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A b s t r a c t .  This  pape r  considers  a min imax  confidence bound  of the  normal  mean  
under  an a symmet r i c  loss function.  A min imax  confidence bound  is ob ta ined  for 
the  case t ha t  the  var iance is known or unknown. The  admiss ib i l i ty  of the  min imax  
confidence bound  is also considered for the  case of known variance.  
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1. Introduction 

Let X 1 , . . .  ,Xn be i.i.d, normal  r andom variables wi th  mean  p and variance a 2 
(N(# ,  a2)).  A problem of es t imat ing # is considered for the case tha t  a is known or 
unknown. An es t imator  f L  is called a lower confidence bound  at  confidence level 1 - a 

if 
Pe(fL(X) < #) >_ 1 -- a for all 0, 

where X = ( X 1 , . . . , X n ) ,  and 8 = # with a known, 8 = ( # , a )  wi th  a unknown. An 
upper  confidence bound  f g  of # is similarly defined. An interval (fL,fU) is called a 
confidence interval at  confidence level 1 - (~ (0 < a < �89 if 

P e ( f L ( X )  < # < f v ( Z ) )  > 1 - ~ for all 0. 

In order  to compare  confidence bounds  it seems appropr ia te  to  use an asymmet r ic  
loss funct ion since the loss result ing from overes t imat ing it is more serious than  tha t  f rom 
underes t imat ing  for the lower confidence bound,  and vice versa for the upper  confidence 
bound.  For such a case, Zellner (1986) considered a useful asymmet r ic  loss function,  
which was called LINEX (Linear-Exponent ia l ) ,  to es t imate  the normal  mean. See Shafie 
and Noorbaloochi  (1995) for fur ther  developments.  Xiao (2000) discussed some applica- 
tions to a predict ion problem. 

In this paper ,  we adopt  the L INEX loss funct ion to compare  confidence bounds.  For 
the lower confidence bound  EL the  loss funct ion is given by 

(1.1) n l  (8, f L )  = b l { e x p ( a l  ( f L  -- ~ t ) /o )  -- a l  (EL - ].t)/o" -- 1} 

and for the upper  confidence bound  flu 

L2(0, f u )  = b 2 { e x p ( - a 2 ( f u  - p ) / a )  + a 2 ( f u  - # ) / a  - 1}, 
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where ai and bi (i = 1, 2) are known positive constants. Further, in order to compare 
confidence intervals (fL,  flU), we adopt the following loss function 

L(O, ilL, f v )  = LI(0, fL)  + L2(O, fu ) .  

The accuracy of lower and upper confidence bounds fL and f u  are then measured by 
the risk functions 

R1 (O, fL)  : Eo {L1 (0, fL  (X))} 

R2(0, f u )  = Eo{L2(O, f u ( X ) ) }  

and that  of a confidence interval (fL, f u )  is 

(1.2) R(O, f iL, fU) = RI(0, fiL) + R2(O, fu ) .  

A 1 - a lower confidence bound fi~ is called minimax if 

sup R, (O, f~ )  < sup R1 (0, fn )  
0 0 

for any other 1 - a lower confidence bound fL.  A 1 - a lower confidence bound f ~  is 
called admissible if there exists no other 1 - a lower confidence bound fL such that  

n l  (0, fL)  _~ R1 (O, f~,) for all O 

with strict inequality for some 0. The concepts are also adopted to the upper confidence 
bound and the confidence interval. 

In the subsequent section we shall mainly treat the lower confidence bound. How- 
ever, the method employed can be easily applied to the upper confidence bound and the 
confidence interval. 

In order to get a minimax lower confidence bound, we shall adopt the Bayes approach 
(e.g. Berger (1985), p. 350). Let 

LI(O, fL)  : AI(~,~)(fL) + LI(O, fL)  

be a loss function and let /~l(0, fL)  be the risk function, where A is a known positive 
constant which is later determined in relation to the confidence coefficient, and IA(x) is 
an indicator function of the set A. Then 

fL) =  Po(fL > + n (O, fL). (1.3) 

From (1.1) 

(1.4) 

+ b, Eo{exp(al( fL - - a l ( fL  --  )1o- - 1}. 

Let {Trk } be a sequence of prior distributions on 0. Then we shall seek the Bayes 
estimator fLk which minimizes 

(1.5) rl( k, = f (e, fL)d k(O), 

and evaluate the asymptotic Bayes risk as k -~ c~, from which a minimax lower confi- 
dence bound shall be determined. 

In Section 2, we seek a minimax lower confidence bound for the case of known 
variance, and show its admissibility. The case that  the variance is unknown is treated 
in Section 3. 
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2. Minimax confidence bound when c~ is known 

In this section, we suppose that  a is known, so that  0 = #. We take the normal  prior 
dis t r ibut ion N(0 ,  k 2) as Trk with positive constant  k. Then  the posterior d is t r ibut ion of 
#, given X,  is N (  nk2 .~, ~:k 2 ) 1 n ~ with ) (  = n ~-~i=1 Xi. Write the lower confidence 
bound  ftL as 

nk 2 _ _~nU(X) (2.1) /25 = nk 2 + a 2 X  - 

with some function u(x). Subst i tu t ing (2.1) into (1.4) and after some calculations,  we 
have tha t  the posterior Bayes risk of fti with respect  to/~1,  given X,  is 

(2.2) kO(kl),bl (U(X) ) , 

where 

(2.3) q 2 ( k ) ' '  ( ( _ ~ k ) )  { (a2ck a~n ) ax } a,b IX) ~ -  A 1 -- ~ + b exp 2n + ~ - 1 , 

(I) is the dis t r ibut ion function of N(0 ,  1) and ck = nk2/(nk  2 + a2). 
Let 

{ a )ax__ ) 
(2.4) ~Oa,b(X ) = ~(1 -- O(x)) + b exp + ~ n  - 1 

and 

Then 

and 

(k) dV(~,~(x) dVo,b(x)  
r (x) -- dx ' ~2a, b ( x )  - -  d x  

Ca,b(X)-- V/~ - ~  - - - - ~  exp 2n 1) 
) (2.5) Ca,b(X) = - -Ar  ~ exp 2n - 1 , 

where r is the probabi l i ty  densi ty of N(0 ,  1). 
We now give a helpful lemma to establish minimaxity,  the proof  of which is provided 

in the Appendix.  

LEMMA 2.1. There exist unique values Xk and xo which minimize (2.3) and (2.4), 
and are obtained by solving 

r o,b(x) = 0, r  = 0. 

Furthermore, the sequence {Xk } converges to Xo as k ---* cx). 

Let uk be the solution of r /x ~ = 0. Then  it follows from (2.2) and L e m m a  2.1 al,bl \ J 
tha t  the confidence bound  

nk 2 uka 
f t L k  ~- nk 2 + (7 2 X x~ ~ 
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is the Bayes estimator of p with respect to/~1 and the Bayes risk is 

ff,(k) (2 .6 )  r l  (Tlk,/sLk ) = ~ a l , b l  ( ~tk)" 

THEOREM 2.1. Ira1 < 2u0v~ with a2(Uo) = 1 - ~ ,  then the lower confidence bound 

^ * 2 - / P L  =- 

i s  minimax among all 1 - a lower confidence bounds. 

PROOF. From the condition, 

1-eXp\en /r 

is positive, and from (2.5) Ca,,b, (u0) = 0. It is seen that  

/~l(#,fi}.) -- qga,,bl(uo) for all #, 

which yields 
lim rl (Trk, PLk ) = sup/~1 (#, P}.) 

k---*oo tt 

from (2.6) and Lemma 2.1, and hence for any other confidence bound/hL 

(2.7) sup/~1 (#,/hL) > sup/~1 (#,/5}.). 
tt tt 

Suppose that /hL is any other 1 - a lower confidence bound. Then from (1.3) and (2.7) 

supRI(#,/hL) > supRl(p,/5~) + A(Pt,(# </5}~) - sup Pu(# </hL)) 
/z tt tt 

_> sup RI(/Z,/5~) 
tt 

since Pt,(P < /hL) <-- a and P~(# </5~) = a. Hence the proof is completed. 

Remark 2.1. If the condition that  al < 2U0v~ is violated, then the present method 
does not work well. We conjecture that the condition is also necessary for /5~ to be 
minimax. 

Next we shall show that the minimax confidence bound/5}, is admissible. In order 
to prove it, we need the following lemma, the proof of which is given in the Appendix. 

LEMMA 2.2. Let xk and xo be the values in Lemma 2.1. Then 

lim k(t~(k~(xk) -- I~ab(XO) ) = -  O. 
k--* oo 

THEOREM 2.2. I f  al < 2U0v~, then the lower confidence bound/5*L is admissible 
among all 1 - (~ lower confidence bounds. 
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PROOF. Suppose that there exists a 1 - c~ lower confidence bound ft L such that 

Rl(/Z, ftn) ~ RI(p,f~*L) for all # 

with strict inequality for some #. Since P , ( #  < f~L) <-- c~ and P~,(# </2~) = c~, we have 

/~1(#,/5L) <_ /~1(#,/5~) for all # 

with strict inequality for some #. By using the Limiting Bayes Method (Lehmann (1983), 
p. 265), we shall lead to a contradiction. Since/~1 (#, ftL) is continuous and RI- (#, #L)̂* is 
free from #, there exist e > 0 and #0 < #I such that 

~ ^ .  

/~1 (/2, ]~L) < -/~1 ( ~ , / ~ L )  -- e 

for all p with Po < P < Pl- Then we have 

^* e f m  e - u 2 / 2 k 2 d #  (2.8) r l ( T r k , ' L )  -- rl(Trk,ftL) > .o 

r l ( T r k , f t ;  ) _ r l ( T r k , f t L k )  --  V / ~ k ( f f 2 a l , b l ( U o )  _ ffllal,b,(k) ( ~ k ) )  " 

Since ~ ut e-u2/2k2 d#  ---* - as k ---* #1 #o 
0 

it follows from Lemma 2.2 that the right side of (2.8) goes to infinity as k ~ oo. Hence 
there exist k0 such that rl (Trko, ftL) < rl (Zrko, ~L~ o), which contradicts the fact that/hLko 
is the Bayes estimator. 

An argument paralleling those of Theorems 2.1 and 2.2 yields the following theorem. 

THEOREM 2.3. I ra2  < 2v0v/-n wi th  (~(Vo) = 1 -c~ ,  then  the upper  conf idence bound 

f 'b  = 2 + l 

is m i n i m a x  and admiss ib le  among  all 1 - a upper  conf idence  bounds.  

Let us now turn to the problem of the confidence interval (~L, ~U). Suppose that 

,., o(o ) o(a ) -- - < l-a, 

which guarantees the existence of the solution (uo, Vo, A) with A > 0 for the following 
equations 

Cal,bl(U) = O, Ca2,b2(V) = O, O(U) -- O(--V)  = 1 -- C~. 

Then we have the following theorem by similar argument in Theorems 2.1 and 2.2. 

THEOREM 2.4. / f  the condi t ion  (2.9) holds,  then  the conf idence  in terva l  (f~,  125) 
with  

= 2 - = 2 + vo /v  

is m i n i m a x  and  admiss ib le  a m o n g  all 1 - c~ conf idence  in terval .  

R e m a r k  2.2. Joshi (1966) discussed an admissibility of the confidence interval 
of the location parameter when the loss is the length of the interval. Cohen and 
Strawderman (1973) considered a very wide class of loss functions to evaluate the confi- 
dence interval and gave sufficient conditions for admissibility. The result may be appli- 
cable to the present problem, but  we preferred the direct proof. 



172 YUSHAN XIAO ET AL. 

3. Minimax confidence bound when o- is unknown 

In this section, we suppose tha t  a is unknown and hence 0 = (#, a). We consider 
a prior distr ibution 7rk on 0 which assigns to p the uniform distr ibut ion on ( - k ,  k) 
and takes a to be independent  of # with T = 1 /2a  2 the F distr ibution with  density 
TC/2--1p---r/F ( c~ (log log k) -~. This prior distr ibution was first used by Chen _ ~ j w h e r e c =  
(1966) to directly prove tha t  the usual t- interval is minimax among all 1 - a confidence 
intervals when the loss function is the length of a confidence interval. 

Let 

(3.1) fk(x)  = a l b l F  n_______~c _ alblea~/2nckjk exp(_al  2v/~xy)y(n+c)/2_le_Ydy 

- A ( l + n x ) - ( n + c ) / 2 4 F F (  27r 

and 

(3.2) 

where 

~0 (3(3 gk(x) -= a lb lDkEk  - alble a~/2n e x p ( - a l  2X/~)y(n+c)/2-1e-Ydy 

_A(l+nx)-(,~+c)/2,/--n-F(n~_____~c ) 
V 2~ 

]~ = (k -5/6 + (n - 1)k-1/~ 

Ck = (I)(v~(k 1/12 + al/n)) - ( I ) ( -v~ (k  1/12 - a l / n ) ) ,  

Dk = 2~(v 'nk  1/12) - 1, Ek = y(n+c)/2-1e-Ydy. 

Then for large k there exist unique positive values vk and wk such tha t  fk (vk) = gk (wk = 
0. 

Let 

2 ~ 

(3.3) fal,bl(X) ---- alblF(n/2) - alble al/2n.~ e x p ( - a l  2V/~)yn/2-1e-Ydy 

- A(1 + nx)-~/~i~F(n/2 ). 
There exists a unique positive value u0 such tha t  fal,bl (U0) = 0. It is not  difficult to 
show tha t  

(3.4) lim Vk = lim wk = Uo. 
k---*oo k---~ 

Write the Bayes est imator  ftLk which minimizes the posterior risk given X as 

~L~ = 2 - u k ( X ) S ,  

where (n - 1)S 2 = ~ i ~ 1  (Xi - _~)2. Then we have the following lemma, the proof of 
which is given in the Appendix.  

LEMMA 3.1. There exist k' and positive constant M such that if  k > k', then for 
any X with [)([ < k - vfk and S < k 1/3 

(3.5) v/(n - 1)Vk <_ uk (Z)  <_ x/(n -- 1)wk + M / S .  
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Let 

(3.6) hal (x)  = r ( n / 2 )  - e a~/2n e x p ( - a l  2~/r~)yn/2-1e-Ydy. 

THEOREM 3.1. Suppose ha~(U*2/(n(n - 1))) > 0 with Tn-l(u*) -- 1 - c~, where 
Tn-1 is the distribution function of t distribution with n -  1 degrees of freedom. Then 
the lower confidence bound 

# L  ~- -- 

is  m i n i m a x  a m o n g  a l l  1 - c~ l o w e r  c o n f i d e n c e  bounds .  

PROOF. Let uo = u * 2 1 ( n ( n  - 1)) and define ,~ by 

/~ alblhal (uo)(1 q- n u o ) n / 2 / ( F ( n / 2 ) ~ ) .  

Then it is seen from (3.3) and (3.6) that  fa~,b~ (uo) = 0. In the appendix, it is shown 
that  there exists an increasing sequence {kv} such that  v < k 1/4 and 

(3.7) lim dak~ (~) = 0 
V - - ~  (X3 

where Gk. (a) is the prior distribution of a. In the subsequent argument,  we take k = kv 
and v ~ c~. We shall show 

liminfrl(Trk,fZLk) > /~1(0, fi~) for all 0. 

The result can then be proved by the same argument as in Theorem 2.1. 
Let 

Q1 -- I nl (8, ~Lk)dTrk (0) 

and 

Q2 = J P0(P 

Then from (1.3) and (1.5) it suffices to show 

(3.8) l iminfQ1 _> Rl(0, ft}~) for all O 
V ----~(~) 

and 
(3.9) l iminfQ2 _> P0(p < ft~) for all 8. 

V ----+(X) 

We shall show (3.8). The proof of (3.9) is provided in the Appendix. 
Using (3.5), 

(3.10) E0 {exp(al (/~Lk -- #)/Or) } 

> Ee{exp(al  (-~ - u k ( X ) S  - #) /a)IA,  (f()IA2 (S)} 

>_ Eo{exp(al (f(  - Iz)/a)IA~ ()~)} 

• E0{exp( -a ,  v/(n  - 1)wkS/a - a lM/a)IA2 (S)} 
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where A1 and A2 are the sets of I-~1 < k - x/k and S < k 1/3, and IAI and IA2 are the 
indicator functions of A1 and A2. It is seen that  when IPl < k - 2v/-k and a < k 1/4, 

- -  / %/-~kl/4 
E e { e x p ( a l ( X  - #)/a)IA~ (X)}  > J - v ~ k  ~/' exp(aly/x/-n)r 

and when v < a < k 1/4, 

E0{exp( -a lX/ (n-  1 )~kS /~ -  alM/~)IA2(S)} 
~kl/12 

> ~-=~M/~Jo e x p ( - a l x / ( n -  1)wkS)dF*(S), 

where F*(S) is the dis tr ibut ion function of S with cr = 1. Using these inequalities, the 
right side of (3.10) is bounded  below by  

L k ~/4 fk-2v"~ dFk(#) e-a~M/v 
dGk(a) J-k+2x/k 

x [ v'gkl/4 exp(aly/v/n)r [ k*/~2 e x p ( - a l  v/(n - 1)cokS)dF*(S), 
J -vrnkl/4 do 

where Fk(p) is the dis t r ibut ion function of p. Hence from (3.4) and (3.7) 

(3.11) lim inf E{exp (a l  (ftLk -- #)/a) } 
V---+OO 

- -  2 [ OO 

> eal/2n], e x p ( - a l v / ( n -  1)uoS)dF*(S) 

= Eo{exp(al(ft* L - # ) / a ) } ,  

since x / (n  - 1)uo = u*/x/-n. It is seen that  when [#1 < k - 2v/k and a < k 1/4, 

(3.12) Po(121 < k -  v~) > 2~(v~k  1/4) - 1. 

Using (3.5) and (3.12), when I#] < k - 2x/~ and a < k U4, 

Eo{uk(X)S/a} >_ Eo{uk(X)S/aI& (2)IA2 (S)} 
ki/I~ P 

> (2~(v~k ~/4) - 1)v/(n - 1)vk Jo SdF*(S), 

which yields 

E{~k(X)S/~} 
_ k l / 1 2  r  

> (2(I)(%/-nk 1/4) - -  1 ) v / ( n -  1)vk Jo 

Then it follows from (3.4) tha t  

SdF.(S) /o kl/* fk-Uv"~ dGk(a) dFk(#). 
J _ k  T 2vfk 

0 ~ 

(3.13) liminfE{uk(X)S/a} >_ x/(n-1)Uo SdF*(S) 

= Eo(~*S /v~) .  
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By (3.11) and (3.13), (3.8) follows. 

Remark  3.1. It may be possible to use the Hunt-Stein theorem to derive the min- 
imax lower confidence bound. See Kiefer (1957). However, we preferred the direct 
proof by using the Bayes approach. When the variance is unknown, one may consider 
a prior distribution on 0 which assigns to T = 1/202 the F distribution with density 
A a T a - l e - ~ / F ( a )  and takes the conditional distribution of #, given o, as N(0, r2or2), 
where a, A, and r 2 are known, and let r ---* oc and a --~ 0 in order to use the Bayes 
approach. But such a sequence of prior distributions does not seem to work well to seek 
a minimax solution. See Ferguson ((1967), p. 183). Contrary to this, the sequence of 
prior distributions considered by Chen (1966) seems useful to directly seek a minimax 
solution by using the Bayes approach when the variance is unknown. 

Now we proceed to the problem of the upper confidence bound and the confidence 
interval. Let fa2,b2(x) be (3.3) with al = a2 and bl = b2, and let has(x) be (3.6) with 
al = a2. A similar argument in Theorem 3.1 gives the following theorem. 

THEOREM 3.2. Suppose ha~(V*2/(n(n - 1))) > 0 with Tn_l(V* ) = 1 - -OL.  Then the 
upper confidence bound 

2 + v*Sl4-  # g  = 

is min imax  among all 1 - a upper confidence bounds. 

Let Cl and c2 be the solutions of the equations hal ( x 2 / n ( n  - 1)) = 0 and ha2 ( x 2 / n ( n  - 

1)) = 0, respectively. Suppose 

(3.14) Tn-l(c l )  - T n - l ( - c 2 )  < 1 - a. 

It is seen that  (3.14) guarantees the existence of the solution (u*,v*, A) with A > 0 for 
the following equations 

(- ')  
fal,bl n ( n - -  1) = 0, fa,,b, n ( n - -  1) = 0, T n - l ( u ) - T n - l ( - v )  = 1 -  a. 

Then we have the following theorem by the similar argument in Theorem 3.1. 

THEOREM 3.3. I f  the condition (3.14) holds, then the confidence interval (/2~, ~ ] )  
with 

2 -  ^* 2 + v*S /v% #L = # u  = 

is m in imax  among all 1 - a confidence intervals. 
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Appendix 

PROOF OF LEMMA 2.1. It is easy to see that r < 0 and r < 0 for a,b 
x < 0, r and ~ba,b(x) are increasing in x > 0, and limz~c~r ~ = ab/v/-~, - -  a , b  \ ) a , b  k / 

lim~__,o~ r = a b / v ~ .  Hence we can find unique values xk > 0 and xo > 0 which 
minimize (2.3) and (2.4) by solving (k) Ca,b(x) ---- 0 and g'a,b(X) ---- O. Next we shall show 
that  the sequence {xk } converges to xo as k -~ co. Note that 

kO(k)" lim a,b(X) = ~a,b(X) for any x > 0, 
k--*oo 

so that for any e > 0 

(k) 
lim ~ ' b ( x ~  -- ~,b(xo)  < 1. 

k-~r162 ~(k), a,b~XO • C) ~,b(XO + ~) 

Hence for large k 

(k) ,T,(k) (k) .T.(k), 
, ~ , b ( X o )  < ~ , b t x o  + 'I'~,b(~o) < ~a,~(xo - ~) ~), 

which implies that there exists a value xo - e < &k < xo + e at which xT~(k) x~, b (x) has a local 

~].(k)/~ "~ : ~2a,b (X ) = 0 is unique, and hence minimum, so that ~a,b (. k} 0. But the solution of (k) 
&k = Xk, which implies [Xk -- X0[ < e. So the proof is completed. 

PROOF OF LEMMA 2.2. 

(k) 
r - 

since from (2.5) 

It is easily verified that 

Let xzk = xo - 1 / k  and xu k = Xo + 1 /k .  Then 

a ) 
X/~ \ v / ~  ] - ~  e x p \  2n v / -~ (xo -1 /k )  - 

{r 1__r (Xo - 1 /k~ ~ ab {exp (~_n a x o )  
v~ \ v~ / J + ~  v~ 

1) 

ab ab ( a 2 axo 
v ~  -- Ar + ~ exp ~n v / ~ ) "  

r ~r a2b ( a  2 axo)  
a,b(X~) -- a nk e• Yn v ~  + O(1/k~) 

as k --, c~. Likewise, we have 

(k) Ar + a2b ( a 2 axo 
~/ )a 'b (Xuk) - - - - -  k ~ - e x p  _~n v/-n7 + O ( 1 / k 2 )  

as k ~ cx~. Since r < 0, r (k) a,b (Xz~) < 0 < Ca,b (Xuk) for large k, which implies that  
Xlk < Xk < Xuk. Hence we have 

(A.1) Xk - xo = O ( 1 / k )  as k ---* co. 
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Substi tut ing xk and Xo into (2.3) and (2.4), and using (A.1) and r = 0, 

~(~(~)-~o,~(~o) :  {o(xo) 
+ b { exp ( a2 ek a a 2 

\ 2n ~ x k ) - e x p ( ~ n n  

ab 
+ -~n(X~ - xo) 

= A(x0 - xk)(r + o(1)) + O(1/k 2) 

+ b e x p ( ~  n -~nXO) ( -  ~n (Xk - Xo) 
ab 

+ -~nn(Xk - xo) 
= (xk -- xo)r + o(1/k) 
= o(i/k) 

 x0)} 

+ 0(1/k2)) 

as k --~ c~, which completes the proof. 

PROOF OF LEMMA 3.1. First we shall show that  there exist ko and positive con- 
stant A such tha t  if k > ko, then for any X with I)(l < k - x/~ and S < k i/3 

(A.2) 0 <_ uk(X)S <_ Ak '13. 

Write ~t L = ~(-u(X)S with some function u(X). In order to show tha t  uk -- uk(X) > 0, 
it suffices to show that  E{LI(O,[tL) [ X} is decreasing in u -- u(X) < 0 since P(t t  < 
~L I X )  is decreasing in u. Note that  the posterior density of 0, given X, is expressed as 

n ( X - # ) 2 )  1 ( l + ( n - 1 )  $ 2 )  
~ ~ exp ~ 5  I(-k,k)(p)/Bk(X) v ~  i" 

(A.3) x/~-~a exp 

where 

Bk(X) = k V/~a exp 

It follows from (1.1) that  

(A.4) ff-~E{LI(O, ~L) [ X} 

n(f~2#)2)d#} a-~cexp ( -  

= -alblSE{lexp(al( fC-  

§  IX}  " o r -  

When t)~[ < k - v ~  and a < k 5/12, it is seen tha t  

uS - , ) / . )  I X }  

1 + ( n -  1)$2"~ ~ ) d~. 
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When u < 0 and S < k 1/3, 

~0 k;5/12 exp(_aluS/cr)o._l_n_C exp ( I-k(n--I)S 2) ~ da 

1 { 2 ~ (n+~)/2 
>- Ek. 
- 2 \ i + ( n -  i)s 2 ] 

Then  it follows from (A.3) that  for any X with ]2] < k - v ~  and S < k i/3 

(A.6) E { lexp(ai(f(- uS-  p)/a) l X} 

> ea~/2nl ( 2 ) (n+~)/~ 
- 1 + (n--- 1)S 2 CkEtJBk(Z) 

when u < 0, and 

(A.7) E { } F  ( ) 1 J x < o_l_n_~exp l + ( n -  1)S ~ do/Bk(X) - ~-~ 

= ~ 1 + (n-- 1)S~/ r /B~(X). 

Substi tut ing (A.6) and (A.7) into (A.4) yields that  the right side of (A.4) is bounded 
above by 

when u < 0, which is negative for large k. Hence E{Li(O, ~tL) I X}  is decreasing in 
u < 0, which shows uk > 0 for any X with 121 < k -  v ~  and S < k I/3. 

Since the posterior risk of ~tLk is not larger than tha t  of 2{, 

AP(p < ~tLk IX) § E{Li(O,[tLk) IX} <__ AP(# < 2 IX) + E{Li(O,X) IX}, 
which yields 

(n.8) alblUkSE{1 IX} X}. 

It follows from (A.3) that  

E{exp(a ,  (.,-Y -/~)/o-) I X} 

~ Ea~/2n~. ( 2 ~(n.+c--i)/2 ( ) 
l+(n-_l)S2] F n + c- i /Bk(X), 

- 2 

I1 } -ks/x2 (fff; ( n(- ) ) o._i_n_ c 

x exp ~-~ 

>_ DkEk- 1 +  ( n -  I )S  2 /Bk(X), 
and 
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1 ( 2 )  (n+c-D/2 
Bk(X) < ~ 1 + ( n -  1)S2 

Using these inequalities in (A.8), we have 

F ( n + c - 1 )  " 2  

alblukS< ( 1 - t - ( n - 1 ) s 2 ) l / 2 F ( n + c - 1 )  -2- 2 

for any X with ].J~] < k - v ~  and S < k 1/3, which yields (A.2) for large k. 
It follows from (A.2) that for large k 

IX - ukS] < k 

for any X with [)(! < k - x/~ and S < k 1/3. When {J( - uS[ < k, 

~ o ( f . - u s  
P(# < f( - uS IX) : [Jo kJ-k -- 

1 ( 
x ~ exp 

which follows 

0 
au P(# < 2 - ~Sl X) 

= _S /o ~176 x/n 1 ( l + (n- l)S2 + nu2S 2) 
v / ~  an+c+1 exp 2a 2 da/Sk(X). 

Combining this with (A.4) gives 

(A.9) 

where 

jfO ~176 TI--- 

1 + (n - 1)S 2 ) 
-~--~ d~r/Bk(X), 

0 o--s < pL IX) + E{Ll(O,f-tL) IX}] 

= S(-AT1 - albiT2 + alblT3)/Bk(X), 

v ~ 1 ( l + ( n - 1 ) S 2 + n u 2 S 2 )  
v / ~  crn+c+ 1 exp - 2a 2 da, 

fo~176 ( ; k  ~ 2 ~  1 ( n(2--~ #)2'~ ) 2a2 ] T2 -- exp (al (X - uS - #)/o-) exp d# 

1 ( 1 + (n- 1)$2) 
x crn+c+-----------Y exp ~ da 

and 

T3 -- k v / ~  a exp 2cr2 ] dp an+c+1 exp 

Note that 

1 + (n - 1)$2"~ 
- ~  ) da. 

(A.IO) T1- v~ 2 l+(n_l)S2+nu2S2] F . 
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Using (A.5), 

5 
(A.11) T2 > ea~/2nCk exp(-alUS/a exp - do 

-- J 0  2(72 

2 ~ (n+c)]2 
ea~/2,~ckl 1 + (n---- 1)S 2] >_ 

I y(~+c)/2-1e-Y dy" • 
Jk exp 1+  ( n -  1)S 2 

It is seen that 

(A.12) 

Note that 

( T2 <_ e ~/2'~ 1 exp(-al~S/~) ~ e~p 

~ / ~ 1 (  2 )(~+~)/2 
= e ~ l + ( n _ l ) S  2 

u2S2y ,~1/2~ 
• ~o exp (-v~al ( l  + ~ l )  $2) ] 

1 + (n - 1)S 2)  yj d~ 

y(n+c) /2-1e-Y dy. 

/o k5/~2 1 ( l + ( n - 1 ) S  2)  
(A.13) Ta ~_ Dk an+c+1 exp ~a- ~ 

1 ( 2 )  (~+c)/2 
>_ DkEk-~ l + (n--1)S 2 

and 
1 ( 1 + (  --2 1) $2]'~(n+c)/2 ( n _ ~ )  (A.14) Ta _< 'n - -  F . 

Let 
g(u) = -AT1 - alblT2 + alblT3. 

Using (A.10) to (A.14), we have 

(A.15) 

do- 

1 (  2 ~ ( n + c ) / 2 ( u 2 S 2 ~  
5 i + ( n - 1 ) s 2 )  g~ 1+~---~)s2) <~(u) 

1(  2 ) (n+c) /2(  u2S2 "~ 
<5 l+(n-1)s2 fk 1+~--1)s2)'  

for any X with Ikl < k - v~  and S < k 1/3. The result then follows from (3.4). 

vI(n - 1 + 1/S2)vk <_ uk <_ v/(n - 1 + 1/S2)wk 

where fk and gk are (3.1) and (3.2), respectively. From (A.9) g(uk) -- 0, so that from 
(A. 15) for large k 
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PROOF OF (3.7). Note tha t  

/0 v dak(a) - r ( c / 2 )  /2,,= yc/2-1e-YdY 

_ 1 c yC/2_le_Ydy" 
p(c /2  + 1) 2 12v 2 

Since c = (log log k) -1, choosing kv = exp(e',) yields 

Hence 

lim c log v = 0. 
" , - - -+  O O  

which goes to zero as v ~ oc, and this completes the proof. 

PROOF OF (3.9). Though the proof of (3.9) is almost the same as tha t  given by 
Chen (1966), we shall provide the proof for the sake of completeness. Let T = v/-~(2 - 
#) /S .  Then it follows from (3.5) tha t  

(A.16) Po(# < ftL~) 
= Po(T > v'-nuk) 

> Po(T > V'~uk, [21 < k - v/-k, S < k 1/3) 

>_ Po(T > v/-n(x/(n - 1)wk + M / S ) ,  121 < k - v ~ ,  S < k 1/3) 

>_ Po(T > v/-n(v/(n - 1)wk + e), 121 < k - v~ ,  s < k 1/3, S > M/e)  

> Po(T > v/-n(v/(n - 1)wk + e)) + Po(IXI < k - v ~ )  

+ Po(S < k 1/3) + Po(S > M/e)  - 3, 

where e is an arbi t rary  constant.  When  v < a < k 1/4, 

Po(S < k 1/3) >_ Poo(S < k 1/12) 

and 
Po(S > M/e)  > Poo(S > M/ve) ,  

where 00 = (0, 1). Using these inequalities and (3.12), the right side of (A.16) is bounded 
below by 

Ak(0o) = Poo(T > v/-n(v/(n - 1)wk + e)) + 2~(v /nk  1/4) - 1 + POo(S < k 1/12) 

+ Poo (S > M/ve)  - 3, 

when ]/.t I < k - 2v/-k and v < a < k U4. Hence 

__ f ~kl/4 lk-2v/-k 
Q2 > A k ( O o ) ~  dGk(o') dFk(#), 

Jv J -k+2v~ 

so tha t  from (3.4) and (3.7) 

l iminfQ2 > Poo(T > v/-n(v/(n - 1)Uo + e)). 
V - - ' + O O  

C jr11 C~111 -2 /2~ Y~/~-le-UdY <- -2 /2~2 Y~/2-1dy = 1 - (2v2) -~/2, 
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Since u* = v / n ( n  - 1)u0 and e is arbitary, 

iim inf Q2 > Poo (T > u*) 
V - - +  OO 

= Boo < r**r), 

which proves (3.9). 
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