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Abs t r ac t .  Starting from a purely spatial variogram, this paper derives a class of 
semiparametric spatio-temporal covariance models that are stationary in time but 
not necessarily stationary in space. In particular, we obtain spatio-temporal covari- 
ance models with the continuous-time autoregressive and moving average (ARMA) 
temporal margin and long-range dependent spatial margin. 
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i .  Introduction 

There is a great demand for statist ical  modeling of phenomena  tha t  evolve in bo th  
space and time. Practical  examples are those in Haslett  and Raf tery  (1989), Handcock 
and Wallis (1994), Cressie and Huang (1999), Brix and Diggle (2001), Stroud et al. 
(2001), De Iaco et al. (2002), Gneit ing (2002), and Hartfield and Gunst  (2003), to men- 
tion but  a few. Two commonly used tools to describe the space-time interaction and 
dependence are the covariance function and variogram, a wide variety of which are de- 
manded  for the practical use. The aim of this paper is to introduce a flexible class of 
spat io- temporal  covariance models. 

For a real-valued random field Z(s ;  t) defined over a spatial  domain  S and a temporal  
domain  7-, where S = N d or Z d, and 7- = Z or R, we denote its covariance function by 

C(81,82; t l ,  t2) • E[{Z(81; t l )  - EZ(81; t l ) I{Z(82 ;  t2) - EZ(82; t2))l, 

and its variogram by 

1 
3'(81,82;t1,t2) = ~ var{Z(81;t1)  - Z(s2; t2)} ,  ( s l ; t l ) , ( s 2 ; t 2 )  C S x T .  

Under the assumption tha t  v a r ( Z ( s ; t ) )  < c~ for all ( s ; t )  C S x 7-, the covariance 
function and the variogram are well-defined, with a simple identity, 

1 
3`(81, s2 ; t l , t 2 )  = ~{C(S l ,  S l ; Q , t l )  + C(s2 ,  s2; t2 , t2 )}  - C ( S l ,  s2 ; t l , t 2 ) .  

An impor tan t  relation between covariance and variogram, due mainly  to Schoenberg 
((1938), p. 828) (cf. Berg et al. (1984), p. 74), says tha t  7(Sl ,  s2; t l ,  t2) is a variogram 
on $ x 7- if and only if exp{-a3 , (S l ,  s2; t l ,  t2)} is a covariance on S x 7- for all a _> 0. 
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However, as one of the referees critically points out, the continuity of the variogram is 
a necessary condition for many authors; see Yaglom ((1957), p: 289), Johansen ((1966), 
p. 305), Cressie ((1993), p. 87), and Chil~s and Delfiner ((1999), pp. 66-67). Since this 
is an important point and need to be better explained, a proof is provided in Appendix 
A.1 for the general case, as the referee suggests. 

The random field Z(s; t) is said to be (weakly, or second-order) stationary in time 
if 

EZ(s ;  t l)  = EZ(s ;  t2), and C(81,82; tl ,  t2) depends only on tl - t2 and 81,82; 

stationary in space if 

E Z ( s l ;  t) -- EZ(s2; t), and C(sl ,  s2; tl ,  t2) depends only on sl  - s~ and tl ,  t2; 

and stationary (in space-time) if 

EZ(Sl;  tl) = EZ(s2; t2), and C(Sl ,  s2; tl ,  t2) depends only on Sl - s2 and tl - t2. 

When the random field is stationary in time (or space), its covariance is denoted by 
C(s~, s2; t) (or C(s; tl,  t2)) for simplicity, and when the random field is stationary in 
space-time, its covariance is denoted by C(s; t) and called a stationary covariance func- 
tion. 

In the same manner the intrinsic stationarity is defined in terms of the variogram. 
Equivalently, the random field Z(s; t) is intrinsically stationary in space-time if the in- 
crement process Z(s  + So; t + to) - Z(s; t) is stationary in space-time for any fixed 
(so; to) E $ • T. The intrinsic stationarity is more general than the second-order station- 
arity, since there are processes for which the variogram is well-defined but  the covariance 
is not. If Z(s; t) is stationary, then it is also intrinsically stationary. 

It is not uncommon that a spatio-temporal random field is not stationary in space. 
Starting from a purely spatial variogram V(sl,  s2), in this paper we derive a class of 
spatio-temporal covariance models that  are stationary in time but  may not stationary in 
space, by using the cosine transform method (cf. Ma (2003a)), which, in the stationary 
case, closely relates to the (inverse) Fourier transform method of Cressie and Huang 
(1999) derived from Bochner's theorem. The general form of our model is proposed in 
Section 2, and special cases with the continuous-time autoregressive and moving average 
(CARMA) temporal margin are given in Section 3. Section 4 offers a summary and 
related concluding remarks. 

2. The general form of the model 

In what follows assume that p is a positive integer, Oil,... ,O~p, ~ 1 , - ' ' ,  ~p are posi- 
tive constants, and V(Sl, s2) is a purely spatial variogram on S. Our proposed spatio- 
temporal covariance function is of the form (2.1). 

THEOREM 1. I f  t~(a)) is a nonnegative function on [0, oo) such that the integral in 
(2.1) is finite for all Sl,S2 E $ , t  E I~, then 

(2.1) C(81,82; t) = {~2 . .~ /~/ (81,82)  -~- 022} cos(to))/,~(~2)d~, 

81,82 C S, t E I~ 
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is a spatio-temporal covariance function on 8 x IR stationary in time. 

PROOF. For each k e {1 , . . .  ,p} and co _> 0, {a~ + ~ 7 ( s l , s 2 )  _[_~2}--1 is a purely 
spatial covariance on S, since it can be expressed as 

// 2 s = 2 w2)u}du, E S, + Zk7(81, + + ZkT(8 , + 81, 

where the integrand is a purely spatial covariance on $ by Schoenberg's theorem (cf. 
Appendix A.1). Thus, the product P 2 2 I]k=l{OLk + ~kV(Sl, S2) + CO2}-1 is a purely spatial 
covariance on S, and the integrand of (2.1) is a separable spatio-temporal covariance 
function on S x ]R for every fixed co > 0. As a result, (2.1) is a valid spatio-temporal 
covariance function on $ x N. [] 

An important feature of the model (2.1) is that  at fixed locations 81,82, (2.1) is 
a purely temporal covariance on the real line, since the integrand of (2.1) is a purely 
temporal covariance for fixed w, Sl, s2. 

The basic feature of the model (2.1) is that  it is semi-parametric: it is nonparametric 
with respect to the flexibility of the purely spatial variogram 7(s l ,  s2), but  it depends 
on parameters a l , . . . ,  ap, /31,-. . ,~p. Sources for purely spatial variograms are Cressie 
(1993), and Chilbs and Delfiner (1999), among others. 

The model (2.1) is stationary in time, but  not stationary in space unless 7 ( s l ,  s2) 
is intrinsically stationary on S. In a particular case 7(81,82) = Jig(s1) -- g(s2)][, where 
g(.) is a bijective deformation of the geographic coordinate system and [I Sl - s2 [[ denotes 
the usual Euclidean distance, the space deformation approach of Sampson and Guttorp 
(1992) can be employed for modeling space-time data. 

Various covariance models can be derived from (2.1) by appropriate selection of 
the function n(w) and parameters a l , . . . ,  O~p, ~1, ' ' ' ,  ~p" As an example, let n(w) = 
4 exp(_w2), w E N, p ---- 1, a l  2 ---- a and/312 = ~ in (2.1). Using the formula (cf. Bateman 
7r  

(1954), p. 15) 

4 foo  cos(t )dco 
Ir J0 w2 + u2 

= u-leU2 {e-ultlErfc ( u -  ~t-~2 ) + euItlErfc (u + ~t-~2 ) } , u > O,t E N, 

where 
2 f y e x p ( _ w 2 ) d w ,  if x > 0, 

Erfc(x) = ~ 
2 -  Er fc ( -x ) ,  if x < 0, 

we obtain a spatio-temporal covariance function on S • JR, 

C(81 ,82 ;  t) -- {ot -t- ~ 7 ( 8 1 , 8 2 ) } - 1 / 2 e  a+f~7(sl's2) 

• {e-(a+~(sl,s2))l/2ItIErfc((a + ~7(sl,s2))l/2 _ ~ )  

_~_e(a+Z~(sl,s~))~/2,t,Erfc((a+ t37(s1,s2))l/2 + ~ )  }, 

81,82 E S , t  E ~, 

which is stationary in time. 
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3. Spatio-temporal models with the CARMA temporal margin 

Among the classes of spatio-temporal models generated from (2.1), one in particular 
stands out, with the temporal margin being the continuous-time autoregressive and 
moving average model, and the spatial margin having long-range dependence in the 
st.ationary case. We derive these models below by appropriately choosing the function 
~(w) and constants in (2.1). When a purely spatial variogram 7(Sl, s2) is intrinsically 
stationary on 8, we write 7(Sl - s2) instead of 7(s l ,  s2) for simplicity. 

3.1 Spatio-temporal models with the CAR(l)  temporal margin 
Let p -- 1, a l  = ~1 ~- O~, and to(w) = Lq, w _> 0. It follows from (2.1) that  

(3.1) C(sl ,  s2; t) = (1 + y(sl ,  s2)) -1/2 

x e x p { - a N ( 1  + 7(Sl,S2))l/2}, sl ,  s2 E $ , t  E R. 

At a fixed location s, setting Sl -- s2 = s in (3.1) yields the temporal margin of the 
model (3.1), 

C(s, s; t) = exp( -a l t l ) ,  t E IR, 

which is the Ornstein-Uhlenbeck or CAR(l)  model. The spatial margin of the model 
(3.1) is obtained by setting t = 0, 

C ( 8 1 , 8 2 ;  0) : (1 + "}/(81,82)) -1 /2 ,  81 ,82  E S.  

In a specific case 7(s l ,  s2) = ]Is1 - s2[[e, which is an intrinsically stationary variogram 
when 0 is a constant between 0 and 2, C(Sl,  s2; 0) is a power-law covariance. The reader 
is referred to Whittle (1956, 1962) for earlier systematic studies of power-law covariances, 
where evidence from agricultural uniformity trials strongly indicates that  the covariance 
function of yield in the plane decays ultimately as the inverse of distance, and to Ma 
(2003c) for recent development of the exact power-law and other long-range dependent 
models on a planar lattice. 

The model (3.1) is the product of (1 + 7(s1,s2)) -1/2 and exp{-a[t[(1 + 
7(Sl, s2))1/2}, where the former is a purely spatial covariance on S. But, the latter 
is not a valid covariance on S • II( unless 7(Sl, s2) - 0, as shown in Example 2 of Ma 
(2003b). 

Interestingly, at fixed locations Sl, s2 E $, (3.1) is a purely temporal model on 
with 

0 
-~C(sl ,s2; t)  +c~(1 + ~ / ( 8 1 , 8 2 ) ) 1 / 2 C ( 8 1 , 8 2 ; t )  -~- O, t > O. 

This may suggest a similar first-order stochastic differential equation for the process 
itself, in case 7(s)  is an intrinsically stationary variogram on S, 

 z(s;t) + + t) = o, t > .-,/(8))1/2Z(B; O. 

In the discrete-time setting, the temporal margin of (3.1) corresponds to a stationary 
process {Z(s; t), t E Z} satisfying the following first-order stochastic difference equation 
for every fixed s E $, 

Z(s;t)  - exp{ -a (1  + 7 ( s ) ) l / 2 }Z ( s ; t -  1) -- e(s;t), t E X, 
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where e(s; t), t E Z, is the white noise. The correlation structure of a class of stationary, 
unilateral, linear autoregressions defined on a lattice were studied by Whittle (1954) and 
Besag (1972). 

For a fixed temporal lag t E IR, (3.1) is also a purely spatial covariance model on S. 
To see this, notice that 7(Sl, s2) is a variogram, so that  the positive function 1+7(Sl ,  s2) 
is negative definite on S. By Corollary 2.10 of Berg et al. (1984), (1 + 7(Sl, s2)) 1/2 and 
ln(1 + 3'(Sl, s2)) are negative definite. It follows from Schoenberg's theorem that  

{ l ln(1-~-"/(81,82))} (1 + 7(Sl, S2)) -1/2 = exp --2 

and exp{-a]t](1 + 7(Sl,S2)) 1/2} are positive definite on 8. Their product, (1 + 
7(Sl, s2)) -1/2 exp{-a[t]  (1 +7(Sl ,  s2))1/2}, is thus a purely spatial covariance on S when 
t is fixed. 

3.2 Spatio-temporal models with the CARMA(2, 1) temporal margin 
Let p -- 2. In this subsection we derive the spatio-temporal model whose temporal 

margin C(s,  s; t) satisfying C(s,  s; - t )  = C(s ,  s; t), t C 1R, and a second-order differential 
equation 

(3.2) ~gtC(s,  s; t) + al C(s ,  s; t) + a2C(s, s; t) = O, t > O, 

where al and a2 are nonnegative numbers subject to al 2 - 4a2 _> 0. Three specific cases 
are considered as follows. 

4c~ 3 Case (i). I n  (2.1)  t a k i n g  oL 1 = ~1 = o~2 = ~2 = oL > 0 and /~ ( r  ~ - 7 - ,  o./__~ 0, a n d  

using the formula 

f0 ~176 u2) -2 cos(tw)dw = rr (1 + u[t[) exp(-ul t]) ,  > 0, t E IR, + aT a ~t 

we obtain, for Sl, s2 c S, t c IR, 

(3.3) C(Sl , sa; t )  = (l +'y(Sl,S2))-3/2{1+oe[t[(l  +~(S l ,S2) )  1/2} 
x exp{-a[t[(1 + "y(Sl, s2))1/2}. 

Clearly, its temporal margin, 

C ( s , s ; t )  = (1 + a[ t ] )exp(-a[ tD,  t E R, 

is a CAR(2) model satisfying equation (3.2) with al = 2a and a2 = a 2. The spatial 
margin of (3.3) is 

C(81,82; 0) = (1 + ~/(Sl, s2)) -a/2, s , ,  s2 E S, 

which is a power-law covariance in the particular case where 3'(sl, s2) = [[Sl - s2]] ~ and 
e e (0, 2]. 

At fixed locations Sl, s2, (a.a) is a purely temporal CAR(2) model and satisfies the 
second-order differential equation 

02 1 2 0 
oq2tC(81,82;t) q- 2oz(1Jr-'y(81,82)) / -~C(81,82;t) 

+ a2(1 + q / ( 8 1 , 8 2 ) ) C ( 8 1 , 8 2 ;  t)  ~-~ 0, t > 0. 
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This property is useful when one makes the statistical inference for the parameter 0:. 

Case (ii). Suppose now that  0:1 > 0:2 > 0. Letting ~(w) --  20:10:2(0:2 - 0:22) - 1 ,  
w _> 0, j31 = 0:1, and 192 = 0:2 in (2.1), yields the model 

(3.4) C(sl,  s2; t) = (1 + V(sl, s2))-3/210:1 exp{-0:2itl(1 + V(Sl, 82)) 1/2} 

- 0:2 e x p { - ~ ,  Itl(1 + ~(81,82))1/2}1,  
8 1 , 8 2  C S ,  t C IR. 

The spatial margin of the model (3.4) is 

C(81,82; 0) = (0:1 - 0~2){1 -[- ~ / (81 ,82)}  -3/2 , 81,82 E 8, 

which allows for long-range dependence when V(Sl, 82) is intrinsically stationary. Its 
temporal margin, 

C(s,  s; t) : 0:1 exp(-0:21t[) - 0:2 exp(-0:llt l) ,  t e R, 

is a CAR(2) model satisfying equation (3.2) everywhere on the real line with al : 0:1 +0:2 
and a2 = 0:10:2. 

The spatio-temporal covariance function (3.4) is twice continuously differentiable 
with respect to t C ]~, and satisfies a second-order partial differential equation everywhere 
on the real line, 

02 1/2 0 
(3.5) ~ t C ( s l ,  82; t)  • (0:1 -~- O:2)(1 -t- "~(81 ,82) )  -~C(81,82; t )  

+ 0:10:2(i + ~ ( 8 1 , 8 2 ) ) c ( 8 1 , 8 2 ; t )  = o, t e R. 

As a result, the partial derivative process { ~  t), s E 8, t E R} exists in the mean 
squared sense, and possesses the covariance function 

02 02tc(81,82; t) : 0:,0:2(1 + ~(81,82))-1/210:1 exp{ -0 : l l t l (1  + ~ (81 ,82 ) )  1/2} 

- 0:2 exp{-0:2It[(1 + "/(81,82))1/2}], 

sl ,s2 E $ , t  E IR. 

In other words, the spatio-temporal covariance function (3.6) below can be alternatively 
derived as the negative of the second partial derivative of (3.4) with respect to t. 

The covariance (3.3) has a close link to (3.4) as well. Indeed, one can obtain (3.3) 
from (3.4) by letting 0:1 = 0: and taking the left limit of (0:-0:2)-1C(81,82; t) as 0:2 ~ 0:. 

Equation (3.5) holds also for a purely temporal CAR(2) model obtained from (3.4) 
with fixed locations Sl, 82 E 8. 

Case (iii). In case /~1  = 0~1, ~2 = 0:2, 0:1 :> 0:2 > 0, and ~(w) : 2~2 ~ , w _ > 0 ,  

from (2.1) we obtain the model 

(3 .6)  C(81,82;t) : (l +~/(81,82))-l/210:1exp{--0:1[t[(l +~/(81,82)) 1/2} 

- 0:2 exp{-0:2Jtl(1 + 7(s , ,  s2))1/2}]. 
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Fig. 1. T h e  p lo t  of t h e  c o v a r i a n c e  f u n c t i o n  (3.4) ve r sus  ( s ; t ) ,  w h e r e  d : 1, ~ ( s l , s 2 )  = 
(81 - 82) 2, a l  = 2, a n d  a 2  = 1. 

Fig.  2. T h e  p lo t  of  t h e  cova r i ance  f u n c t i o n  (3.6) ve r sus  ( s ; t ) ,  w h e r e  d = 1, 3 ' ( s l , s 2 )  = 
(Sl - s2)  2, a l  ----- 2, a n d  a 2  = 1. 

Its tempora l  margin is a CARMA(2 ,  1) model  satisfying equat ion (3.2) with al  = o~1 + o~2 
and a2  ~ oL1 oL2 

C(8, s; t) = o~1 exp(-o~l  Itl) - ~2 exp(-a21t [ ) ,  t G R, 

and its spat ial  margin is 

C(81, 8 2 ;  O) = (0~ 1 - 0 t 2 ) { 1  -~- ~ ( 8 1 ,  8 2 ) }  - 1 / 2 ,  81 ,  82  E S .  

Jus t  like (3.4), the  spa t io- tempora l  covariance function (3.6) satisfies the  second- 
order part ia l  differential equat ion (3.5) on l~ except  at t = 0. Also, at fixed locations 
Sl, s2 E $ ,  (3.6) is a tempora l  CARMA(2 ,  1) model  satisfying (3.5) on ~ except  at  t = 0. 

A major  difference be tween the model  (3.4) and the model  (3.6) is tha t  the former is 
nonnegative for all Sl,  s2 E S,  t E ]~, b u t  the lat ter  can assume negative values, as Figs. 1 
and 2 illustrate. The  following theorem describes a more general case tha t  includes (3.4) 
and (3.6) as special cases. 
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THEOREM 2. Let 7 ( 8 1 , 8 2 )  be a purely spatial variogram on S,  and (21 > (22 > O. 
Then the function 

(3.7) C(81, s2; t) ---- (1 + 7(81,82)) - 1 / 2  

X [{0(21 - -  (1 - 0)(22(1 + " ) / ( 8 1 , 8 2 ) )  - 1 }  

x exp{-al[t[(1 + 7(81, s2)) 1/2} 
§ {( i  -- 0)(21(1 § " ~ ( 8 1 , 8 2 ) )  - 1  - -  0(22} 

X exp{--(22[t[(X + 3'(Sl, s2))1/2}], Sl, s2 �9 S, t �9 JR, 

is a spatio-temporal covariance function on S x ]R and stationary in t ime if  and only i f  
0 is a constant between 0 and 1. 

PROOF. If 0 < 0 < 1, then as the convex combination of (3.4) and (3.6), (3.7) is a 
spatio-temporal covariance function on S x ]R and stationary in time. 

On the other hand, let (3.7) be a spatiootemporal covariance function on S • JR. 
Then its temporal margin, 

C(8,  8; t) --~ {0(21 - -  (1 - 0)(22} exp(-(2i  [tl) + {(1 - 0)(21 - 0(22} exp(-(22[t[), t �9 N, 

must be a stationary temporal covariance function on the real line, for which it is nec- 
essary that  0 is a constant between 0 and 1, according to Lemma 1 of Ma (2003d). [] 

Obviously, the temporal margin of (3.7) satisfies the second-order differential equa- 
tion (3.2), where al and a2 are nonnegative numbers subject to al 2 - 4 a 2  > 0. It would be 
of interest to derive a spatio-temporal model with the CARMA(2, 1) temporal margin 
of the form (3.2) but  a~ - 4a2 < 0. 

3.3 Spatio-temporal models with the CARMA(p, q) temporal margin 
Having discussed the spatio-temporal models with the CAR(I )  and CARMA(2, 1) 

temporal margins in some details, we now extend the idea to obtain spatio-temporal 
models with the CARMA(p, q) (0 < q < p) temporal margin that  satisfies the p-th- 
order differential equation 

OP c9P-1 _ ,  
~ - t C ( s , s ; t ) + b l ~ C ' ( s , s ; t ) + . . . + b p C ( s , s ; t )  = 0 ,  t > 0 ,  

where b l , . . . ,  bp are real numbers such that the roots of the polynomial x p + bxx p-1 + 
�9 .. + bp are all negative numbers. 

As an illustration, suppose that (21, �9 �9 �9 (2p are distinct positive numbers. Decompose 
l i P  .f(22 § ~ 2 7 ( 8 1  ' 82 ) § 022}]-1 into partial fractions 1 l k - l t  k 

- 1  

(21 +   7(81,82) + 022 

2 2 2 0 2 2 } - 1 .  = - (2j + - Z ] )7 (81 ,  82)) + Z 7(81, 82) + 
k = l  ~,jT~k 
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Taking to(w) _= _2 (w > 0) in (2.1) yields the model 7r 

(3.8) 6 ( 8 1 , 8 2 ; t )  = E (O~2k --OlJ -k (~k -- ~2)~[(81 '82))  
k=l ~, j #k  

2 -1/2 X (Ol 2 -[- ]~k"y(Sl, 82)) exp{-ltl(~ -b ~k2"y(81,82))1/2}, 

81,82 E S , t  E 1~, 

whose temporal margin is a CARMA model, 

C ( s , s ; t ) =  ~ ak I - I ( ~ - - a ~ )  exp{-akl t l} ,  t E ~ .  
k=l j#k  

Observe that C(S l ,  s2; t) defined by (3.8) is twice continuously differentiable every- 
where on the real line with respect to t. We will show that  }1 

2 2 
N t c ( s l ,  t )  = - - + - 

k=l ( j#~ 

X (0~ 2 -[- ~2~(81 ,82) )  1/2 exp{- l t l (a~ + ~ ( 8 1 , 8 2 ) ) 1 / 2 } ,  

Sl,S2 ES, tE]~, 

is also a spatio-temporal covariance function on 8 x ~.  
Suppose that {Z(s; t), (s; t) E 8 • ~} is a spatio-temporal random field with mean 

zero and covariance (3.8). For a fixed h E R, consider the increment process {Z(s; t + 
h) - Z ( s ; t ) , ( s ; t )  E $ • I~}, whose covariance function can be easily verified to be 
2C(Sl, s2; t )  - C ( S l , S 2 ; t  + h) - C ( S l , S 2 ; t -  h). Thus, for every h ~ 0, 

2C(Sl,S2;t)  - C ( S l , S 2 ; t  + h) - C ( S l , S 2 ; t -  h) 
h 2 

is a spatio-temporal covariance function. Finally, by letting h -~ 0, we obtain that  

02 02tVrSl,~ s2;t) = lim 2 C ( S l , S 2 ; t )  " C ( S l ,  s2;t  + h) - C ( S l ,  s 2 ; t -  h) 
h--*O h 2 ' 

Sl,S2 E $ , t E R  

is a spatio-temporal covariance function on $ x ]~. This means that  the partial derivative 
process { ~  t), s E S, t E R} exists in the mean squared sense. 

4. Conclusion 

The models proposed in this paper offer a much greater degree of flexibility for data  
analysis because of the free choice of the purely spatial variogram V(Sl, s2), for which 
stationarity or intrinsic stationarity does not necessarily require. Of course, parametric 
models can be easily obtained by specifying V(Sl, s2). This kind of flexibility suggests 
the following practical strategy for space-time data  analysis. First, by fitting the data  at 
a fixed time we could obtain the form of V(Sl, s2) using purely spatial techniques, such 
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as the space deformation approach or other nonparametric methods. After estimating 
V(Sl, s2), we then fit the space-time data  through a parametric version of the covariance 
C(Sl,  s2; t). See De Iaco et al. (2002) for some other practical aspects. 

The cosine transform method is employed here for our derivation of spatio-temporal 
covariance models. This simple approach is easy to be used, as examples of Ma (2003a) 
illustrate. As another example, Appendix A.2 gives a relatively simple proof of Theo- 
rem 2 of Gneiting (2002). It can be seen that  (11) of Gneiting (2002) is essentially a 
special case of (3.3) of Ma (2003a). More examples can be found in Ma (2005). 

Another method we use here to derive the spatio-temporal covariance function is 
to take the second partial derivative, whenever it exists, of a spatio-temporal covariance 
function with respect to the time lag, and then add a negative sign. Alternatively, one 
may consider the partial integral of a spatio-temporal random field with respect to the 
time lag. Aggregation in time for a spatio-temporal stationary random field produces 
a random field intrinsically stationary in time. We explore this idea in a forthcoming 
manuscript. 

There are two research lines following empirical observations in the literature on 
long-range dependence, long memory, or persistence. One line is concerned with spatial 
long-range dependence, and the other is primarily focused on temporal long memory. 
Historically, the first line started from agricultural uniformity trials made by Fairfield 
Smith in 1930s that  strongly indicated that  the covariance function of yield in the plane 
decays ultimately as the inverse of the Euclidean distance. To explain such asymptotic 
behavior of variation, some random fields with a power-law covariance at large distances 
were derived in Whittle (1956, 1962) via stochastic partial differential equations. Exact 
power-law covariances on a planar lattice are recently obtained by Ma (2003c). The 
second line was initially based on the so-called Hurst phenomenon, which was observed 
on river flow data by H. E. Hurst in 1950s. A rapidly expanding empirical literature 
has found evidence of long-range dependence in many time series data; see, for instance, 
Doukhan et al. (2003). By randomizing the time scale of a spatio-temporal random field 
(cf. Ma (2003d)), one could obtain a long-range dependent spatio-temporal random field. 
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Appendix 

A.1 A proof of Schoenberg's theorem 

THEOREM A.1. (Schoenberg) Assume that V(sl, s2; t l , t2)  is a nonnegative func- 
tion on S • T with V ( s , s ; t , t )  = 0 for all (s ; t )  C S • T .  Then V(s i , s2 ;Q, t2 )  is a 
variogram on S x T if and only if exp{-aV(Sl ,  s2; tl ,  t2)} is a covariance function on 
$ • T for all a > O. 

PROOF. Suppose that  exp{-aV(Sl ,  s2; tl ,  t2)} is the covariance function of a ran- 
dom field {Z~(s; t ) ,  (s ; t )  E S • 7"}. Then for c~ > 0, the random field {a-1/2Z~(s; t ) ,  
(s; t) C S • T} possesses the variogram 

1 
'~o~(Sl, 82; tl, t2) ---= ~ var(Za(81; tl) - Za(82; t2)) 
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1 
-- 2a  {var(Z~(Sl ; t l ) )  + var(Z~(s2;  t2)) - 2 cov(Za(Sl ;  t l ) ,  Za(s2;  t2))} 

~-- ~ - 1  [1 - e x p { - a 7 ( s l ,  82; t l ,  t2)}] .  

Lett ing a tend to zero, we obtain tha t  

l im  7 a ( 8 1 , 8 2 ;  tx,  t2) ---- lira 1 - e x p { - o z T ( 8 1 ,  82; t l ,  t2)} _-- 7),(81 , 82; t l  ' t2)  
a-*0+ a-*0+ OL 

is a variogram on ,~ x T.  
On the other hand,  let 7(Sl ,  82; t l ,  t2) be a variogram associated wi th  a (Gaussian) 

r andom field {Z(s ;  t), (s; t) C $ x T}.  For a fixed (So; to) E ,S x T,  consider an increment  
process {Z(s ;  t) - Z(so;  to), (s; t) E 8 • T}, which possesses second-order  moments ,  and  
in particular,  its covariance is 

cov(Z(81;  t l )  - Z(8o;  to), z ( 8 2 ;  t2) - Z(8o;  to)) 

= E [ { Z ( B 1 ; t l )  - Z ( 8 0 ;  to)  - E ( Z ( 8 1 ; t l )  - Z ( 8 0 ;  t o ) ) }  

• { z ( 8 2 ;  t2) - Z(8o;  to) - E(Z(82;  t2) - Z(8o;  to))}]  

~ E [ { Z ( 8 1 ;  t l )  - Z ( 8 0 ;  to)  - E ( Z ( 8 1 ;  t l )  - Z ( 8 0 ;  to))} 2 
I 

+ { z ( 8 2 ;  t2) - Z(8o;  to) - E(Z(82;  t2) - Z(8o;  to) )}  2 

-- { Z ( 8 1 ;  t l )  - Z ( 8 2 ;  t2) - E ( Z ( 8 1 ;  t l )  - Z ( 8 2 ;  t 2 ) )}  2] 

= 7 ( 8 1 , 8 0 ;  t l ,  to)  + 7)'(82, 80; t2, to)  -- 7 ( 8 1 , 8 2 ;  t l ,  t2) .  

cz k 
Now for any nonnegative constant  a and nonnegative integer k, -~-., {7(s l ,  so; t l , to)+ 
7(82, So; t2, to) - 7 ( s l ,  s2; t l ,  t2)} k is also a covariance function on $ • T.  So is their  
s u m ,  

oo ~ k 
E --~.-. { 7 ( 8 1 '  80; t l , t 0 )  + 7 (82 ,  80; t 2 , t 0 )  -- 7 ( 8 1 , 8 2 ;  t l , t 2 ) }  k 
k=0 

---= exp[a{7(81,80;  t l ,  to) + 7(82, 80; t2, to) -- 7(81, 82; t l ,  t2)}]. 

If exp[a{7(Sl ,  So; t l ,  to) + 7(82, So; t2, to)  -- 7(81, 82; t l ,  t2)}] is the  covariance function 
of a r andom field {Y(s;t) ,  ( s ; t )  �9 $ • T},  then  the  r andom field {exp(-aT(S,  So; 
t, to))Y(s; t), (s; t) �9 S x T} has the  covariance 

cov{exp(--aT(Sl ,  So; t l ,  to))Y(Sl ; t l ) ,  e x p ( - a T ( s 2 ,  So; t2, to))Y(s2; t2)} 

---- exp(--aT(81,80;  t l ,  to) -- ct7(82, 80; t2, to)) cov{Y(81; t l ) ,  Y(82; t2)} 

= exp(- -aT(Sl ,  82; t l ,  t2)). [] 

A.2 A simple proof of Theorem 2 of Gneiting (2002) 

THEOREM A.2. (Gneit ing (2002)) Let W(x), x >_ O, be a completely monotone 
function, and let r  x > 0, be a positive function with a completely monotone deriva- 
tive. Then 

( tl8112 
c ( 8 ; t )  - r  \ r  / , 
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is a space-time covariance function, where a 2 is a positive constant. 

PROOF. By Bernstein's theorem, ~(x) is the Laplace transform of a bounded, 
nondecreasing function F(u) ,  u _> 0, 

/j ~(x) = exp( -xu)dF(u) ,  x _> O. 

As a result, C(s; t) can be expressed as 

C(s; t) -- r exp r ) dF(u), (s ; t )  G ]R d x IR. 

Thus, it suffices to show that for each constant u > 0, 

~2 ( HsN2u ~ R d 
c u ( 8 ; t ) =  r  , (~;t) C •  r 

is a space-time covariance function. 
To apply Corollary 2.2 of Ma (2003a), we rewrite Cu(s; t) as 

i Cu(s; t) = (27r)d12a2 cos(v/-uw's) exp -- r 2) dw 
JR4 

where r  > O, and the derivative function of r  r  is completely monotone. It 

remains to show that e x p ( - ~  ~ Jo 2 ~'(v)dv) is a purely temporal covariance on IR for 

every fixed w E R a, or by Schoenberg's theorem, to show that fo 2 r is a purely 
temporal variogram on N. This is true, since r  is completely monotone, so that there 
exists a bounded, nondecreasing function G(x) on [0, o~) such that 

L 
O O  

r  exp(-vx)dG(x), v > O, 

and Lt t 2 o o  o o  

r L L exp(-vx)dG(x)dv= L 1-exp(-xt2)dG(x) '  t E R ,  

which is a purely temporal variogram on ~ as the mixture of 1 - exp( -x t2 ) ,  t E R. [] 
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