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A b s t r a c t .  We estimate nonlinear autoregressive models using a design-adapted 
wavelet estimator. We show two properties of the wavelet transform adapted to 
an autoregressive design. First, in an asymptotic setup, we derive the order of the 
threshold that removes all the noise with a probability tending to one asymptotically. 
Second, with this threshold, we estimate the detail coefficients by soft-thresholding 
the empirical detail coefficients. We show an upper bound on the /2-risk of these 
soft-thresholded detail coefficients. Finally, we illustrate the behavior of this design- 
adapted wavelet estimator on simulated and real data sets. 
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i .  Introduction 

Autoregressive models form an impor t an t  class of processes in t ime series. A non- 
paramet r ic  version of these models was first in t roduced  by Jones  (1978). Let  (~t, ~-, P )  
be a probabi l i ty  space and { X t }  a r a n d o m  process associated to  it. We observe the t ime 
series X0, X 1 , . . . ,  Xn tha t  follow the nonlinear autoregression model  

(1.1) X~ = ?Tt(Xt_l) q- (it, t = 1 , . . . ,  n. 

For theoret ical  purposes,  the  innovations e, are supposed to be i.i.d, wi th  E(e t )  = 
2 bu t  are not  necessarily Gaussian.  In practice,  an a lgor i thm tha t  allows 0; E( D = 

for heteroscedast ic i ty  is proposed.  
Several au thors  dealt  with the problem of es t imat ing the autoregression funct ion m 

nonparametr ical ly ,  e.g. Franke et al. (2002b), Hgrdle and Tsybakov  (1997), Masry  and 
T jes the im (1995), Hafner  (1998b), Robinson (1983), T jos the im (1994), Bi ih lmann and 
McNeil (2002). Very little is known however about  wavelet est imators  for autoregressive 
designs. The  only existing m e t h o d  of Hoffmann (1999) tha t  t rea t s  autoregressive models 
using a wavelet es t imator  is concerned wi th  asympto t ica l  results  only, and does not  pro- 
vide an efficient a lgor i thm in practice.  It  is well known (Donoho and Johns tone  (1998)) 
tha t ,  in the case of fixed, equispaced designs, wavelet me thods  enjoy min imax  proper t ies  
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for functions with inhomogeneous smoothness, like Besov or piecewise smooth functions. 
Our goal here is to provide a wavelet method for autoregressive designs that  permits to 
denoise data  that follows (1.1) even if the function m is only piecewise continuous. 

Such type of nonlinear autoregressive model, where m might be discontinuous, may 
arise when modelling econometric and financial data. Volatility in financial models of 
autoregressive type for exchange or stock index data  often shows some asymmetries 
(Hafner (1998a)) or even a behaviour that calls for threshold models (Gouri~roux and 
Monfort (1992), Gouri~roux (1997)). Chen et al. (2004) show that using nonlinear models 
proves more flexible for multi-step ahead prediction than traditional linear autoregressive 
models. 

The aim of this paper is to derive theoretical properties of a newly proposed al- 
gorithm for treating models of the form (1.1). This algorithm is based on the design- 
adapted wavelet estimators proposed in Delouille et al. (2001, 2004). 

In Delouille et al. (2001), we derive a so-called 'design-adapted' wavelet estimator 
based on the unbalanced Haar basis in the stochastic regression context. In Delouille et 
al. (2004), we build with the lifting scheme (Carnicer et al. (1996), Sweldens (1997)) a 
biorthogonal design-adapted wavelet basis with a higher regularity than the unbalanced 
Haar basis, that  still takes into account the irregularity of the design, i.e. no preprocessing 
of the data  is necessary. Moreover, this wavelet transform handles non-dyadic sample 
sizes in a natural way, and no particular treatment of the boundary is necessary. 

Other methods for treating fixed nonequispaced designs with wavelets have been 
proposed in the literature, but  almost all of them use some preliminary step (such as 
binning, interpolating, or projecting) to get back to the equidistant design situation 
and then apply the traditional discrete orthogonal wavelet transform algorithm (Cai 
and Brown (1998), Hall and Turlach (1997), Kovac and Silverman (2000), Delyon and 
Judi tsky (1997), Antoniadis and Pham (1998), Antoniadis and Fan (2001)). None of 
these methods have been transposed in theory or in practice to the autoregressive setting. 
As we face in time series a tendency to more extreme values and thus inhomogeneous 
designs, a preprocessing step such as binning would not give satisfactory results at all. 

In this paper, we use the wavelet-type algorithm developed in Delouille et al. (2004) 
and show two properties of the resulting design-adapted wavelet estimators for autore- 
gressive models such as (1.1): 

1. We derive a thresholding scheme, tailored to the time series setting, that  permits 
one to remove with a probability tending asymptotically to one, all the noise in the 
wavelet coefficients. This threshold is of order log n, as opposed to the order v ~ g  n for 
the threshold obtained by Donobo (1995) in the classical setting of fixed, equispaced 
designs. 

2. With  the threshold obtained in the first result, we estimate the detail coefficients 
by soft-thresholding the empirical coefficients. We then show an upper bound on the 
/2-risk of these detail coefficients, that  is, the risk of the estimator in the wavelet domain. 

With  these theoretical results, we also cover the stochastic regression model we 
investigated in Delouille et al. (2001, 2004) without deriving any theory on it. 

The above two results concern the behaviour of the wavelet coefficients. Since the 
lifting scheme produces biorthogonal (as opposed to orthogonal) wavelet transforms, a 
transfer of these results to the estimator in the time domain is not directly possible. 
However, having controlled the/2-risk in the wavelet coefficient domain gives sufficient 
insight about  the good denoising properties of the resulting estimator, in particular for 
a finite sample size (Simoens and Vandewalle (2003)). 
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This paper is organized as follows. Section 2 presents our main methodology, to- 
gether with practical applications on real and simulated data  sets, including data  sets 
with conditional heteroscedasticity, that is dependent errors. Section 3 contains our 
theoretical achievements: we give the assumptions on our model and derive the two 
above-mentioned properties of our threshold wavelet estimator. Finally, Section 4 con- 
tains the outline of our proofs. More details on those can be found in Delouille and von 
Sachs (2004). 

2. Main methodology and practical application 

2.1 Design-adapted wavelet transform 
-2Jo An orthogonal wavelet basis consists of a set {~ajo,k~k=l of scaling functions, and 

of a set of wavelet functions {r ..... 2J, where at each scale j > jo, Cj,k is 
orthogonal to ~j,k', for all k, k'. A biorthogonal basis consists of two parts: a dual basis 
{~jo,k}k U {r used for analysis (decomposition), and a primal basis (~jo,k}kU 
{r }j>jo,k that reconstructs the function. The dual and primal basis are linked through 
biorthogonal relationships (Cohen et al. (1992)). For any function m G L2(R), we have: 

(x) 

mix)  = 
k j = j o  k 

In this paper, we use particular design-adapted wavelets (DAW), i.e. wavelets that  
automatically adapt to an irregular design. Let F~ denote the stationary distribution of 
the time series {Xt } and let Fn be its empirical distribution function. DAW are wavelets 
which are (bi-)orthogonal in the space L2(d[~n) weighted by the empirical measure Fn. 

To build DAW, we need an adequate partitioning (Girardi and Sweldens (1997)) 
of the interval containing the data. When the sample size n is a power of two, this 
partitioning is given by the set of random intervals 

(2.1) Ijk = [X((k-1)l~+l), X(kZj+I)), k = 1 , . . . ,  2 j, lj = n2-J , jo  < j < J = log2(n), 

where X(1) <_ X(2) _< .-. _< X(,) are the order statistics, and, as a convention, X(,+I)  := 
X(n) + (X(n) - X(1))/n. When n is not a power of two, the construction of the empirical 
quantile partitioning {Ij,k} is generalized as follows (Sweldens (1997)). If at a given level 
j + 1 we have an odd number 2p + 1 of intervals, then the first 2p intervals will produce 
p intervals at the next level j .  The last interval Ij+l,2p+l will be passed unchanged to 
the level j .  In that  case, J := [log2(n)]. 

We now give two examples of DAW. 
1. The unbalanced Haar basis described in Delouille et al. (2001) is orthogonal in 

L2 (dEn). There 

(2.2) ~Pjk = ~jk = 2J/21jk; Cjk = ~jk ---- 2J/2(lj+l,2k+l -- 1j+l,2k), 

where lj,k denotes the indicator function on the random interval Ijk. 
2. The smooth biorthogonal D A W  basis is built as follows. Starting from the unbal- 

anced Haar basis in L2(dFn) given by (2.2), an average-interpolating prediction step in 
L2(dFn) is performed (Sweldens and Schrhder (1996), Delouille et al_ (2001)). This in- 
creases the number N of vanishing moments of the analyzing wavelet Cjk, which leads to 
a smooth reconstruction. We call this estimator 'weighted average-interpolating' (WAI). 
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It is then possible to add an update step which performs a local semi-orthogonalization 
(as in Delouille et el. (2004), Simoens and Vandewalle (2003)), the resulting estimator 
is denoted 'WAI-U'. The WAI analyzing wavelets are equal to: 

(2.3) ~)jk = 2(J+1)/2 E g J l k l j + l " '  

/:~jlk#0 

where the values gjzk are the refinements coefficients, chosen to ensure that  the analyzing 
wavelet Cjk has f i />  1 dual (analyzing) vanishing moments in L2(d['n). The values ~]jlk 
in (2.3) are uniformly bounded as soon as the values X, belong to a compact interval. 
By construction, the number of terms in the sum (2.3) is uniformly bounded in j ,  k 
(Delouille et el. (2004)): 

(2.4) sup # { l :  [Tjtk 7 ~ 0} =: K < c~. 
j,k 

The WAI-U wavelets are no more piecewise constant, but  the number of dual vanishing 
moments acquired during the average-interpolation is preserved. Hence, to prove the 
results announced in Section 1, it is sufficient to consider the WAI estimator. 

2.2 Design-adapted wavelet estimator 
Consider the autoregressive model (1.1) and the analyzing wavelets in (2.3). The 

empirical wavelet coefficients djk are computed from the d a t a / X  ~n-1 l tst=o as follows: 

(2.5) dj,k = djk + Pjk 
= _ n  1~-~ 

1 E m ( X t - 1 ) ( / ) j k ( X t - 1 )  -[- -- s  
n n t=l t=l 

where djk, djk, and Pjk are functions of n. The variance of djk is due to the stochastic 
nature of the design points n-1 {Xt}t=o and is not considered when removing the noise 
(innovation) part  by thresholding. Indeed, only the randomness that  comes from the 
innovations parts needs to be taken into account when denoising the data. 

Denoting by d~k the thresholded detail coefficient (see equation (3.9)), the wavelet 
estimator is 

(2.6) rh(x) = E Sjo,kWjo,k(x) + E ~' 
k j , k [ ( j , k )EJ ,~ , j>jo  

^ n - Z where Sjo,k :-- n -1 ~-~n=l Xt~jo,k( t - i )  are the empirical scaling coefficients, and follow- 
ing Neumann and von Sachs (1995), Delouille et al. 2001), only the detail coefficients 
whose indices belong to 

Jn  = {(j, k) [2 j < Cnl-a;  1 <_ k <_ 23}, 0 < oz < 1, 

are taken into account. The fine detail coefficients djk ~ ,~n are put  equal to zero. 

2.3 Practical applications 
Before stating our theoretical results, we show in practice the usefulness of WAI 

and WAI-U methods for estimation of nonlinear autoregressive process. Let 5ct = 9 ct --OO 
denote the a-field generated by the stationary time-homogeneous process {Xs , s  < t}. 
We first introduce algorithms for estimations, and next we give some practical examples 
on simulated data  sets and on the 1997 CAC40 index series. 
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2.3.1 Autoregressive (AR) models 
Consider the general AR model: 

(2.7) X t = ? T t ( X t _ l ) - F - f f ( X t _ l ) (  t t=O, . . . ,n ,  et~i.i.d, with E(et)=O,E(e~)= l. 

In case of a constant function cr(Xt_l) : ar we find back the model (1.1). To estimate 
(2.7), we modify the three-step algorithm of Delouille et al. (2004) in order to deal with 
the large variability (or low signal-to-noise ratio) inherent to time series data. 

1. Let J : :  Llog2(n)J be the finest resolution level. Compute a linear design-adapted 
wavelet estimator (based on WAI) with a cutting level j* equal to j* = J - 1. Call rh(x) 
the resulting estimate and let Xt : :  rh(Xt_l).  

n 2. From the data  set (Xt-1,  Xt)t=l, obtain a pilot estimator ~t0(x ) of re(x) using 
a linear design-adapted wavelet estimator, where the cut-off scale j l  is chosen as: j l  :-- 
Llog2(n)/2]. 

3. Take the residuals rt := )(t - ~t0(Xt-~) and estimate the variance function a2(.) 
from the data  set (Xt-~,  r2), t : 1 , . . . , n  using a robust linear Haax or WAI/WAI-U 
estimators. That  is, we choose a cutting level j2 := Llog2(n)/3J, and we discard the 1% 
of the residuals having the highest absolute value. Call this estimate ~2 (x). 

4. Estimate m from the data  set (Xt-1,  - n Xt)t=l by a non-linear thresholding wavelet 
estimator, using 8(x) to estimate the variance a~k of the wavelet coefficients. 

We use the threshold tjk : (~jkX/2(1 + 6jo ) logn, where 6jo is a correction factor 
for the correlation between wavelet coefficients induced by the biorthogonality of the 
transform (Berkner and Wells (1998)). 6jo is computed as the maximum of the cross- 
correlations between the detail coefficients. Theorem 3.1 gives the factor log n for time 
series. Compared to regression case, there is an additional factor of 1 ~  n, which is 
introduced to account for the dependence between the design points {Xt}t=o.'*-I 
2.3.2 AutoRegressive Conditionally Heteroscedastic (ARCH) models 

The ARCH(l )  model with no trend is traditionally writ ten as: 

(2.8)  = : 

where et are i.i.d, with E(et) = 0, E(et 2) : 1, and at := Var(Xt t ~'t_l). When a trend 
is present in the data, we call the model AR-ARCH: 

Xt : m(Xt -1 )  + ut; us : atet 

where et are as above, and E(u  2 [ ~-t-1) : at 2 : s(ut-1); ut-1 : :  X t - 1  - m(Xt -2) .  The 
aim here is to estimate both the trend m(.) and the variance function s(-). 

Since the wavelet denoising works only for additive noise, we need to rewrite the 
multiplicative ARCH model (2.8) as 

(2.9) X 2 : s(Xt-l) + Vt; Vt : s(Xt-1)(c 2 - I). 

Proposition 5.1 in Delouille and von Sachs (2004) shows that E(Vt) = 0 and 
Cov(Vs, Vt) = 0. This entails 

E[X2 = s(X _x);Var[X2 I 7 -1] = 1). 

In case of an ARCH model, we thus obtain a nonlinear wavelet estimate of s from the 
data set (Xt, X 2) by using the four step algorithm described above. 
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In case of an AR-ARCH model, s(.) is function of the lagged residuals ut-1 = Xt -1  - 
m ( X t - 2 ) .  For this reason, we modify steps 3 and 4 in the algorithm of Subsection 2.3.1 
as follows: 

3'. Estimate the residuals by ~t = Xt  -?7-t0(Xt_l). From the data  set (fit-l ,  ut2), 
obtain an estimator ~(x) of the variance s(x) by applying a robust linear DAW estimator. 
The cutting level is chosen equal to j2 := Llog2(n)/3J. 

4'. Knowing 8(~t--1), re-estimate the trend m using a nonlinear wavelet estimator. 
2.3.3 Simulated examples 

We now show on some simulated examples the performance of the above described 
Mgorithms. We use as a performance criterion: 

RMSE = ~ ( / ( X t - 1 )  - f (Xt--1))  2, 

where the function f represents either the conditional expectation (trend) or the variance 
function. To simulate stationary data, we use a burn-in period of 100 observations. After 
the burn-in period, we take a sample of size n = 200. We use a hard thresholding rule 
and take a primary resolution level J0 := 2. 

A R  model. Consider the piecewise constant model 

(2 .10)  z t  = + 71(x _l>5.5 (xt_l) + ~ N(0 ,  1), 

which is a type of so-called threshold models, see for example Gouri~roux and Monfort 
(1992), Tong (1983). Figure l(a) shows an estimation of the model (2.10) using the 
WAI-U estimator in the algorithm of Subsection 2.3.1. 
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Fig.  1. D a t a  are  r e p r e s e n t e d  by d o t s  (n  = 200), t h e  u n d e r l y i n g  s ignal  by a d o t t e d  line a n d  t h e  
e s t i m a t o r  by a p la in  line. (a) E s t i m a t i o n  of  t h e  p iecewise  c o n s t a n t  A R  m o d e l  us ing  t h e  W A I - U  
e s t i m a t o r ,  R M S E  = 0.2249. (b) E s t i m a t i o n  of  t h e  va r iance  func t i on  in an  A R C H  m o d e l  w i t h  
t h e  W A I  e s t i m a t o r ,  R M S E  = 0.1042. 
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Fig. 2. Est imat ion of the AR-ARCH model using the WAI-U estimator.  Da ta  are represented 
by dots (n = 200), the underlying signal by a dot ted line and the est imators  by a plain line. 
In (a), an example of the est imation of the  trend is given, whereas in (b) the es t imat ion of 
the variance function a 2 is given. The  x-axis in (b) represents the lagged est imated residuals 
~tt = X t  - ~ h ( X t - 1 ) .  The corresponding RMSE values are equal to (a) 0.1226 and (b) 0.0758. 

ARCH-type models. We consider the complete AR-ARCH model 

Xt  = 0.25Xt-ll{xt_l_<o} + 0.85Xt-ll{x~_l>o} + ut 
2 2 

Ut  ---- O't~t;  {it ~ N(O, 1), at 2 --= 0.2 -t- 0.2Ut_ll{u,_~<o} + 0.6Ut_ll{u,_l>_o}, 

as well as the ARCH model with no trend. Figure l(b) gives the estimation of the vari- 
ance function in an ARCH model with no trend, whereas Fig. 2 represents the estimation 
of the trend and volatility function in the full AR-ARCH model. Note how the procedure 
easily handles the presence of asymmetry in the volatility function. Also, the trend and 
volatility function can be estimated all together in a single procedure. 

Application on the CAC 40 index. We now apply the proposed methodology on 
the index (called 'CAC40') of the Paris'  Stock Exchange market. Figure 3(a) represents 
the series ( X t }  of the CAC40 from January 2, 1997 until December 31, 1997, containing 
250 observations�9 Since we want to model {Xt}  by a nonlinear AR-process of order one, 
we first represent Xt  as a function of Xt-1  in Fig. 3(b). After dealing with repeated 
data, the effective sample size was reduced to n = 241 observations. 

It is a common practice to model such financial time series by means of ARCH-like 
models (see, e.g., nngle (1982), Gouridroux (1997), Safner (1998b)). Hence we applied 
the algorithm for AR-ARCH models on these data, using the WAI-U wavelet estimator. 
Figure 4(a) shows the pilot estimator rh0(x) of the trend�9 Indeed, with this da ta  set, the 
nonlinear thresholding procedure did not improve the estimation. Figure 4(b) represents 
the linear estimation of the variance function. This figure clearly shows the presence of 
a quadratic component in the variance function, as it is often the case for such financial 
time series (Gouridroux (1997), Hafner (1998b)). 
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Fig. 3. CAC40 index series of Paris '  Stock Exchange, from January  2, 1997 until D e c e m b e r  

31, 1997. In (a) the t ime series itself is represented, in (b), the value at t ime t, X t  is given as 
a function of the lagged value X t - z .  
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Fig. 4. Estimation,  using a nonparametr ic  AR-ARCH model, of the CAC40 index series of 
Paris '  Stock Exchange, from January  2, 1997 until December 31, 1997. In (a) the est imation 
rh0(x) of t h e  t r e n d  i s  r e p r e s e n t e d .  In (b), the variance function at 2 is es t imated as a function 
of the lagged est imated residuals ~ t t - 1  = X t - 1  - rh0(Xt-2) .  

3. Theoretical results 

3.1 Assumptions and methodology 
Consider the autoregressive model (1.1), where the errors are i.i.d, but not necessar- 

ily Gaussian. In order to generalize nonparametric regression results for dependent data, 
we employ some 'degrees' of dependence between the observations. The mathematical 
concept is that of mixing conditions, which can be interpreted as the speed at which 
the series becomes asymptotically independent. More precisely, we use the fl-mixing 
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condition. 

DEFINITION 3.1. Let ( ~ , ~ , P )  be a probability space, with g and T/ two a- 
subfields of 5 ~. The ~-mixing coefficients for the process {Xt} are defined as follows 
(Bosq (1996), Davidson (1994)): 

~ ( g , ~ )  = E sup ]P(H) - P(H I g)l, 
HCT-t 

where P(H I g) is the probability of the event H conditioned on the a-subfield of g. 

For a sequence {Xt}_+~, let .Ptoo := a(X_~, . . .  ,Xt-2 ,Xt- l ,Xt)  be the a-field 
generated by ( X _ Q , . . . ,  Xt_2, Xt-1, Xt) and similarly define 5~+~m := 
a(Xt+m, Xt+m+l,...). The sequence {Xt}+~ is said to be absolutely regular or ~-mixing 
if limm--.~ tim = 0 where 

Zm := sup 
t 

We now make the following four assumptions on the time series {Xt}tno coming 
from the model (1.1). 

(A1) {Xt} is a strictly stationary time-homogeneous Markov chain. We denote 
by Fx the common cumulative distribution function of the Xt, which is assumed to be 
continuous, and to have a density defined on a compact interval. Furthermore, we assume 
absolute regularity (that is, fl-mixing) for {Xt} and that the fl-mixing coefficients decay 
at a geometric rate, that is tim = O(a -m) with a > 1 a constant. 

(A2) For all M < co, there exists finite constants CM such that E]etl M < CM. 
The assumption (A1) ensures the recurrence in the autoregression model. In 

Neumann and Kreiss (1998), Franke et al. (2002c), some conditions on the regression 
function re(x) are given in order to generate a time series {Xt} that  fulfills Assumption 
(A1). 

Here and in the following, we make the convention that 5 denotes a positive but  
arbitrarily small, and A an arbitrarily large constant. With this convention, assumption 
(A2) tells us that  there exist 5 > 0, ,~ > 0 such that 

(3.1) P ( sup letl > c~n~'~ < cn -;~ Vh' E (0,5) 
\ t= l , . . . , n  / 

where cA depends on A, and c represents, here and in the sequel, a generic constant. 
(A3) The set ,7~ used in the summation in equation (2.6) must be such that 

(3.2) J n  = {(j ,k)  I 2J <- Cnl-~; 1 < k < 2 j} with 45 < a < 1, 

where 5 is defined in (3.1). 
The theoretical difficulty that  arises when using design-adapted wavelets to treat 

autoregressive models is that the intervals used to build the wavelet functions are random, 
and in the time series context it is not possible to condition on the values of the regressors. 
To circumvent this problem we follow Neumann and Kreiss (1998) and approximate a 
random interval Z := Ijk by a union of fixed intervals coming from the theoretical 
quantile partitioning I ~ = {Ij~ }(j,k) where 

(3.3) i~ok [Fg  I k - i  ( k ) )  = ( - - ~ - - )  , F~ -1 , 

0 < j < j*, 1 < k < 2J, 2 j* < n < 2 j*+l. 
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Beginning from the coarsest scale, we approximate Z by a union of as large as possible 
intervals belonging to I ~ There exist indices (j~, k~) , . . . ,  (jd, kd) such that 

(3.4) I]l,kl U .. �9 U I]~,k d C_ 5[ 

where j l  < "'" < jd-1 <_ jd <-- j*. The number d of terms needed in the above approx- 
imation is a function of the random interval 2-. Moreover, as n tends to infinity, d will 
increase. To emphasize these facts, we use the notation that  d := d~(Z). 

Now, if we add two suitable intervals from the finest scale, I~.,h and I]. ,z2, say, then 
we can approximate 2- from above: 

( 3 . 5 )  

Finally, we need to relate the scale j of a random interval 27 - Ijk to the scale jt of 
the fixed intervals I~,k~ present in the approximation (3.4). 

(A4) Y(j, k) C Jn,  there exist finite constants cl, c~ such that, if I~,k~ C /j,k for a 
given l C {1, 2 , . . . ,  d~(Ij,k)}, then c2 <_ 2J/2 j~ _< cl, or, in short, 2J ~ 2 j~. 

3.2 Threshold that removes the noise with a high probability 
Consider the expression of the noise term Pjk for a WAI estimator, where the values 

Igjlkl are uniformly bounded by Assumption (A1): 

2(J+1)/2 
( 3 . 6 )  - -  

n 

There is a correlation between the Pjk induced by the correlation between the re- 
~X ~n-1 In this case, the classical universal threshold of order O ( ~ )  gressors ~ t f t = o .  

does not guarantee that  the empirical wavelet coefficients become asymptotically noise 
free. Instead, we need a threshold of order O(logn).  

THEOREM 3.1. Assume (A1)-(A4). Consider the WAI  detail coefficient djk = 
djk + Pjk as in (2.5), where (j, k) C Jn  as defined in (3.2). For each I such that [?ilk • 0, 
let I~t,k ~ be the largest interval that is included in the random interval Ij+l,t in a de- 
composition similar to (3.5), and let dn(Ij+l,t) be the number of coarse-scale intervals in 
the decomposition (3.5) of the interval Ij+l,t. Assume that these dn(Ij+l,t) are O(log n). 
Then we have 

P(IPjkl > tjk) <_ O(n -~) 

with 

\ 
(3.7) t j } = c ~  E log n} 

,:0j,~r \ v ~  / ' 

where the constant cA depends only on ,~. 

In the situation where all the jl ,  l -- 1 , . . . ,  K are equal to j in (3.7), the threshold tjk 
is of order ~v~ log n as opposed to t -- ~nx/2 log n in the regression with fixed, equispaced 

design case (Donoho (1995), Donoho and Johnstone (1994)). 
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Constructing tjk for all (j, k) E fin and defining 

(3.8) t(n) := max tjk, 

we have, using the Bonferroni inequality, that  

= O(n l -a -~) ,  

E 
j,kl(j,k)~Jn 
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P(Ipykl > t(n)) 

with 0 < a < 1 and A arbitrarily large. 
Recall now the definition of the soft-threshold nonlinearity: 

(3.9) ~s(d, t) = sign(d)(Id I - t)+, 

and let dt k := ~s(djk, t(n)) with t(n) given by (3.7)-(3.8). By construction of t(n), we 
h ave: / \ 

( 10) 

Theorem 4.1 in Donobo (1995) allows us to deduce from (3.10) that  for WAI, WAI-U 
and Haar transforms we have: 

(3.11) P(tdtkl < [djkl V (j, k) e J , )  > ~n. 

In addition, for the orthonormal Haar basis, the above inequality implies 

(3.12) P(llmllL2(dpo) < IlmllL=(d,~,~)) --> ~n. 

As said in the Introduction, the results for the WAI basis only pertain to the wavelet 
coefficient domain, hence (3.12) is not valid for a WAI basis. 

The proof of Theorem 3.1 is given in Subsection 4.2.1. We now check that  the 
derived threshold is not too large by looking at the/2-risk of the detail coefficients. 

3.3 Upper bound on the 12-risk of the detail coefficient 
Consider again the autoregressive model (1.1). In the wavelet domain, we have 

(3.13) djk = djk + Pjk, (j, k) E Jn 

as before. Using the location and scale dependent threshold {tjk} derived in Subsec- 
tion 3.2, we obtain the following risk inequality. 

THEOREM 3.2. In the autoregressive model given by (1.1) and (3.13), assume 
(A1)-(A4). In the decomposition (3.5) of a random interval Ij,k, where (j, k) E Jn  
as defined in (3.2), assume that the number dn(Ij,k) of intervals at coarse scales is of 
order dn(Ij,k) = O(log((logn)l/r)) for some r > 1. Consider the WAI  detail coefficients 
[ljk = djk + Pjk as in equation (2.5). Let [l}k := ~S([Ijk,tjk) be the soft-thresholded co- 
e~cients, where tjk is given in (3.7). Then, for some p, 1 < p < 2, and almost every 
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realization of the time series as in model (1.1), an upper bound on the 12-risk of the 
thresholded coefficients is given by: 

Eld k-dJ k12 <- E ( ca~(l~ (3.14) 
j,al(j,a)~:7, j,kl(j,k)EJ, n 

" ( 2 k , 4 t 2 k )  ) 4- mm 8d 

where c is a finite constant not depending on n. 

This upper bound goes to zero as n tends to infinity by definition of the set Jn  
in (3.2). Note that  the noise is not assumed to be Gaussian. Since we use biorthog- 
onal wavelet transforms, a direct transfer of the /2-risk of the wavelet coefficients to 
the L2-risk of the estimator Th in (2.6) is not possible. Indeed, Parseval's inequal- 
ity is not valid anymore. However, simulation studies in Simoens and Vandewalle 
(2003) show that the design-adapted wavelets form a Riesz basis where II~t - milL 2 ~ 
C(~-~j kl(j,k)e.7. Eldtk -- djk 12), with C a constant independent of n. This means that  the 
risk in the wavelet coefficient and estimator domains are comparable; having controlled 
the/2-risk as in (3.14) gives thus sufficient insight about the L2-risk of the estimator rh 
itself. 

Theorem 3.2 also covers the stochastic regression model we investigate in Delouille 
et al. (2004) without deriving any theory on it. An outline of the proof is given in 
Section 4 and details can be found in Delouille and von Sachs (2004). Note that  due 
to the random nature of the wavelets (and not only the wavelet coefficients) the proofs 
need different techniques and are not just a straightforward modification of the original 
results of Donoho and co-authors, e.g., Donoho and Johnstone (1994). 

3.4 Dependent error models 
The theoretical results of Subsections 4.2-4.3 were proven under the assumption of 

i.i.d, errors. In case of an ARCH model, when rewriting the model as in (2.9), the errors 
Vt become dependent. It is possible to transfer an ARCH model into an AR model with 
independent errors, if one considers the slightly less general ARCH model: 

(3.15) Xt = ~tet and a 2 = s(X2_l) 

where no asymmetric effect can be represented. With  the logarithmic squared data 
Yt : -  log(X2); Zt := log(e2), we have, see Franke et al. (2002a): 

Yt -- l og ( i t  2) = log(eft 2) 4- log(e 2) = log(s(Zt2-1)) 4- Zt 

= log ( s l ( log (X21) ) )  + Z t  with s l (x)  = s(e x) 

= fl(Yt-1) + Zt with f l ( ' )  = log(s1(.)), 

and we recover a model with additive and independent errors Zt. It is a subject for future 
research to prove the analog of Theorems 3.1 and 3.2 in the general case of dependent 
errors. 

4. Outline of proofs 

We give here an outline of the proofs for Theorems 3.1 and 3.2. The complete 
proofs are available in Delouille and von Sachs (2004). We begin by some remarks and 
definitions. 
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4.1 Definitions 
Note that  with the inequality (3.1), we can define a probability space f~n such tha t  

(4.1) P ( f ~ n ) = P ( w : s u p l e t ( w ) ,  < n  ~') _ > 1 - O(n -A) for 5' �9 (0,5). 
t 

To prove the results, we work on this probability space ~tn. We will use the following 
definition, which is stronger than  the usual OR. 

DEFINITION 4.1. Let Z~ be a sequence of random variables and let {an} and {~n} 
be sequences of positive reals. We write 

Zn = an) 

if 
P([Zn[ > ClOLn) ~_ C2~n, 

holds for n > 1 and some finite constants C1, C2. 

Assumption (A4) can be formulated more precisely as follows. 
(A4) For a given A > 0, there exists a constant cA < cx~ such that  

V(j, k) E LT~, 3kl, 3e E Z such that  Ic[ < cA, Ij;c,kl C Ij, k 

P(lI;+c,k,I <_ Iljk]) _> 1 - O ( n - A ) .  

and 

4.2 Order of the threshold needed to remove the noise 
To prove Theorem 3.1, we use Lemma 2.1 in Neumann and Kreiss (1998) that  treats 

sums of geometrically ~-mixing random variables. 

LEMMA 4.1. (Neumann and Kreiss (1998), Lemma 2.1.) Suppose that {Zt}tn=l is a 
geometrically ~-mixing process with E(Zt)  = O. If  for all M < oo, there exists a constant 
CM < oc such that E[Zt[ M < CM, we have 

) E Z t = O  Var(Zt) l o g n + n  ~,n -A . 
t=l 

4.2.1 Proof of Theorem 3.1. 

PROOF. 
large, we have 

(4.2) 

We need to find the smallest threshold tjk such that ,  with A arbitrarily 

• etlj+l'l(Xt+l) ) P(lPjk[ > tjk) <_ P \ 2j '~/2 l:0~lkr I.qjlkl t=l > tjk 

[2J+1/2 t=l ) ) <- E P ~ [ g j l k l  ~ etlj+l.l(Xt+l > tjk 

<_ Ken  -A, 
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x-" -(a) It is then sufficient to find the where K is defined in (2.4). Let tjk := L-,t:O~k#0 ~j,k,t" 
order of the term 

(4.3) P (2 ( J~) /2  ~j,k,l) ' 

for a given I. Under Assumption (A1), we have that  G := supj,l,k [gjlk[ < C~. Hence the 
probability (4.3) is bounded from above by 

e(2(J+l)/2GIt=~letl~i+l,t(Xt_l)l ~'~(~) ~ "~j,k,l] �9 

Let Z := Ij+l,l be the random interval of interest. With I~~ the largest coarse-scale 
interval included in Ij+l,t in (3.5), we need to prove that  

(4.4) 1,r 
To obtain the result we then multiply c x a ~  log n by 20+a)/2G/n. 

To prove (4.4), we approximate Z by a union of fixed intervals as in (3.5). Then for 
arbitrary c we have: 

P 

P ~t131,ki(Xt-1) "~ ~-~[Et[ll;*'~lul;*"2t----1 (Xt-1) > C).  

Lemmas 4.2 and 4.3 below state that  

(4.5) 

(4.6) 

< 

<_ O(n-)~). 

> c a ( o e ~  logn + dn(Z)n6)) 

.'2 (Xt-1) > c a ( n 6 [ ~  log n + n2 -j* + na]))  

Putt ing (4.5) and (4.6) together, we obtain: Y]t etlz(Xt-1) = O(ta, n-~), where 

(4.7) tz = c ~ ( a ~  log n + dn(Z)n '~ + n ' ~ ( ~  logn + n2 -j* + n6)). 

It is easy to see that  a ~  log n is the dominating term as n ~ c~ as soon as 
Assumption (A3) is satisfied. [] 



A U T O R E G R E S S I O N  W I T H  D E S I G N - A D A P T E D  WAVELETS 249 

4.2.2 Proof of auxiliary lemmas 

LEMMA 4.2. Let Z be a random interval approximated as in expression (3.4). Un- 
der the assumptions (A1)-(A2) on the autoregressive model (1.1), we have 

(d~_l) ~ t = l ~  c ; ~ ( a ~  l o g n +  dn(Z)n~))<O(n-;~). P etljl,ki( t-l) :> 

PROOF. Consider the problem of finding Cl,A such that  

) P etl~,,k,(Xt-1) > Cl,A __~ O ( n  - A )  
\ l t = l  

since the result follows by summation over i -- 1 , . . . , d n ( I ) .  The random variables 
Zt := etl~,k ~ (Xt-x) are geometrically fl-mixing, with E(Zt) = 0 and Var(Zt) = a2e2 -j' 

n by assumptions. Applying Lemma 4.1 on Z = E t = l  Zt we obtain 

~ Z t - - O ( i ~ t  Var(Zt)l~ = O ( a e ~ l ~  

~-~d.(Z) 2_Jd2 = 0(2_jl/2) where j l  is the coarsest level used in the approximation, i=1 
hence the result. [] 

LEMMA 4.3. 
2 j* < n _ 2 j*+l 

Let I be a random interval approximated as in expression (3.5), with 
Assume (A1)-(A2). Then 

PROOF. On ~,~ defined in (4.1), we have [etl ~_ n ~. We have: 

) 
- -  k l = l  ..... 2# En~l~"z(Xt-1)t > c 

"( ) -< E P n~ E 1~*, t(Xt-1) > c 
/----1 t 

and similarly for the term }-~t letll~*,12 (Xt-1). If we find a constant cA such that, for any 
l, 
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then the lemma is proven, provided we take A > 1 sufficiently large. If we find ax such 
that P(Y'~4 l~ . j (Xt-1)  > ax) <_ cn -~, this means that  c~ := n6ax will satisfy (4.8). 

Introducing bx such that  ax := b)~ + n2-J*, we have: 

( t__~l (l~.,t(Xt-1) - 2-J*) > b~) . 

Defining Wt : =  1 3 . , l ( X t - 1  ) - 2 - j *  and applying Lemma 4.1 to W := ~-~t Wt we obtain: 

E Wt = 0 Var(Wt) log n + n6, n -~ 
t= l  

= 0 ( ~ l o g n  + na,n-)~). 

With 5~ depending only on A, the quantity c~ that  satisfies (4.8) is equal to 

c~ = 5~(n2 -j* + ~ logn + n6)n ~. [] 

4.3 Upper bound on the 12-risk of wavelet coefficients 

PROOF OF THEOREM 3.2. We show the following inequalities: 

d-k 1 ~ <2 2 _<O (lo )~ Y ) (dck--t~Jr }) + 8[djkl 2 a.s. 

(4.10) E((d}k 2 _ 4t~k d'k 1 2 2 2 < 
- 3 ) {dj~>t~kl }) a.s., 

where the expectation is made w.r.t, the innovation et, and the inequalities are valid for 
almost every realization of the process Xt in the model (1.1). The inequality (3.14) then 
results from the minimum of these two upper bounds and by summation over (j, k) E J , .  

PROOF OF (4.9). We decompose the space where {d~k <_ t2k/2} into two parts. 

On the subspace where IPjkl <- ~ ,  Idjkl = Idjk + Pjkl <- t~k. Thus the thresholded 
tjk coefficients J~k = 0 and E[(dtk - d3k) 2] = d~k. If ]Pyk] > -g-, we decompose ]@k -- djk[ 

EKS 

= I~s(djk + pjk,t~k) -- djkJ <_ IrlS(Pjk,tjk)[ + 21djkl. 

Hence 

(4.11) E((dta _ 2 d4k) 1~2 <t2 ,2,) < 2E[r}s(Pjk,tjk) 21 + 8ldjkl 2- 
o . t ~ j k  - j k l  J "  - -  

Finally one can prove that  (for details of this rather technical proof, see Lemma 6.4 
in Delouille and yon Sachs (2004)) 

(4.12) E [ ~ s ( p j k , t j k ) 2 ] = o ( ( l ~  forsome ps . t .  1 < p < 2 .  
\ 'n / 



A U T O R E G R E S S I O N  W I T H  D E S I G N - A D A P T E D  W A V E L E T S  251 

And this completes the proof of (4.9). [] 

PROOF OF (4.10). On the space where {a2k > t2k/2}, we perform the decompo- 
sition 

E l d t k -  djkl 2 < 2Eld}k-  dykl 2 + 2Eld3k- d3kl 2 < 2t~k + 2EIPjkl 2. 
By construction, P(IPjkl > tjk) < cn -x with tjk given by (3.7). We now show that 
E[p2k] < t2k. Indeed, with Pjk as in (3.6), we have: 

E[p2k]<-- n--------Y-- E E etlj+l,l(Zt-1) , 
/ :~ j tk#0 t = l  

since the random intervals Ij+l,z are disjoint. Using the approximation (3.5), we decom- 
pose El  tl (Z -l)l 2 as 

(4.13) t=~etlz(Xt_l ) 2 <  2 (~.__~z)t=~etl~.k~(Xt_l)) 

Since the intervals I}~ are disjoint by construction, we have: 

,_~lZ) , ) 2 d,(Z) 

t = l  i=1 

n 2 

Eetl$i,k.(Xt-1) �9 
t = l  

Considering the method of independent blocks as in Neumann and Kreiss (1998), 
Doukhan et al. (1995), we have: 

E E etl;,k~(Xt_l) 
t = l  

1 ~ = Var et j~,k~(Xt-1 <_ clog(n)n2-J~; 
\ t = l  

2) <_n26Var(~t l~.,t(Xt_l)) +n26(E[~t l~.,t(Xt_,)] ) 

_< cn 2~ log(n)n2-J*. 

Putting the above results together, we obtain 

( 4 . 1 4 )  E t = l  gtl:r(Xt-1) ~- c(l~ + n2~ l~ )" 

In (4.14), the term log(n)2-Yln is dominating by Assumptions (A3)-(A4). We obtain 

2Y 2 = c2Y2-jl log2(n) and 2 j 2 jl E[{pjk] 2] _< Cn2-- log(n)2-Jln = o(t2k) since tjk n "~ 



252 Vt~RONIQUE DELOUILLE AND RAINER VON SACHS 

and thus 

(4.15) E((d tk  - djk)21{d~k>t~/2}) < 4t~k < 4tjk + 0 . 

Putt ing (4.11), (4.12), and (4.15) together, and summing over (j, k) E Jn ,  we obtain the 
desired result. [] 
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