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A b s t r a c t .  The balanced complete multi-way layout with ordinal or nominal factors 
is a fundamental data- type that  arises in medical imaging, agricultural field trials, 
DNA microassays, and other settings where analysis of variance (ANOVA) is an es- 
tablished tool. ASP algorithms weigh competing biased fits in order to reduce risk 
through variance-bias tradeoff. The acronym ASP stands for Adapt ive Shrinkage 
on Penalty bases. Motivating ASP is a penalized least squares criterion that  asso- 
ciates a separate quadratic penalty term with each main effect and each interaction 
in the general ANOVA decomposition of means. The penalty terms express plau- 
sible conjecture about the mean function, respecting the difference between ordinal 
and nominal factors. Multiparametric asymptotics under a probability model and 
experiments on data elucidate how ASP dominates least squares, sometimes very 
substantially. ASP estimators for nominal factors recover Stein's superior shrinkage 
estimators for one- and two-way layouts. ASP estimators for ordinal factors bring 
out the merits of smoothed fits to multi-way layouts, a topic broached algorithmically 
in work by Tukey. 

Key words and phrases: Nominal factors, ordinal factors, estimated risk, penalized 
least squares, annihilator matrix, balanced complete layout, multiparametric asymp- 
totics. 

I. Introduction 

A fundamen ta l  d a t a  type  arising in the  sciences, engineering,  and  informat ics  is the  
ba lanced  comple te  mul t i -way layout.  Ins tances  include d a t a  collected in D N A  microas-  
says, in medical  imaging,  in agr icul tura l  field trials,  and  in o ther  se t t ings  where  ANOVA 
is an  es tabl ished tool. The  factors  in a mul t i -way layout  m a y  be  ordinal  or nominal .  
The  levels of an  ordinal  factor  are real-values t ha t  indicate  a t  least  order  and  possibly  
more.  T h e  levels of a nomina l  factor  are pure  labels t h a t  convey no order ing informat ion .  
This  p a p e r  describes an  adap t ive  app roach  to fi t t ing ba lanced  comple te  k0-way layouts  
t ha t  s t ems  f rom a penal ized least  squares  (PLS) cri terion wi th  2 k~ - 1 pena l t y  te rms .  A 
sepa ra t e  pena l ty  t e r m  is associa ted  wi th  each main  effect and  in te rac t ion  in the  usual  
A N O V A  decompos i t ion  of means .  

T h e  ac ronym ASP, which s tands  for A d a p t i v e  Shr inkage  on P e n a l t y  bases,  s u m m a -  
rizes pr incipal  s teps  in our  methodology.  The  b road  approach  is: (a) use pr ior  conjec ture  
abou t  the  unknown means  in the  s t a n d a r d  Gauss ian  one-way layout  to  devise the  pena l t y  
t e rms  in the  PLS  criterion; (b) e s t ima te  the  risk of each cand ida te  P L S  e s t ima to r  with- 
out making  assumpt ions  on the  unknown means;  (c) define an ASP  e s t ima to r  to  be  
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the candidate PLS procedure with smallest estimated risk; (d) define additional ASP 
estimators from certain larger classes of candidate estimators that include the PLS can- 
didates; (e) s tudy the asymptotic risk of ASP estimators under minimal assumptions 
on the unknown means, using multiparametric asymptotics where the total number of 
factor-level combinations tend to infinity. 

The unrestricted LS estimator tends to overfit the means of a k0-way layout. Under 
a homoscedastic independent Gaussian error model, Stein (1956) proved that the LS 
estimator is inadmissible for quadratic loss whenever the number of factor-level combi- 
nations exceeds 2. The drawbacks to LS estimators in both theory and practice have 
inspired work on competing estimators. Candidate submodel fits, including submodel 
polynomial fits, and ridge regression, are particular symmetric linear estimators. So are 
the candidate PLS and other fits used in this paper to construct ASP estimators. No- 
table studies of symmetric linear estimators include Stein (1981), Li and Hwang (1984), 
Buja et al. (1989), Kneip (1994), and Beran and Diimbgen (1998). 

Kimeldorf and Wahba (1970) showed that candidate PLS fits can typically be de- 
rived as candidate Bayes estimators. Green et al. (1985) studied the use of penalized 
least squares to fit a smooth trend factor in field experiments. Wood (2000) treated pe- 
nalized least squares with multiple quadratic penalties. The present paper differs from 
his work in several ways: (a) the construction of the multiple penalty terms; (b) the 
use of estimated risk under the full model (with unrestricted means) rather than cross- 
validation to select penalty weights and terms; (c) consideration of shrinkage strategies 
more general than PLS; (d) developing multiparametric asymptotics under which the 
risk of the candidate estimator that minimizes estimated risk converges to that  of the 
unrealizable candidate estimator that minimizes risk. 

ASP estimators weigh a large class of competing fits, including smooth fits for ordinal 
factors, to reduce risk through bias-variance tradeoff. Risks of candidate estimators are 
evaluated under the full model for the k0-way layout. The procedures and results in 
this paper extend to balanced complete k0-way layouts the adaptive PLS technology 
described for one-way layouts in Beran (2002). Important  for the generalization are 
a PLS criterion that has a penalty term for each main effect and interaction in the 
ANOVA decomposition of a k0-way array; and a canonical representation of candidate 
PLS estimators with respect to an orthonormal product basis that  is determined by 
the 2 k~ - 1 penalty terms. Multiparametric asymptotics in Section 3 show that the 
asymptotic risk of an ASP fit never exceeds that  of the unrestricted least squares fit 
whether the k0 factors are all ordinal, all nominal, or some of each. Both in theory and 
practice, ASP fits often improve substantially on the risk and visual appearance of least 
squares fits. 

The James-Stein (1961) estimator that shrinks toward the average observation co- 
incides essentially with an ASP estimator for the one-way layout in which the factor is 
nominal. Stein (1966) studied multiple shrinkage estimators that  dominate LS estima- 
tors in abstract ANOVA models and gave, as an example, a superior estimator for the 
two-way layout with nominal factors. Section 3 of this paper shows that ASP estimators 
for k0-way layouts in which each factor is nominal are close approximations to Stein's 
(1966) multiple-shrinkage estimators. 

Tukey (1977) proposed and experimented with certain smoothing algorithms for fit- 
ting one- and higher-way layouts with ordinal factors. In ordinal one-way layouts where 
wavelet bases provide a sparse representation of the means, Donoho and Johnstone (1995) 
used adaptive shrinkage through soft-thresholding. Beran and Diimbgen (1998) proposed 
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and studied adaptive symmetric linear estimators that  perform monotone shrinkage rel- 
ative to a fixed orthonormal basis. Section 2 shows that  ASP estimators for ko-way 
layouts with either ordinal or nominal factors can be represented as polytone shrinkage 
estimators. 

Modern statistical theory distinguishes among data, probability model, pseudo- 
random numbers, and algorithms. ASP estimators implicitly fit the probability model 
that  motivates their construction. Using an ASP estimator on data differs from believing 
that a probability model governs the data. Data is not provably random--even ran- 
domized experiments rely on pseudo-random numbers that  mimic certifiably only a few 
properties of random variables. Mathematical study of an estimator under a probability 
model tests the estimator on virtual data  governed by that  model. Such mathematical 
exploration gains pertinence if the probability model can approximate salient relative 
frequencies in data  to be analyzed. Trustworthiness of an estimator in data  analysis is 
ultimately an empirical matter that  benefits from interplay between interpretations of 
mathematical results and computational experiments. Section 4 presents two data anal- 
yses where ASP algorithms bring out striking submodel structure or smoothness without 
detailed intervention by the analyst. 

2. Model, representations, and candidate estimators 

We consider a balanced complete k0-way layout of observations on unknown means. 
Each of the ko factors that  influence the means may be nominal or ordinal. An algebraic 
representation for the ANOVA decomposition of the k0-way array of means induces a 
penalized least squares criterion that  has a separate penalty term for each main effect 
and interaction. A product basis generated by the penalty terms in the PLS criterion-- 
the penalty basis--yields a canonical representation of candidate PLS estimators. This 
canonical representation in turn suggests larger classes of candidate estimators for the 
means. 

2.1 Model 
Let 27 denote the set of all ko-tuples i = ( i l , i 2 , . . .  ,iko) such that  1 <_ ik <_ Pk for 

1 _< k < ko. The means in the k0-way layout are unknown real values {mi  : i E 27} that  
depend on k0 factors as follows. Factor k has Pk levels, denoted by tkl, tk2,-.-, tk,pk. The 
factor levels associated with the observations on mean mi are ti = ( t l i l ,  t 2 i2 , . . . ,  tkoiko ). 
In other words, 

(2.1) mi = p(t i)  for i C 27, 

where # is an unknown real-valued function. When factor k is nominal, the factor levels 
are numerical labels whose distinctness is important. When factor k is ordinal, the values 
and order of the factor levels are significant. Subscripting of the cells in the k0-way layout 
is arranged hereafter so that  tkl < tk2 < . . .  < tkpk for 1 < k < ko. 

Under the Gaussian model for the balanced complete k0-way layout, we collect 
j0 _> 1 independent noisy observations on each mean mi: 

(2.2) Yij = mi  + eij i E S ,  1 < j < jo. 

The {Yij } are the observations, ti gives the factor levels associated with mean rni through 
(2.1), and the errors {cij} are independent, identically distributed N ( O , a  2) random 
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variables. The variance a S is unknown. The total number of unknown means is p ---- 
ko [ Ik=l  Pk and the total number of observations is n = joP. The normality assumption 

plays a key role in the proof of Theorem 3.1 through the property that  any orthogonal 
transformation of the data vector has homoscedastic, independent, normally distributed 
components. 

To facilitate linear algebra, we order the elements i = ( i1, i2, . . .  ,iko) of the index 
set 2- in mirrored dictionary order: iko serves as the first "letter" of the word, iko-1 as 
the second "letter", and so forth. Hereafter we assume that 2- is so ordered. Taken in 
order, the indexed means form the p x 1 vector 

(2 .3)  m = i �9 2-} 

= { ' ' '  {{mQ,i2 ..... ik ~ : 1 ~ i l  ~<~ Pl}, 1 < i2 _< P2} , . . . ,  1 < iko <_ Pko}. 

The observations may be correspondingly ordered in the n x 1 vector 

(2.4) Y = {{Yi j  : 1 < j < j0} , i  �9 2-}. 

Let e = (1, 1 , . . . ,  1)' denote the J0 x 1 vector of ones. Model (2.2) is equivalent to the 
assertion 

(2.5) y ~ N ( X m ,  a2In)  with X -- Ip | e. 

We are interested in estimating 7/= X m ,  the expectation of the observation vector y. 

2.2 A N O V A  decompos i t ion  
The orthogonal projections that  define the ANOVA decomposition of means into 

overall mean, main effects, and interactions are given by the following algebra. For 

1 < k < k0, define the Pk x 1 unit vector uk = pkl/2(1, 1 , . . . ,  1)' and the Pk xpk matrices 
Jk = uku'k and Hk  -~ Ipk -- UkUlk. For each k, the symmetric, idempotent matrices Jk 
and Hk have rank (or trace) 1 and Pk - 1 respectively. They satisfy J k H k  = 0 = H k J k  
and Jk + I l k  = Ipk. They are thus orthogonal projections that decompose R pk into two 
mutually orthogonal subspaces of dimensions 1 and Pk -- 1 respectively. 

Let S denote the set of all subsets of {1, 2 , . . . ,  k0}, including the empty set 0. The 
cardinality of S is 2 k~ For every set S E $, define the Pk • Pk matrix 

f Jk if k • S (2.6) Ps 
,k ~ H k  if k E S "  

Define the p x p Kronecker product matrix 

ko 

Ps = Q Ps,ko-k+ l. 
k=l 

The foregoing discussion implies that: 
�9 PB is symmetric, idempotent for every S E $. 
�9 If S ~ r the rank (or trace) of Ps  is l~kEs(Pk  -- 1). T h e  rank (or trace) of 

P0 is  1. 
�9 If S1 and $2 are two different sets in 8,  then P & P s 2  = 0 = P & P & .  

�9 E s e s  Ps  = Ip. 
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Consequently, the {Ps : S E $} are orthogonal projections that  decompose R p into 2 k~ 
mutually orthogonal subspaces. 

The last bulleted point yields for every m E R p the identity 

$6S 

whose right side expresses, in readily computable form, the ANOVA decomposition for 
the means of a k0-way layout. Evidently Tom is the overall mean term. If S is nonempty, 
Psrn is the main effect or interaction term defined by the factors k 6 S. The submodels 
considered in ANOVA are defined by constraining m to satisfy Psrn = 0 for every 
S CAf, where A/ i s  a specified subset of $. The choice of Af identifies the main effects 
or interaction terms that  vanish in the submodel. 

2.3 PLS  candidate estimators 
This subsection defines PLS candidate estimators of ~ = X m  and expresses them 

in canonical form. Let So = S - ~, the set of all nonempty subsets of {1, 2 , . . . ,  ko}. 
Introduce the penalty weights ~, = {~'s : S 6 80}, where each vs lies in [0, co]. For 
every 1 < k < ko, let Ak be a matrix with Pk columns such that  Akuk = 0 and each 
row of Ak has the same Euclidean norm. The rows of Ak are thus contrasts. Examples 
of such annihilator matrices are developed in Subsection 2.4. Let Bk = A~kAk and let 
A = {Ak : 1 < k < k0} denote the annihilator string. 

For every set S 6 So and 1 < k < ko, define the Pk x Pk matrix 

(2.9) Q s , k =  ~ J k  if k • S  
[ Bk if k E  S 

and the p x p Kronecker product matrix 

ko 

(2.10) Qs = ( ~  Qs,ko-k+,. 
k=l  

If $1, $2 are different subsets of 80, then there exists k such that  k E S1 and k ~ $2. 
Then Qsl,a = Bk by (2.9) while Ps2,k = Jk by (2.6). By the annihilator property of Ak, 
it follows that  Qsl,kPs2,k = 0. Hence 

ko 

(2.11) QslPs2 = ~[Qs~,ko-k+lPs2,ko-k+l] = O. 
k=l  

Let 

(2.12) T ( m , v , A )  = l Y -  X m l  2 + Jo E ~ ' s in  Qsrn. 
$68o 

The candidate PLS  estimator of r / =  X m  determined by v and A is defined to be 

(2.13) OPLS(V, A) = X argmin T(m,  v, A). 
7nERP 
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The factor jo in front of the penalty term on the right side of (2.12) is harmless and 
simplifies subsequent algebra. Let U0 = j o l / 2 x ,  l~om the definition of X in (2.5), 
U~Uo -- Ip. By calculus, 

[ (2.14) ~)PLS(U, A) = Uo Ip + E v sQs  U;y. 
S C,So 

If a term P s m  vanishes in the ANOVA decomposition (2.8), then the corresponding 
penalty term m ' Q s m  vanishes in (2.12) because of (2.11). For the annihilator Ak = Hk 
(to be called the flat annihilator in Subsection 2.4), the penalty term m ' Q s m  vanishes 
if and only if the model term P s m  vanishes in (2.12) because Qs = Ps. Further insight 
into how A and v affect the candidate PLS estimator is obtained through the canonical 
representation derived below. 

Suppose that the Pk • Pk symmetric matrix Bk = A'kAk has the spectral decom- 
position Bk = UkAkU~, where the eigenvector matrix satisfies UkU~ = ' U~Uk = Ipk and 
the diagonal matrix Ak = diag{)~ki} gives the ordered eigenvalues with 0 -- /~kl _< Ak2 _< 
"'" ~ )~kpk" This eigenvalue ordering, the reverse of the customary, is adopted here 
because the eigenvectors associated with the smallest eigenvalues play the greatest role 
in  determining the numerical value and risk of a candidate PLS estimator. Because an 
annihilator Ak satisfies AkUk : 0, the eigenvalue Akl is necessarily zero and has Uk as 
corresponding eigenvector. Thus, the first column of Uk is Uk or may be chosen to be uk 
if the eigenvalue 0 is multiple. 

The Pk x Pk matrix Jk = UkU'k is symmetric, idempotent, has eigenvalue 1 associated 
with the eigenvector uk, and has eigenvalue 0 repeated Pk - 1 times. Let Ek denote the 
Pk • Pk diagonal matrix that has 1 in the (1, 1) cell and zeroes elsewhere. Because uk is 
the first column of Uk, the spectral decomposition Jk = UkEkU~ follows. 

For every set S �9 $0 and 1 < k < ko, define the Pk x Pk diagonal matrix 

Ek if k r S 
(2.15) Fs , k=  Ak if k � 9  

From (2.9), the spectral decompositions of Bk, Jk, and (2.15), Qs,k = UkFs,kU~. Con- 
sequently, by (2.10), Qs has spectral decomposition 

(2.16) Qs = UFsU',  

where 

ko ko 

(2.17) r s  = (~ ) rS ,ko-k+l ,  U = ~ ) U k o - k + l .  
k=l  k = l  

The columns of U form an orthonormal product basis for R p. 
Candidate PLS estimator (2.14) thus has the canonical representation 

(2.18) 

where 

(2.19) 

~PLS(L', A) = V diag{f(v,)}V'y,  

diag{f(u)} = Ip + usFs , V =  UoU 
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with Uo = jol /2x.  The columns of V form the or thonormal  penalty basis generated by 
annihilator string A for the k0-way layout. 

To express the elements of vector f(v) = {fi(v) : i e :/7} more simply, we part i t ion 
the index set I according to the subsets of S. For every S �9 S, let 

(2.20) Zs = {i E Z :  ik ---- 1 if k ~ S, ik >_ 2 if k �9 S}. 

In other words, i -- ( i l , i 2 , . . . , i ko )  �9 IS if and only if S = {k : ik >_ 2}. Evidently, 
I = Uses : / : s  and 27s1 n/7s2 = 0 whenever $1 r $2. For i �9 I s ,  it follows from (2.19) 
that  

-1  

(2.21) fi(t~) --~ [l + t~s l-I ~kikl 
kES J 

Example. (The three-way layout.) In this case, mirrored dictionary ordering of the 
factor-level triples yields 

(2.22) f={{{( i1, i2,  i3):l~_i1~P1},l~_i2~_P2},l~_i3~_P3}. 
The corresponding vectorization of m is obtained by running through the row subscript 
first, the column subscript second, and the layer subscript third. 

Here S = {0, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1,2, 3}}. The projections that  de- 
fine the ANOVA decomposition are: 

P0 ---- J3 | J2 | J1,  P{1,2,3} = H3 |  | H1,  

(2.23) P{1} = J3 @ J2 | H1, P{2} = J3 | H2 | J1, P{3} = H3 | J2 | J1, 

P{1,2} = Ja | H2 @ H1, P(s,3} = H3 | Hs @ J1, 

P{1,3} ~- H3 @ Js @ H1. 

Thus, for instance, ifAf = {{1, 2}, {2, 3}, {1, 3}, {1,2, 3}}, then the constraints Psm = 0 
for every S EAf  define the additive submodel. 

The  parti t ion of Z induced by $ consists of the subsets 

Z0 ---- {(1, 1, 1)}, Z{1}={ ieZ: i l>_2 ,  i 2 = i 3 = l } ,  
Z { 2 } - - { i C Z : i 2 _ > 2 ,  i l = i 3 - - 1 } ,  /:{3 } - - { i E Z : i 3 _ > 2 , i ,  = i2 - - -1} ,  

Z{1,s} -- (i E Z : il _> 2, i2 _> 2, i3 = 1}, 
(2.24) 

Iis,3 } -- { /C 2- : /2  >_ 2, i3 >- 2, /1 = 1}, 

I{1,s} -- { /C  2- :/1 >- 2, i3 >- 2, is = 1}, 

2-(1,s,3} = { / ~  I : / 1  _> 2,/s _> 2,/3 -> 2}. 

The candidate PLS estimator is defined by (2.18), the value of fi(v) being 

1 if i E I O, [1 -~- P{1})~1il] -1 if i E ~{1}, 

[1 + V(s}Asi2] -1 if i �9 Z(s}, [1 ~- V(3}A3i2] -1 if i �9 Z(3}, 

(2.25) [1 + v{1,s}A1ilA2i2] -1 if i �9 Z{1,2}, [1 + v{s,3}As~2A3i3] -1 if i �9 Z{2,3}, 

[1 + uI1,3})nil),ai3] -1 if i E Z{1,3}, 

[1 + v{1,s,3}A1ilAsi2A3i3] -1 if i �9 Z{1,s,3}. 
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2.4 More general candidate estimators 
A shrinkage class ~ consists of p • 1 vectors f -- {fi : i E Z} such tha t  0 _< fi  < 1. 

An annihilator class .A is a collection of annihilator strings A -- {Ak : 1 < k < k0}, each 
of which generates a penal ty  basis V for the regression space of the k0-way layout.  By 
generalization of (2.18), we define the SP candidate estimators through 

(2.26) r = Vdiag{ f }V 'y  for f C U, A E .A. 

The acronym SP stands for Shrinkage on Pe n a l t y  bases. 

Candidate shrinkage classes. We will consider several shrinkage classes. The Unre- 
stricted shrinkage class Uu consists of all p • 1 vectors f with elements in [0, 1]. Though  
too large for successful adapta t ion,  this class is a s tar t ing point for defining more useful 
shrinkage classes. 

The Penalized Least Squares shrinkage class UpLS is the subset of shrinkage vectors 
in Uu tha t  take the form f ( v )  in (2.19) or (2.21). For fixed A, the candidate  est imator  
(2.26) with U = UpLS coincides with PLS candidate  est imator  (2.18). 

The Polytone Score shrinkage class Ups is the subset of Uu tha t  is restricted as 
follows: f(1,1 ..... 1) = 1; for every S C So and i C I s ,  

(2.27) fi = gs [kH ~kik] , 

where each gs is any function nonincreasing in its argument  and having range in [0, 1]. 
The Polytone shrinkage class Up is the convex subset of Uu tha t  is restricted as 

follows: f(1,1 ..... 1) = 1; for every S E So and i E I s ,  f i  = f(il,i2 ..... iko) is a nonincreasing 
function in each subscript ia such tha t  k C S. 

Evidently, ~YPLS C Ups C Up. 

Candidate annihilator classes. In constructing annihi lator  string A = (Ak : 1 < 
k < k0), we distinguish between ordinal factors and nominal  factors. If factor k is 
nominal, permuta t ion  of its levels {taj : 1 < j <__ Pk} should not  affect the corresponding 
candidate  SP estimator.  This consideration leads to set t ing Aa = Ha for every k, the 
lat ter  projection being defined in Subsection 2.2. This choice will be called the flat 
annihilator,  a term suggested by the constant  spect rum of the reduced singular value 
decomposit ion of Ha. 

On the other hand,  suppose tha t  factor k is ordinal with equally spaced levels 
t(k) -~ (tkl,ta2,.. .  ,tkp). To have the SP candidate  est imator  favor a fit t ha t  is locally 
polynomial  of degree r - 1 in the levels of factor k, we take Ak proport ional  to the r - th  
difference operator  of column dimension Pk. Explicitly, consider the (q - 1) • q matr ix  
A(q) = {Sw} in which 5v,v = 1, 5v,v+~ = - 1  for every v and all other entries are zero. 
Define recursively 

(2.28) D(1,pk) = A(pk), D(r, pk) = A(pk -- r + 1)D(r  - 1,pa) 

for 2 < r < Pk -- 1. 

Evident ly  the (Pk - r )  x Pk matr ix  D(r, Pk) accomplishes the r - th  differencing and anni- 
hilates powers of t(k) up to power r - 1 in the sense tha t  

(2.29) D(r, pk)t~a ) = 0 for 0 < u < r - 1. 
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u t u ~' Moreover, in row i of D(r, pk), the Here t~k ) denotes the column vector ( t k l , . . .  , kpkJ " 
elements not  in columns i, i + 1 , . . . ,  i + d are zero. The r - th  difference annihi lator  for 
factor k is defined to be D(r, pk). 

More generally, if # in (2.1) is expected to behave locally like a polynomial  of degree 
r - 1 in factor k but  the factor levels in t(k) are not equally spaced, we define Ak as 
follows. For every integer 1 _< r _< Pk - 1, the local polynomial annihilator C(r, pk) is 
a (Pk - r) • Pk matr ix  characterized through three conditions. First ,  for every possible 
v, all elements in the v-th row of C(r, pk) other than  {c,~ : v _< w < v + r} are zero. 
Second, C(r, Pk) satisfies the orthogonali ty conditions 

(2.30) C(r, pk)t~k ) = 0  for 0 < u < r - - 1 .  

Third,  each row vector in C(r, pk) has unit  length. These requirements are met  by 
set t ing the non-zero elements in the v-th row of C(r, pk) equal to the basis vector of 
degree r in the or thonormal  polynomial  basis tha t  is defined on the r + 1 design points 
( tkv, . . . , tk ,v+~) .  The S-Plus function p o l y  accomplishes this computa t ion .  When  the 
components  of t(k) are equally spaced, C(r, pk) is just  a scalar multiple of the r - th  
difference matr ix  D(r, Pk ). 

In the construction of C(r, pk), the powers of the components  of t(k) could be re- 
placed by other linearly independent  functions to express prior notions about  p other 
t han  local polynomial  behavior. 

For specified integer ak ~_ 1, let .Ak = {C(r, pk) : 1 < r ~_ ak}. We will consider 
SP candidate  estimators whose annihilator string A = (Ak : 1 < k _< k0) lies in the 

rIk~ r The asymptot ics  in Section 3 impose limits on the annihi lator  class A = l lk=l �9 
cardinal i ty  of .4 relative to p. 

3. ASP estimators 

For given annihilator class .A and shrinkage class ~', the ASP es t imator  of ~? is the 
candidate  SP est imator with smallest es t imated risk. This section gives details of the 
construction.  Under conditions on ~ and A, the asymptot ic  risk of the ASP est imator  
coincides wi th  the smallest asymptot ic  risk achievable by the candidate  SP est imators.  In 
this sense, adap ta t ion  works. The  asymptot ics  are mult iparametr ic  in t ha t  the number  
of means p in the k0-way layout tends to infinity while the number  of replications j0 is 
fixed, with possibly j0 -- 1. 

3.1 Risks and estimated risks of candidate estimators 
We will assess the performance of any est imator  ~) of ~ -- X m  th rough its normalized 

quadrat ic  loss and risk: 

(3.1) L(~,m)  ---- p - - l ] ~  _ T]I2, R(/) ,m,  c r2) = E L ( ~ , m ) .  

Let  z = V'y,  let ~ = n(z)  = U'~, and let ~(f ,  A) = d iag{f}z .  Then,  from (2.26), 

(3.2) ~lsP(f, A) = V~( f ,  A), ~/= V~. 

The  normalized quadrat ic  loss of the SP candidate  est imator  is thus 

(3.3) n(~lsp(f,  A), m) = p-1 i~lsp(f, A) - ~/[2 _- p-11~(f, A) - ~12. 
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For any vector x, let ave(x) denote the average of its components. It follows from 
(3.3) that  the risk of the candidate SP estimator is 

(3.4) R(~)sp(f, A), m, a s) = r( f ,  A, ~2, as), 

where 

(3.5) r( f ,  A, ~2, a2) = ave[f2as + (1 - f)2~s]. 

The multiplication of vectors on the right side of this display is to be done componentwise 
as in the S language. 

Were the risk function (3.5) known, we would use the candidate SP estimator of 
~7 that  minimizes risk over the class of shrinkage vectors 9 ~ and the class of annihilator 
matrices .A under consideration. This is the oracle candidate estimator. In reality, 
the risk function contains two quantities, ~r s and ~2, that are usually unknown. The 

sampling scheme and the ordinal or nominal character of the factors influence methods 
for estimating a s. Basic possibilities include: 

�9 Replicated layout. In this setting, where n > p, a fundamental choice is the least 
squares estimator of cr 2, the normalized residual sum of squares in the ANOVA table for 

the multi-way layout. 
�9 One observation per combination of factor levels. Here n -- p. If the penalty basis 

is such that  the coefficients {~i : i E L} are close to zero, then an appropriate variance 
estimator is 

(3.6) &2 _- [#(L) ] - I  E z~. 
i E L  

The least squares estimator of a 2 converges to a 2 in mean squared error if and only 
if n - p tends to infinity. This makes it worth considering when n - p is (say) 25 or more. 
For variance estimator (3.6), which is designed for the difficult case n = p, E(# 2 - a 2 )  2 
converges to zero if and only if # (L)  tends to infinity and the sum of squared biases 
[#(L)]-I  ~-]ieL ~2 tends to zero as p tends to infinity. Because ~ is unknown, practical 
choice of L relies on prior conjecture about the structure of m checked by scrutiny of 
{z~ : i  E L}. 

The following procedure expresses an empirical engineering approach to choosing L 
that  the author has found useful. Initially, let S = {1 ,2 , . . . ,k0} .  Set L -- {i E :Ys : 
I]kc8 )~kik >-- C} for a tentatively selected threshold c. To pick a final c, look for the 
smallest c such that  the value of (3.6) remains stable as c is increased. Look then at 
the values of the {Iz~] 1/2 : i e L} for evidence that  ~ is not excessively large for any 
i C L. When Ak is equal to Hk, as advocated for nominal factors in Subsection 2.4, 
then ~k2 . . . . .  ~kpk ---- 1. In that  case, for c > 0, L -- I s  and the variance estimator 
(3.6) coincides with the pooled interaction estimator of cr 2 based on the highest-order 
interaction term in ANOVA decomposition (2.8). 

This informal procedure combines vague prior opinions about m with feedback from 
the data. Variants of the procedure replace the initial choice of S with a smaller subset 
of {1, 2 , . . . ,  k0}, then proceed similarly. This yields generalizations of classical pooled 
lower-order interaction variance estimators and may be useful when the highest order 
interactions are not negligible. Some readers will be dissatisfied by the subjective char- 
acter of the proposed method for choosing L and, more generally, of all known methods 
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for estimating a 2 when n = p. They are advised to consider variance estimators and 
ASP fits based on competing plausible a priori considerations. The data  examples in 
Section 4 illustrate some of the issues. Devising an effective theory for estimating a ~ in 
the absence of replication remains an important open problem. 

Having devised a variance estimator 5 2  we may estimate ~2 by z 2 - ~2 and hence 
the risk function r(f, A, ~2, ~2) by 

(3.7) § A) -- ave[a2f 2 + (1 - f)~(z 2 - a2)] = ave[(f - ~)2z2] + &2 ave(~), 

where ~ = (z2-&2)/z 2. Apart from the new considerations entering into the estimation of 
cr 2, this equation expresses Stein's (1981) unbiased estimator of risk or the risk estimator 
implicit in Mallow's (1973) discussion of Cp. 

3.2 ASP estimators and algorithms 
For fixed shrinkage class 9 r and annihilator class .4, the ASP estimator is defined 

to be ~IASP = ~)sP(f, A), where 

(3.8) ( / ,A)  = argmin § A) = argmin a v e [ ( / -  ~)2z2]. 
f 6J:,A6A f EI,A6A 

Because the cardinality of .4 is finite, the minimization in (3.8) may be accomplished 
by first minimizing estimated risk over f 6 5 r for each A and by then minimizing over 
A 6 .4. For each fixed A, computation of j2 is a weighted least squares problem whose 
details depend on the shrinkage class constraints, as described next. 

Penalized Least Squares shrinkage. For fixed A, it follows from Subsection 2.3 and 
(3.7) that the PLS shrinkage vector minimizing estimated risk is f (P) ,  where f(~,) is 
defined by (2.21) and 

(3.9) ~ = argmin ave[(f(v) - ~)2z2]. 

Because of (2.21), equation (3.9) is equivalent to the system of equations 

(3.10) us = argmin E 1 + Us 1-I Aki~ -- Oi z?~, S 6 So. 
vs6[O,oo] i6Zs keS 

Calculation of P = {Ds : S 6 So} thus amounts to solving 2 k~ nonlinear, weighted 
least squares problems, each of which can be treated with minimization algorithms for 
a function of a single variable. 

Special case. (All factors ordinal.) Let [.]+ be the positive-part function. When 
each of the k factors is ordinal and the corresponding Ak is the flat annihilator Hk 
discussed in Subsection 2.4, then ~k2 . . . . .  )~kpk ---- 1. In this important special case, 

2 [PsU~y[ 2 imply that  (1 + Ps)-* = cs, where (3.10) and the identity ~ i e Z s  zi = 

(3.11) cs = argmin E (c-~gi) ~2z2 
c6[0,1] i61s 

= [ 1 - ~ 2 H ( P k - 1 ) / , P s U ~ y [ 2  ] , $6So~ 
k 6 S  + 
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The ASP estimator for all factors ordinal thus reduces to 

(3.12) ~ASP ~ U~ [IP T ~-~ csPs] 

This expression does not require computing the penalty-basis coordinate system. 
Stein (1966) studied an abstract multiple shrinkage estimator that, like (3.12), uses data- 
based shrinkage factors that  are constant over subspaces. His paper gave the application 
to the two-way layout and refined the shrinkage factors slightly so as to reduce the risk 
of the estimator slightly when p is small. Achieving such risk improvements for more 
general ASP estimators is an open question. 

PoIytone Score shrinkage. Fix A. Minimizing estimated risk (3.7) over f 6 ~PS is 
accomplished in several steps. Evidently f(1,1 ..... 1) = I. For every S 6 So, we compute 

{]i : i E Zs}  as follows: 
Let w = {zi : i C Zs},  let T = {lIkesAkik : i 6 ZS} denote the vector of 

corresponding scores, and let q = # ( S )  = lIk~s(Pk -- 1). The q components in w 
and ~- are both arranged according to the mirror dictionary ordering of the indices 
i = ( i1 , i2 , . . . ,  iko) that is defined in Subsection 2.1. Let p denote the rank vector of T 
and define the q dimensional vector ~ through ~p~ = wj. Let h = (~2 _ ~2)/~2 and let 
~S ---- {k 6 R q : k l  ~_ k2 ~_ " '"  ~ kq}. Find 

(3.13) k -- argmin ave[(k - ~)2~2], 
k6~Cs 

using an algorithm for weighted isotonic least squares such as the pool adjacent violators 
algorithm (cf. Robertson et al. (1988)). The PAV algorithm converges in a finite number 
of steps. 

Define the q dimensional vector/r through lcpj = ]r The j - th  component of {]i : 

i 6 I s }  is then max{]cj, 0}. The final positive part adjustment is needed because the 

components ]/ are restricted to [0, 1]. Section 5 of Beran and Diimbgen (1998) provides 
the supporting mathematical argument. 

Polytone shrinkage. Fix A. Minimizing estimated risk (3.7) over f 6 ~'p is accom- 
plished in several steps. Let K:p denote the subset of R p that  is restricted as follows: 
If k 6 ]Cp then k(1,1 ..... 1) = 1; for every S 6 80 and i 6 I s ,  ki = k(il#2 ..... iko) is a 
nondecreasing function in each subscript ik such that k 6 S. Find 

(3 .14 )  ]c ---- argmin ave[(k - ~ )2z2 ] .  
kEICp 

The j - th  component of {]i : i 6 I s }  is then max{]cj, 0}. As above, the positive part  

adjustment is needed because the components of ]i are restricted to [0, 1]. 
When ko = 1, the PAV algorithm solves (3.14) in a finite number of steps. When 

k0 = 2, suitable iterative application of the PAV algorithm converges to the solution of 
(3.14). Bril et al. (1984) provided a FORTRAN implementation. Their idea can be used 
to define an algorithm for general k0, but  the computational efficiency of this approach 
is problematic. A faster algorithm would be welcome. 
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3.3 MuItiparametric asymptotics 
The following theorem gives conditions under which adaptation to minimize esti- 

mated risk approximately minimizes true risk as p tends to infinity. The proof draws on 
abstract results for shrinkage estimators established by Beran and Dfimbgen (1998). 

THEOREM 3.1. Fix the annihilator string A and let .T" be a subset of .~p that is 
closed in [0, 1] p. In particular, Jr can be any shrinkage class listed in Subsection 2.4 
other than .~v. Suppose that 52 is consistent in that, for every a > 0 and a s > O, 

(3.15) lim sup # ( . 4 ) .  El a2 - 0-21 = 0. 
p---* oo a v e ( ~ 2 ) _ ~ a 2 a  

Suppose also that 

(3.16) r - -1/2~ 
lim # ( A ) .  min lPk ~=-0. 

p - - - ~  l < k < k o  

a) Let V ( f ,  A) denote either the loss L(?)sp(f , A), m) or the estimated risk ~(f, A). 
Then for every a > 0, and every a s > 0, 

(3.17) lim sup E sup IV(f,A)-R(?)sp(f,A),m, aS)l=O. 
p " *  oO ave(~2)_~o.2a  f E . ~ , A E . A  

b) For the A S P  estimator defined in (3.8), then 

I 
R( ?)AS P , - min R(Clsp(f ,A) m, 0-2)l -- (3.18) lim sup m ,  0 -2 ) f E ~ , A E ~ 4  ' 0. 

p---* CO ave (~2)  ~ a 2 a  I 

c) For W equal to either L(OASp, m) or R(?)ASp, m, 0-2), 

(3.19) 
^ ^ 

lim sup E i? ( f  , A) - W I = 0. 
p " ~  OO a v e ( ~ 2 ) _ ~ a 2 a  

Because maxl<k<ko Pk ~_ P <_ [maxl<k<ko Pk] k~ the condition p --~ c~ is equivalent 
to max]<k<koPk --~ o0. By part a, the loss, risk and estimated risk of a candidate 
SP estimator converge together asymptotically. Uniformity of this convergence over the 
shrinkage and annihilator classes makes the estimated risk of a candidate estimators a 
trustworthy surrogate for its true risk or loss. By part  b, the risk of the ASP estimator 
?)ASP converges to that  of the best candidate SP estimator. The theorem covers every 
shrinkage class defined in Subsection 2.4 except ~'u. Because the unrestricted least 
squares estimator is one of the candidate estimators indexed by these shrinkage classes, 
its asymptotic risk is at least as large as that  of the best-shrinkage adaptive estimator. 
In practice, the risk of the best shrinkage-adaptive estimator is often much smaller than 
that of the unrestricted least squares estimator and this is the point. Part  c shows 
that the loss, risk, and plug-in estimated risk of a shrinkage-adaptive estimator converge 
together asymptotically. 

The pleasant properties stated in Theorem 3.1 break down when the shrinkage class 
is ~g .  Then the estimator 7)sp(], A) is dominated by the least squares estimator (see 
Beran and Diimbgen (1998), p. 1829). Adaptation works when the class of candidate 
estimators is not too large, in a sense made precise by the proof below for Theorem 3.1. 
The richness of a shrinkage class 9 v C 9Vu is characterized through the covering number 
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J(9 r)  tha t  is defined as follows. For any probability measure Q on the set of k0-tuples 17, 
consider the pseudo-distance dQ(f, g) ---- [f(f  -g)2dQ]U2 on [0, 1] z. For every positive 
u, let 

(3.20) N(u'aV'dQ)=min( #'T~ :'~~ C'T' IoeToinf dQ(fo, f) <_u Vf E.T} .  

Let 

(3.21) N(u, 9 r)  = sup N(u, ~, dQ), 
Q 

where the supremum is taken over all probabilities on T. Define 

/o 1 (3.22) J(9 r)  ---- [log N(u, 5r)l U2du. 

Impor tant  in proving Theorem 3.1 is the property J(.T'p) = 
1/2 O(minl<k<ko{l-].jr }), which follows from Example 5 on p. 1832 of Beran and 

Diimbgen (1998) and implies 

(3.23) p-U2J(.T'p) = O ( min {p~-1/2}~ , 
\l<k<_ko / 

The right side of (3.23) tends to zero as p --* c~. 

PROOF OF THEOREM 3.1. Part a. By Theorem 2.1 in Beran and Diimbgen (1998), 
there exists a finite constant C such tha t  

(3.24) E sup IV(f, A) - R(~sp(f , A), m, a2)l 

<_ C[p-1/2g(:)(a 2 + a{ave(~2)} 1/2) + El52 - o211. 

Limit (3.17) follows from this, the assumed inclusion of 9 r in ~ p ,  (3.23), (3.15) and 
(3.16). 

Parts b and c. In analogy to (],  A) = argminfe~-,Ae~ 4 ~(f, A), let 

(3.25) (],.A) = argmin r(f, A, ~2, a2). 
fE.~,AEA 

Then minfe.~,AeA R(r A), m, a 2) = r ( ] ,  fi,, ~2 a2). We show that  (3.17) implies 

(3.26) lim sup 
p--* OO ave((2)  ~o.2a 

where W can be n(@sp(], ft), m) or n(@sp(], A), m) or § ill). The  limits to be proved, 
(3.18) and (3.19), are immediate consequences of (3.26). 

First,  (3.17) with V(f, A) = :(f, A) entails 

lim sup EI~( / ,A  ) - r ( / ,  A,~2, a2)l = 0 
p"* OO ave(~2) ~cr2 a 

(3.27) 
lim sup EI~(] ,A)  - r(],fl,~2,a2)I = O. 

p--*OO a v e ( ~ 2 ) ~ a 2 a  
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Hence, (3.26) holds for W = ~(], A) and 

(3.28) l im sup EIr( / ,  A, 52, a 2) - r ( f , A , 5 2 , a 2 ) [  = 0. 
p-~c~ ave(~2) ~a2a 

Second, (3.17) with V ( f ,  A) = L ( ~ s p ( f ,  A), m) gives 

(3.29) 

lira sup ElL(Osp(],fi ),m) - r ( ] ,  = 0 
p--*cx) ave(~2) ~a2  a 

lim sup S l i O ) s p ( ] , A ) , m  ) - r ( ] , A , ~ 2 ,  a2)] = O. 
p"~ OO ave(~2)~a2 a 

These limits together with (3.28) establish the remaining two cases of (3.26). 

4. Experiments on data 

This section describes two data analyses that  compare ASP fits with unrestricted LS 
fits. ASP fits that minimize estimated risk over a pertinent class of candidate estimators 
reveal striking submodel structure or smoothness in these two data  sets. These structural 
insights are gained algorithmically without detailed intervention by the analyst. 

4.1 Hardness of  dental fillings 
Brown (1975) and Seheult and Tukey (2001) analyzed a three-factor layout described 

by Xhonga (1971). The response variable is a measure of the hardness of fillings obtained 
by 5 Dentists (D) using 8 Gold alloys (G) and 3 Condensation methods (C). According 
to Xhonga (1971), the objective of the experiment was to find a dental gold filling with 
greater hardness. Condensation, properly carried out, was known to increase the hard- 
ness of a filling. The three condensation techniques used in the experiment were: (1) 
electromalleting, in which blows are delivered mechanically at a steady frequency; (2) 
hand malleting, in which a small mallet is used to deliver blows; and (3) hand conden- 
sation. The reported hardness observations are each averages of ten measurements that  
are not available. It was reported anecdotally that  dentist 5 appeared to be physically 
tired before the experiment. 

The first two papers cited above give the data  and standard ANOVA table for this 
three-way layout with one observation per combination of factor levels. Analysis of the 
data is difficult because there is only one observation per cell, because possibly all of the 
main effects and interactions matter,  and because outliers complicate the estimation of 
variance. Performance of semiautomatic ASP fits on this data thus provides an extreme 
test case. 

The GD mean square in the ANOVA, the smallest of the interaction mean squares, 
yields the variance estimator ~r 2 = 7458. Treating the three factors as nominal, we 
compute the ASP estimator (3.12) that  uses for each factor the flat annihilator (cf. 
Subsection 2.4). The estimated risk of the ASP estimator is 2428, about  one-third the 
estimated risk 7458 of the unrestricted LS estimator, which here coincides with the data. 
With subscripts appropriate to the context, the shrinkage constants used by the ASP 
estimator are: cG = .76, 5c = .98, CD = .86, cGc = .50, CGD -~ .00 ,  CCD -~- .77, 
CGCD = .25. Because of equation (3.11), the present choice of 52 forces the vanishing 
of COD, thereby removing the gold-dentist interaction from the ASP fit while retaining 
varying portions of the other least squares interactions and main effects. 
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Fig. 1. ASP and unrestr icted least squares fits to the two-way marginal means in the three-way 
layout of filling hardness data, using the GD mean square to est imate variance. Each factor is 
nominal. All three annihilators are flat. 
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Averaging a three-way fit over all levels of one factor yields a two-way marginal fit 
that  estimates, under model (2.2), the corresponding two-way array of averaged means. 
The second column of Fig. 1 displays, as perspective plots, the two-way marginal fits 
obtained from the ASP fit. In this ASP column, the CD plot indicates that  hand 
condensation by dentists 4 and 5 was less effective in making a filling hard than other 
condensation-dentist pairings, if we average over gold alloys. The GC plot reveals that  
electromalleting and hand malletting hardened a filling more than hand condensation, 
regardless of the gold alloy used, if we average over dentists. The GD plot suggests 
that  gold alloys 6, 7 and 8 (in that  order) produced harder fillings than the other alloys, 
regardless of dentist, if we average over condensation methods. The removal of the GD 
interaction term by the ASP fit explains the additive structure in this last plot. 

The two-way marginal fits obtained from the LS fit are displayed in the first column 
of Fig. 1. The CD and GC plots tell the same story as their ASP counterparts. However, 
the GD plot obtained from the LS fit conveys no clear message, unlike its ASP counter- 
part. Designed to reduce risk under model (2.2) by learning from the data, the ASP fit 
reveals interesting structure in the results of the dental hardness experiment. Figure 2 
plots the residuals after the ASP fit just described. The Q-norm plot reveals outliers 
in both tails. The residual versus fit plot indicates that  some larger residuals of both 
signs are associated with the smaller fitted values and some larger positive residuals are 
associated with the larger fitted values. 

The value of ~2 quantifies the level of detail in the ASP fit that  is deemed indistin- 
guishable from noise. Because it is difficult to estimate a 2 in this example, we consider 
two other plausible values of ~2 that  bracket the value used in the foregoing analysis. 
The GCD mean square in the ANOVA yields the larger variance estimator b 2 = 9969, 
which yields an ASP estimator with estimated risk 1179. The shrinkage constants are 
now: ~c = .68, ~c = .97, CO : .82, cGC : .33, CGD : .00, CCD : .70, CGCD : .00. The 
present choice of b 2 forces the vanishing of COCO through (3.11). The vanishing of CGD 
also occurs through (3.11) because the GD mean square is smaller here than the GCD 
mean square. The main features in the analog (not shown) of Fig. 1 change only slightly 
for this ASP estimator and the conclusions stated above still hold. Though somewhat 
larger, the residuals from this ASP fit exhibit the same patterns as in Fig. 2. 

A referee drew to attention the much smaller robustified variance estimator ~2 = 
2398 that  is suggested by Table 10 in Seheult and Tukey (2001). This yields an ASP 
estimator with estimated risk 1878 that  is closer to the raw data than either of the 
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Fig. 2. Residual plots for the ASP fit described in Fig. 1. 



218 RUDOLF BERAN 

LS Fitto Citrate Concentrations ASP FittoCitrate Concentrations 

..-"i,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :~ �9149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .',, 

4 6 8 4 6 8 10 10 
S u ~  Su~t  

LS Fit to Citrate Concentrations ASP Fit to Citrate Concentrations 

~ N o  7" tn 

o 

Ln ~ - -  
o - -  

i , , , , , 

2 4 6 8 10 12 14 

Time 

.=_o 

8 

, , , , , , 

2 4 6 8 10 12 

Time 

14 

Root Izl Matrix Shrinkage Matrix 

. . . . . . . . . . . . . . . .  �9 

. . . . . . . .  / i  

�9 e ~  d 

4 6 8 10 ,<4 �9 r ~ ~,  2 4 6 8 10 "~ 
Column Column 

Fig. 3. ASP and unrestricted least squares fits to the two-way layout of plasma citrate 
concentrations. The factor subject is nominal, the factor time is ordinal, and the respective 
annihilators are flat and second-difference. The diagnostic plots reveal what ASP does. 
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preceding fits. Indeed, the shrinkage constants are now: cG = .92, cc = .99, CD ---- .96, 
cGc : .84, CGD : .68, CCD = .93, CGCD = .76. For this ASP estimator, the first 
two entries in the second column of the analog (not shown) of Fig. 1 do not change 
qualitatively but the third entry now shows moderate departures from additivity in the 
ASP fitted GD means. Though somewhat smaller, the residuals from this ASP fit exhibit 
the same patterns as in Fig. 2. Note that  smaller residuals do not indicate merit in a fit. 
The residuals of the LS fit, which coincides with the raw data, vanish entirely. 

For all three variance estimators considered, the computed ASP shrinkage constants 
indicate that  the G, C, D main effects and the CD, GC interactions are important. The 
third fit retains more of the other interactions. Nevertheless, major features of the fitted 
CD, GC, and GD plots that  were described above for the first ASP fit are exhibited by 
all three ASP fits. 

4.2 Concentration of plasma citrate 
Andersen et al. (1981) analyzed a two-factor experiment that  is also recorded as 

data-set 41 in Andrews and Herzberg (1985). For each of 10 subjects, the concentration 
of citrate in plasma was measured hourly (in #tool per liter) at 14 times from 8 to 21 
hours Meals were given at 8, 12, and 17 hours. We treat this data as a two-way layout in 
which the first factor subject is nominal and the second factor time is ordinal, using the 
flat annihilator for the nominal factor and the r- th difference annihilator for the ordinal 
factor (cf. Subsection 2.4). Note that  the r- th difference annihilator generates a penalty 
term that  favors a fit of local polynomial degree r - 1 to the ordinal factor. 

To obtain a variance estimate, we take r -- 2, which favors a locally linear fit to the 
ordinal factor, a plausible a priori choice for the plasma data. The variance estimate 
~2 = 131.9 is then obtained from the high-component variance estimator (3.6) with 
L -- {(i , j)  : 5 < i < 10, 10 _< j < 14}. This choice of L is informal, motivated by the 
plot of {Izi,jl 1/2} in Fig. 3. 

The candidate PLS estimators considered let the penalty weights range freely and 
let the differencing order r of the annihilator for the ordinal factor range from 1 to 4. 
For each r, the estimated risk of the shrinkage adaptive PLS estimator (which chooses 
penalty weights to minimize estimated risk) is: 22.6 for r -- 1, 21.2 for r -- 2; 29.2 
for r -- 3, and 29.4 for r -- 4. The foregoing value of ~2 is used to calculate these 
estimated risks. The ASP estimator that  minimizes estimated risk over the candidate 
PLS estimators thus takes r = 2. Note that  the estimated risk 21.1 of this ASP estimator 
is about one sixth the estimated risk 131.9 of the unrestricted least squares estimator 
but is only slightly smaller than the estimated risk 22.6 of the adaptive PLS estimator 
induced by r = 1. 

As the interpolated plots of Fig. 3 reveal, the ASP fit achieves its relatively small 
estimated risk in two ways: through near additivity in the two factors and through 
greater smoothness than the least squares fit. Unlike the highly irregular data, the ASP 
fit plainly shows a common diurnal pattern in mean plasma citrate concentration as a 
function of time. For each subject, the highest mean citrate concentration is at 9 and 
10 hours; the lowest concentration is at 16 and 17 hours. The meal times do not explain 
the fitted pattern. The analog (not shown) of Fig. 3 for the shrinkage adaptive PLS 
estimator with r -- 1 is very similar. 
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