and (PB4), and Lemma A.1. This, Lemma 5.1, and condition 
(PB4) completes the proof. [] 

PROOF OF (A.1). Note that by condition (PB4), 

/o /o" a2,2 [80, Ao] (h) A ~ - ~ (u)d( Oo Aoo)(U) v ~  a2,2[Oo, Ao](h)(u)d(Aoo Ao)(u). 
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This and the conclusions of Lemmas A.2, A.3, and A.4 give 

vrn .~  ~ ~r2,219o, Ao](h)(u)d(-4~o - A0o)(~) 

= v/-n(On - ~n)'a2,1 [00, A0] (h) 

// + v 'n  cr2,2[Oo,Ao](h)(u)d(A~ - A0~)(u) + 0~2 (1)(h). 

Since /-/2 includes all functions of the form h(u) = a2,2[00,Ao]-l(I{u _< t}) ,  for all 
t ~ [0,T], we have established (A.1), and the proof is complete. [] 

Appendix B: Verifying the regularity conditions for examples 

In this appendix we verify that  the regularity conditions hold for the biased sam- 
pling model, adding some technical restrictions as necessary. See DKL for the odds-rate 
model, and Dixon (2003) for a verification of the regularity conditions and the additional 
technical restrictions for the other example models. We start with a general outline that  
the arguments follow in all of the examples, and which should serve as a guide to verifying 
the regularity conditions in other applications. 

As our approach is an alternative to the weighted bootstrap, we note that  the validity 
of the weighted bootstrap for the Cox proportional hazards model, the proportional odds 
model, and the odds-rate model follows from Kosorok et al. (2004). For the shared and 
correlated gamma frailty models, the validity of the weighted bootstrap which assigns 
weight to clusters (as described in Section 3) follows by similar arguments. And Gilbert 
(1996) establishes the validity of the weighted bootstrap for the biased sampling example. 

B.1 General outline 
Verification of the regularity conditions follows the same outline in each of our 

examples. The same outline should be applicable to other semiparametric models. 
Conditions (PB1) and (PB2) can be readily verified by inspection of the score and 

information operators, which we give for the biased sampling model below. Condition 
(PB6) can be verified in our examples using the Z-Estimator master theorem (Theorem 
3.3.1 of VW) and Convolution Theorems (Theorems 5.1-5.3 of Bickel et al. (1993)). The 
fact that  the information operator is continuously invertible and onto is established using 
a standard result from functional analysis (see Theorem 3.4 and Corollary 3.8 of Kress 
(1989)). 

Verification of conditions (PB3) and (PB5) is routine in our examples using Donsker 
theorems from VW. As an example, consider the piece x ( / )  - f(s)eO'Z( )dA(s) 
which appears in many of our survival analysis examples. We have the following lemma. 

LEMMA B.1. For each fixed p < c~ and each fixed r E Oq • BVr  with q, r < co, 
the class { H i ( f ) :  f e BVp} is Po-Donsker. Here Oq - {0:I[011 < q}. 

PROOF. Classes of cells and uniformly bounded classes of functions of bounded 
variation are standard examples of Donsker classes. Thus Y( . ) (~  I{X _> .}), ~'Z(-),  
and f( . )  are uniformly bounded Donsker classes on [0, T]. The exponential function is 
Lipschitz on compact sets, therefore the Lipschitz Transformation Donsker Permanence 
Theorem (Theorem 2.10.6 of VW) gives that  exp(/~'Z(-)) is Donsker on [0, T]. Since 
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the product  of two Lipschitz functions is Lipschitz on compact  sets, another  appl icat ion 
of this theorem gives that  f ( . ) eZ ' z ( )Y( . )  is Donsker.  Thus  the claim follows from the 
continuous mapping theorem. [] 

Condit ion (PB4)(ii)  can be verified in our examples by the following argument ,  
which is similar to the proof  of the validity of the weighted boo t s t r ap  for propor t ional  
hazards frailty regression models given in Kosorok et al. (2004). 

LEMMA B.2 Condition (PB4)(ii)  holds in our examples. 

Sketch of Proof. Define r  - (O, A~) and ~o -- (0, A0). Applying the Z-Es t imator  
n o master  theorem of V W  gives tha t  v~( r  - r  = v / - r tFnU~(r  + Op(1) un- 

conditionally, and v~( r  - r  = v/-r~FnU~'(r + op(1), where Op(1) denotes  
a quant i ty  --~ 0 uniformly in outer  probabili ty.  Thus  V ~ ( ~ o  - ~0o) = s/~(  ]P~ - 
lPn )Ur ( r  + Op(1) unconditionally. Finally, note tha t  

- = - 

Pn~? 

= v / -~P~U~( r  ) - v ~ P ~ U ~ ( r  + Op~2(1)(h) 

= v ~ P n ( ~  - 1)(U~(r  - PoU~(r + o~2(1)(h)  

-~ x/n(P~ - Po)Y~(~bo)(h), 

where the last relation follows by the Multiplier Central  Limit  Theorem (Theorem 2.9.6 
of VW).  [] 

Condi t ion (PB4)(iii)  can be verified in our examples by a similar argument  to one 
used in the proof  of Theorem 3.4 of Lee (2000), which we give in the proof  of the following 
lemma: 

LEMMA B.3. Condition (PB4)(iii)  holds in our examples. 

Sketch of Proof. Define 

o 0 o [9n(A)(h) - P,~U , Dn(A)(h)  - PnU , 

and 

Note  that  -- 0 and Do(Ao) = 0. We can use Lemma 3.3.5 of V W  to ob ta in  

v ~ ( b ~  - Do)(-A~) - v/-n(b~ - Do)(Ao) = Opt2(1 + v/-nHr ~ - r 

and 
X / ~ ( D n  - -  D n ) ( A o )  = x / ~ ( b n  - Do)(do) - v / - n ( D n  - Do)(Ao) 

_ -  o 2(1 + - 60,Jl)(h),  
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from which we have 

x/~(Do(.4;.)  - Do(Ao)) = v/-n(Do(A~.) - b . ( A ~ . ) )  

= --V~(Dn -- Do)(Ao) + Opt2(1 + v llr - r 

= - v " - n ( D n  - Do)(Ao) + o~2(1 + - r  

= Op(1) + Opn2(1 + v ll@  - r 

The last equality in the preceding display follows from the Z-Estimator master theorem 
of VW. Since a is continuously invertible, we have for some c > 0 that  

IlDo(A) - Do(Ao)ll _> cllA - Aolle + o(llA - Aol12). 

Thus, v @ l A ~  - Aoll2(c+ Opt2 (1)(h)) _< Op(1) + Opt2(1 + v~nll(?~ - 0olll)(h). Multiplying 
each side by (c + Op n2 (1)(h)) -1 and applying Slutsky's Theorem (Example 1.4.7 of VW), 
we have the desired result. [] 

Draws O n satisfying condition (PB4)(i) can be generated in our examples by applying 
results from Murphy and van der Vaart (2000). 

LEMMA B.4. The hypotheses of Corollary 3 of Murphy and van der Vaart (2000) 
hold, and so we can obtain draws for the parametric component of the model satisfying 
(PB4)(i). 

Sketch of Proof. Based on the discussion in Chapter 25 of van der Vaart (2000) 
an approximately least favorable submodel for estimating (? in the presence of A is 

dAt((?, A) = (1 + (0 - t)Wuo)dA, 

where Vo : R H ~ d  is the least favorable direction at ((?0, Ao) defined by 

--1 Rd. hT~0 = cr2,2cq,2h , h E 

Let 0n -~ (?o almost surely under Po. It follows from the definition of -40 that 
L~(t~n, A ~ )  _> Ln(0~,A0~). Therefore, noting that (0n,A0.) is consistent for ((?0, Ao), 
the method for proving consistency of the MLE in Theorem 3.2 of Lee (2000) (see also 
Theorem 1 of Parner (1998) or Theorem 3 of Kosorok et al. (2004)) can be adapted in 
a straightforward manner to show that A ~  -+ Ao almost surely under P0. Upon substi- 
tuting (? = t and A = At((?, A) into the log-likelihood function, it is seen that the path is 
smooth in t and is continuously differentiable. Arguments from the proof of Lemma B.1 
give that the Glivenko-Cantelli and Donsker conditions in Murphy and van der Vaart 
(2000) are satisfied. All that remains to be established is that  their equation (11) holds. 
Murphy and van der Vaart note that  this equation holds whenever 

IIA0, - Aoll -- Op(ll0~ - (?011) + o p ( n - l l 2 )  �9 

This is certainly implied by 

v~llAo.  - Aoll -< Op(1) + OF(1 + Vf"nilOn - -  (?Oil), 

which can be proven in a similar manner to Lemma B.3. [] 
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B.2 A biased sampling model 
Observe that  for the biased sampling models 

(~bi(y, 0) f (vi(z,O)dA(z) 
Vl[O'A](hl) -~ hl -wi(y,O) f w i ( z , ~ ]  ' 

0"2[0, A](h2) = h2(y) - f h2(z)wi(z, O)dA(z) 
f wi(z,O)dA(z) ' 

(~1,110, A](hl) -- - h i  (wi(y,O)wi(y,O) -((vi(y,O)) 2 

f ~i(z, O)dA(z) f wi(z, O)dA(z) - ( f  (vi(z, O)dA(z)) 2 
- ) , 

51,210, A](h,)(v) = hl f wi(z,O)dA(z) - w (v,O) f  v (z,O)dA(z) ) 
(f  i(z, 

f h2(z)(vi(z, O)dA(z) f wi(z, O)dA(z) 
b2,1 [8, A] (h2) = ( f  wi (z, O)dA(z)) 2 

f h2 (z)wi (z, O)dA(z) f (vi (z, O)dA(z) 
( f  wi (z, O)dA(z)) 2 

and 
b2,210, A](h2)(v) -- h2(v)wi(v, 8) f wi(z, O)dA(z) - wi(v, 8) f h2(z)wi(z, O)dA(z) 

( f  wi (z, O)dd (z))2 

For the biased sampling model examined in the numerical studies, we used wl (z, 0) = e z~ 
and w2(z, 0) = 1, and we assume 0 lies in a known compact subset of R. Then conditions 
(PB1) and (FB2) are readily verified. Conditions (PB3) and (PBh) hold by arguments 
similar to the proof of Lemma B.1 and the proof of Theorem 5.8 of Gilbert (1996). The 
mean zero assertion of condition (PBh) follows upon taking expectations in the above 
expression for U2. Conditions (PB4)(i), (PB4)(ii) and (PB4)(iii) hold by the arguments 
of Lemmas B.4, B.2 and B.3. Here the necessary identifiability for using arguments 
from the proof of Theorem 3.2 of Lee (2000), as described in the sketch of the proof of 
Lemma B.4, follows from Theorem 4.4 of Gilbert (1996). Theorem 5.11 of Gilbert (1996) 
proves the validity of the boots t rap for bootstrap weights that  satisfy our aforementioned 
conditions. Finally, condition (PB6) follows from Theorem 5.8 and the discussion on 
pp. 106-107 of Gilbert (1996). Note that Gilbert takes 7-/2 to be the set of functions 
of bounded supremum norm. Since this contains the set of functions of bounded total 
variation norm, the proofs in Gilbert immediately imply that  our regularity conditions 
hold, except one must establish that  the information operator is continuously invertible 
and onto for this smaller space of functions. This holds by the same arguments Gilbert 
uses for the larger class of functions. 
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