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Abstract. This paper considers a minimax confidence bound of the normal mean
under an asymmetric loss function. A minimax confidence bound is obtained for
the case that the variance is known or unknown. The admissibility of the minimax
confidence bound is also considered for the case of known variance.
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1. Introduction

Let Xi,...,X, be i.i.d. normal random variables with mean p and variance o2

(N(u,0%)). A problem of estimating p is considered for the case that o is known or
unknown. An estimator fir is called a lower confidence bound at confidence level 1 — o
(0O<a<3)if

Py(pr(X)<p)>1—a forall 6,
where X = (X4,...,X,), and § = p with o known, 8 = (u,0) with ¢ unknown. An
upper confidence bound fiy of u is similarly defined. An interval (i, i) is called a
confidence interval at confidence level 1 —a (0 < a < %) if

Pypr(X)<p< pu(X))>1—-oa forall 6.

In order to compare confidence bounds it seems appropriate to use an asymmetric
loss function since the loss resulting from overestimating p is more serious than that from
underestimating for the lower confidence bound, and vice versa for the upper confidence
bound. For such a case, Zellner (1986) considered a useful asymmetric loss function,
which was called LINEX (Linear-Exponential), to estimate the normal mean. See Shafie
and Noorbaloochi (1995) for further developments. Xiao (2000) discussed some applica-
tions to a prediction problem.

In this paper, we adopt the LINEX loss function to compare confidence bounds. For
the lower confidence bound fiy, the loss function is given by

(1.1) L1(0, o) = bi{exp(ai(ir — p)/0) — ar(for — p) /o — 1}

and for the upper confidence bound jiyr
Ly(0, hv) = ba{exp(—az(fiv — p)/0) + az(fiv — p)/o — 1},

167



168 YUSHAN XIAO ET AL.

where a; and b; (i = 1,2) are known positive constants. Further, in order to compare
confidence intervals (ir, i), we adopt the following loss function
L0, i, pu) = L1(8, o) + La2(6, fu)-

The accuracy of lower and upper confidence bounds iy, and iy are then measured by
the risk functions

Ry1(0, L) = Eo{L1(6, 22 (X))}
R(8, fir) = Eo{L2(0, v (X))}
and that of a confidence interval (i, iy) is
(1.2) R(0, iz, fv) = R1(0, i) + R2(6, fiv)-
A 1 — a lower confidence bound £} is called minimax if

Sl;P Ri(0,07) < Slelp Ri(6, /1)

for any other 1 — o lower confidence bound fir. A 1 — o lower confidence bound 4} is
called admissible if there exists no other 1 — « lower confidence bound ji;, such that

Ry(6,40L) < Ry1(0,47) forall 6

with strict inequality for some 8. The concepts are also adopted to the upper confidence
bound and the confidence interval.

In the subsequent section we shall mainly treat the lower confidence bound. How-
ever, the method employed can be easily applied to the upper confidence bound and the
confidence interval.

In order to get a minimax lower confidence bound, we shall adopt the Bayes approach
(e.g. Berger (1985), p. 350). Let

Li(6, o) = My o0y (fir) + L1(0, fir)

be a loss function and let Ry (6, ftz.) be the risk function, where X is a known positive
constant which is later determined in relation to the confidence coefficient, and I4(z) is
an indicator function of the set A. Then

(1.3) Ry(0, i) = APp(fir, > p) + Ry(6, fi).
From (1.1)
(1.4) Ri(60, L) = APy(fir > p)

+ by Eg{explar iz — 1)/o) — ar(jiz — w)/o — 1}.

Let {7} be a sequence of prior distributions on §. Then we shall seek the Bayes
estimator fiz, which minimizes

(15) nm@m=/m@mmmw

and evaluate the asymptotic Bayes risk as £ — o0, from which a minimax lower confi-
dence bound shall be determined.

In Section 2, we seek a minimax lower confidence bound for the case of known
variance, and show its admissibility. The case that the variance is unknown is treated
in Section 3.
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2. Minimax confidence bound when o is known

In this section, we suppose that ¢ is known, so that § = y. We take the normal prior
distribution N (0, k?) as 7 with positive constant k. Then the posterior distribution of
i, given X, is N(nk';’fl_za2 X, n,‘c’:f_;) with X = %Z?zl X;. Write the lower confidence
bound jiy as

(2.1) AL =

nk? o
nk? + 0’2X B WU(X)

with some function u(z). Substituting (2.1) into (1.4) and after some calculations, we
have that the posterior Bayes risk of fif with respect to Ly, given X, is

(2.2) v, (u(x)),
where
(2.3) \I/i’fg(x):)\(l—@(%)>+b{exp<%—%)+%—l},

® is the distribution function of N(0,1) and ¢ = nk?/(nk? + o2).

Let
e B =30 a) e (- 22) 22y
and
® dt") (x) _ d¥(2)
e -, o) - el
Then
(k) __L -z _a_b X ﬁ—ﬂ -
o =7 () - w5 - %) -1}
and

(25) osla) = -2(a) - 2 fexp (£ - -1,

where ¢ is the probability density of N(0,1).
We now give a helpful lemma to establish minimaxity, the proof of which is provided
in the Appendix.

LEMMA 2.1. There exist unique values zx and xo which minimize (2.3) and (2.4),
and are obtained by solving

(@) =0,  ap(z) =0.

Furthermore, the sequence {xy} converges to xo as k — o©.

Let uy be the solution of 1/)‘(1’2,)1 (z) = 0. Then it follows from (2.2) and Lemma 2.1

that the confidence bound
nk? - upo

'uL":nk2+a2 B Vn
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is the Bayes estimator of y with respect to L; and the Bayes risk is

~ k
(2.6) (T, i, ) = ‘I’gl),bl (ur).

THEOREM 2.1. Ifa; < 2ugy/n with ®(ug) = 1—a, then the lower confidence bound
ﬂz = X - U()U/\/ﬁ
is minimax among all 1 — o lower confidence bounds.

Proor. From the condition,

is positive, and from (2.5) ¥4, b, (uo) = 0. It is seen that

Ry (i, 1) = Wqy b, (ug) forall p,

which yields _
lim (7, fir,) = sup Ri(p, 47)
k—o0 M

from (2.6) and Lemma 2.1, and hence for any other confidence bound /iy,
(2.7) sup Ra(u, i) > sup Ry (u, i)
I "
Suppose that fi7, is any other 1 — o lower confidence bound. Then from (1.3) and (2.7)

sup R (i, fir) > sup R (u, 5) + A(Pu(ps < i3) — sup Py ( < )
7 @ 7

v

sup Ry (i, 47,
m

since P,(p < fir) < a and P,(u < fi}) = a. Hence the proof is completed.

Remark 2.1. If the condition that a; < 2ug+/m is violated, then the present method
does not work well. We conjecture that the condition is also necessary for 4} to be
minimax.

Next we shall show that the minimax confidence bound 7 is admissible. In order
to prove it, we need the following lemma, the proof of which is given in the Appendix.

LEMMA 2.2. Let x; and xg be the values in Lemma 2.1. Then

lim k(\I/gfg(mk) = Vg p(z0)) = 0.

k—o0

THEOREM 2.2. If a1 < 2ugy/n, then the lower confidence bound [} is admissible
among all 1 — o lower confidence bounds.
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PROOF. Suppose that there exists a 1 — « lower confidence bound fiz such that
Ri(p,fir) < Ra(p,p7) forall p
with strict inequality for some p. Since P,(u < fiy) < @ and P,(u < i1) = a, we have
Ry(p, i) < Ro(u,py)  forall p

with strict inequality for some u. By using the Limiting Bayes Method (Lehmann (1983),
p. 265), we shall lead to a contradiction. Since Rj(y, 1) is continuous and Ry (u, ii}) is
free from p, there exist € > 0 and po < g1 such that

Ry(u, i) < Ra(u, i) — €
for all u with pg < p < p1. Then we have

. . B —p? /2K
(2.8) ra (e, itg) — 71 (i, o) € Juo € du
™ (ﬂkaMZ) -T (7rk7ﬂLk) - Y 27Tk(\11a1,b1 (’u,o) - \Illef),bl (uk))
Since

{228 2 jop,2
/ e Py — py — o as k— oo,
Mo

it follows from Lemma 2.2 that the right side of (2.8) goes to infinity as £ — co. Hence
there exist ko such that r (mk,, 1) < 71(7k,, it Lko)’ which contradicts the fact that i,
is the Bayes estimator.

An argument paralleling those of Theorems 2.1 and 2.2 yields the following theorem.

THEOREM 2.3. Ifas < 2ug/n with ®(vg) = 1—«, then the upper confidence bound
ity = X +wvoa/v/n

is minimaz and admissible among all 1 — o upper confidence bounds.

Let us now turn to the problem of the confidence interval (fir, fiy). Suppose that

a a9
2.9 Pl —)-P(——F—=)<1-
9 (3vr) ~* (-2e) < 2=
which guarantees the existence of the solution (ug,vg,A) with A > 0 for the following
equations
Vay by (u) =0, Yag,ba (’U) =0, (P(u) - CI)(_U) =l-a
Then we have the following theorem by similar argument in Theorems 2.1 and 2.2.

THEOREM 24. If the condition (2.9) holds, then the confidence interval (i}, if;)
with _ B
05 =X —uea/vn, gy =X +wveo/vn
is minimaz and admissible among all 1 — o confidence interval.

Remark 2.2. Joshi (1966) discussed an admissibility of the confidence interval
of the location parameter when the loss is the length of the interval. Cohen and
Strawderman (1973) considered a very wide class of loss functions to evaluate the confi-
dence interval and gave sufficient conditions for admissibility. The result may be appli-
cable to the present problem, but we preferred the direct proof.
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3. Minimax confidence bound when ¢ is unknown

In this section, we suppose that ¢ is unknown and hence 8 = (i, o). We consider
a prior distribution 7, on § which assigns to pu the uniform distribution on (~k, k)
and takes o to be independent of u with 7 = 1/202 the I' distribution with density
7¢/2=1¢=7 /T () where ¢ = (loglog k)~*. This prior distribution was first used by Chen
(1966) to directly prove that the usual ¢- interval is minimax among all 1 — o confidence
intervals when the loss function is the length of a confidence interval.

Let

oo
(3_1) fk(-’lf) =a T (n-2|— c) _ albleaf/2nck/ exp(—ay /Qxy)y("+6)/2_1e_ydy
k

_ —(nto)/2, [P p[MTC
A1 + nx) A/ 3 I ( >
and

(3.2) gr(z) =a1by DyE), — alble“fﬂn/ exp(—ay+/2xy)y("t)/ 2 e vdy
0
+c
_ A1 ~(nta)/2 [P p (7
(1 + nzx) o 5 )

k= (k5% + (n-1)k"Y%)/2,

Cr = (VK" + ar/n)) — &(—vn(k'/'? — ar/n)),

Dy =28(\/nk'/'?) -1, Ei = / y(mte)/2-1e=vgy,
k

where

Then for large k there exist unique positive values vy and wy, such that fi(vg) = g (wi) =
0.
Let

(3.3) farp. () = a1 T'(n/2) — alble“fﬂ"/ exp(—ai \/2xy)y"/2"le'ydy
0

-1+ nx)_"/z\/gl"(nﬂ).

There exists a unique positive value ug such that f,, 5, (uo) = 0. It is not difficult to
show that

(3.4) Hm v, = lim wy = .
k—oo k—o0
Write the Bayes estimator jiz,, which minimizes the posterior risk given X as
BL, = X - uk(X)S7

where (n — 1)$% = Y} ,(X; — X)?. Then we have the following lemma, the proof of
which is given in the Appendix.

LEMMA 3.1.  There exist k' and positive constant M such that if k > K, then for
any X with |X| <k —Vk and S < k'/3

(3.5) VvV (n— Do <up(X) <vV(n— 1w + M/S.
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Let

(3.6) he, () =T(n/2) — eaf/%/ exp(—a1+/2zy)y™* e Vdy.
0

THEOREM 3.1. Suppose hy, (u*2/(n(n — 1)) > 0 with T,_1(u*) = 1 — o, where
Tn—1 is the distribution function of t distribution with n — 1 degrees of freedom. Then
the lower confidence bound

pp =X —u*S/v/n

s minimax among all 1 — a lower confidence bounds.
ProoF. Let ug = u*?/(n(n — 1)) and define X by

A = arbihg, (uo)(1 + nue)™2/(T'(n/2)\/n/27).

Then it is seen from (3.3) and (3.6) that f,, », (uo) = 0. In the appendix, it is shown

that there exists an increasing sequence {k,} such that v < ks/* and

v— 00

(3.7) lim dGg, () =0
0

where Gy, (o) is the prior distribution of o. In the subsequent argument, we take k = k,
and v — co. We shall show

lim inf ry (7g, fip, ) > R1(6,43) for all é.

The result can then be proved by the same argument as in Theorem 2.1.
Let

Q= / Ry (0, iz )dme (0)
and

Q2 = /Po(u < fip, )dmi(6).

Then from (1.3) and (1.5) it suffices to show

(3.8) liminf @Q; > Ry(6,4;) forall 6
v—00

and

(3.9) liminf Qy > Py(u < fo7) forall 4.
v—00

We shall show (3.8). The proof of (3.9) is provided in the Appendix.
Using (3.5),

(3.10) Ep{exp(ai(fr, — p)/o)}
> Ep{exp(a1(X — up(X)S — p)/0)1a,(X)14,(S)}
> Eg{exp(a1(X — p)/0)Ia,(X)}
x Eg{exp(—a1v/(n — 1)wpS/0 — a1 M/0)14,(S)}
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where A; and Ay are the sets of |[X| < k — vk and S < k'/3, and I, and I, are the
indicator functions of A; and Aj. It is seen that when |u| < k — 2vk and o < k1/4,

B B k4
Eofoxp(@(% = /o) (0} 2 [ explar/ Vo)

and when v < ¢ < k174,

Eg{exp(—a1v/(n — VwiS/o — ay M /c)14,(S)}

k1/12

> e““M/”/O exp(—ai1y/(n — 1w S)dF*(S),

where F*(S) is the distribution function of S with ¢ = 1. Using these inequalities, the
right side of (3.10) is bounded below by

J

k174 k—2vEk
de(a)/ dFy(u)e-aM/v
—k+2vEk

k1/12

Jakl/4
x / explary/ V) $(y)dy / exp(—a1v/(n — DweS)dF*(S),
_\/ﬁkl/‘x )

where Fj (1) is the distribution function of y. Hence from (3.4) and (3.7)

(3.11) lim inf E{exp(a1 iz, — 1)/2))

> et/ [~ expl-ar T = DuaS)aF*(8)

= Eg{exp(a1 (A1 — n)/0)},
since \/(n — 1)ug = u*//n. It is seen that when |u| < k — 2vk and o < k'/4,
(3.12) Py(|X] < k ~— VE) > 20(y/nk/*) — 1
Using (3.5) and (3.12), when |u| < k — 2vk and o < k'/4,

Eo{ur(X)S/o} > Eo{ur(X)S/01a,(X)14,(S)}
El/12

@0(vRk'*) - )v/(n = or /0 SAF*(S),

v

which yields
E{ug(X)S/o}

K1/t2 Kl/4 k-2vEk
> (28(vnkY) — 1)/ n—l)vk/ SdF*(S) / de(a)/ \/_dFk(N
k+2
Then it follows from (3.4) that
(3.13) liminf E{we(X)S/0} > /(@ = LJug / SAF*(S)
k7 aande o) 0

E¢(u*S/v/no).
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By (3.11) and (3.13), (3.8) follows.

Remark 3.1. It may be possible to use the Hunt-Stein theorem to derive the min-
imax lower confidence bound. See Kiefer (1957). However, we preferred the direct
proof by using the Bayes approach. When the variance is unknown, one may consider
a prior distribution on § which assigns to 7 = 1/202 the I' distribution with density
Xe1r2~1le=A7 /T (@) and takes the conditional distribution of u, given o, as N(0,7202),
where «, A, and r? are known, and let r — oo and o — 0 in order to use the Bayes
approach. But such a sequence of prior distributions does not seem to work well to seek
a minimax solution. See Ferguson ((1967), p. 183). Contrary to this, the sequence of
prior distributions considered by Chen (1966) seems useful to directly seek a minimax
solution by using the Bayes approach when the variance is unknown.

Now we proceed to the problem of the upper confidence bound and the confidence
interval. Let f,, »,(z) be (3.3) with a; = az and by = bs, and let hy,(z) be (3.6) with
ai = ag. A similar argument in Theorem 3.1 gives the following theorem.

THEOREM 3.2. Suppose h,,(v*?/(n(n—1))) > 0 with T},_1(v*) = 1 — . Then the

upper confidence bound _
iy =X +v"S/v/n

is minimazx among all 1 — o upper confidence bounds.

Let ¢; and ¢, be the solutions of the equations A4, (z2/n(n~1)) = 0 and h,, (z?/n(n—
1)) = 0, respectively. Suppose

(314) Tn_l(cl) - Tn_l(—CQ) <l-a.

It is seen that (3.14) guarantees the existence of the solution (u*,v*, A) with A > 0 for
the following equations

Ja1,b1 (%’)) =0, fas,bs (%vi—l)) =0, Tpo1(u)—Tho1(-v)=1-0q.

Then we have the following theorem by the similar argument in Theorem 3.1.

THEOREM 3.3. If the condition (3.14) holds, then the confidence interval (i}, fif;)
with
iy, =X —uwS/vn, Ay =X+v'S/Vn,

18 minimax among all 1 — o confidence intervals.
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Appendix

PROOF OF LEMMA 2.1. It is easy to see that 7,[)(k () < 0 and ¥up(z) < O for
z <0, w‘(zkg(x) and 1, (z) are increasing in £ > 0, and limg; o 1/)( (z) = ab/+/n,
limg—, o0 Ya,p(x) = ab/y/n. Hence we can find unique values zy, > 0 and zo > 0 which
minimize (2.3) and (2.4) by solving wilfg (z) = 0 and ,(z) = 0. Next we shall show
that the sequence {z;} converges to zo as k — oo. Note that
klin;o \Il((lkg(x) =U,p(x) forany z>0,

so that for any ¢ > 0

k
V() Way(z0)

lim = < 1.
k=00 ‘I’,(zlfz(ﬂ?o +e) Pap(zote)

Hence for large k
T (w0) < U(wo ), W (o) < ¥ (w0 + ),

which implies that there exists a value ¢ — € < & < xg + € at which \IJ (k) (a:) has a local

minimum, so that w(k) (Zx) = 0. But the solution of @!)(k) (z) =0is umque and hence
Tr = Tk, Wthh 1mp11es |zx — zo| < €. So the proof is completed

ProOF OF LEMMA 2.2. Let x;, = 29 — 1/k and z,, = 2o + 1/k. Then

(k)(xlk) _ —\/%q& (mo\;%/k) _ ;_bﬁ {exp (a;% - %(azo - 1/k)) - 1}
< fota - o (BT} 2 Ly (£ )
— exp (% - —\;—T”L(xO - Uk))}

since from (2.5)
ab

ab a®  axg
i e+ e (- 8)
It is easily verified that

W) =2 ey (£ B0) 4 o)

as k — oo. Likewise, we have
e _ A (zo) | a®b a® azg 2
b(@u) = ————= + —exp | o NG +O0(1/K?)
as k — oo. Since ¢'(xo) < 0, 1/)2’2 (x1,) <0< ;b((lkg (24, ) for large k, which implies that
zy, < Tk < T,. Hence we have

(A1) zp— 2o =0(1/k) as k — oo.
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Substituting zx and zo into (2.3) and (2.4), and using (A.1) and 9, 5(z0) = 0,

e Yo = > {0tz - (2]

fen( ) o (- )
+ ;—%(xk — Ip)
= A@o — zk)(¢(20) + o(1)) + O(1/k?)
+ bexp (% - —%x()) (—%(wk —zo) + 0(1/k2)>
\/—(Sﬂk — o)
= (zk ~ 20)VYa,b(z0) + o(1/k)
= o(1/k)

as k — 00, which completes the proof.

PrOOF OF LEMMA 3.1. First we shall show that there exist ko and positive con-
stant A such that if £ > kg, then for any X with |X| < k — vk and S < k1/3

(A.2) 0 < up(X)S < Ak/3.

Write iz, = X —u(X)S with some function u(X). In order to show that uy = ug(X) > 0,
it suffices to show that E{L,(6,4r) | X} is decreasing in u = u(X) < 0 since P(u <
fr | X) is decreasing in u. Note that the posterior density of 8, given X, is expressed as

() Lo (-2 ) e (-G ) 1 /Bu0)

where

i [ o () (1550

It follows from (1.1) that

(A4) iE{L1(0 aL) | X} = —alblsE{—-exp(al( X —uS —p)/o) | X}

+a1b15’E{—|X}.
o
When |X| < k — vk and o < k%/12, it is seen that

k o 9 .
w3 [ el - w/o) e (M5 Yz e,
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When u < 0 and S < k1/3

k5/12 B 9
1+ (r—-1)S )da

exp(—ajuS/c)o 17" Cexp (— 553

1 9 (n+c)/2
> (—= Ey.
—2(1+(n—1)s2) b

Then it follows from (A.3) that for any X with |X| < k — vk and S < k'/3
(A.6) E {%exp(al()z —uS —u)/o) | X}
(n+c)/2
2,51 2
Seaml( 2 x
=© 2(1+(n—1)52> CiBi/Bi(X)

when u < 0, and

(A7) E {% | X} < /Ooo ol " Cexp (#M) do/Br(X)

202
(n+c)/2
1 2 n+c
"5(1+(n—1)s2> F( 2 >/B""(X)'

Substituting (A.6) and (A.7) into (A.4) yields that the right side of (A.4) is bounded
above by

(n+c)/2
1 2 n+c 2
— - _ a1/2n
a1b152 (1 = 1>52) (1" ( 3 ) e CkEk) /Bi(X),

when u < 0, which is negative for large k. Hence E{L;(#,4r) | X} is decreasing in
u < 0, which shows u > 0 for any X with |X| < & — vk and S< kl/3,
Since the posterior risk of fiy, is not larger than that of X

AP(u < jiz, | X) + E{L:(8,A,) | X} < AP(u < X | X) + E{L1(6,X) | X},
which yields

(A.8) alblukSE{g- | X} < A+ b E{exp(ay(X — u)/o) | X}.
It follows from (A.3) that
Efexp(a1(X - p)/0) | X}

(n+c-1)/2
2 1 2 n+c—1
<a/2n_ - - -
s 2<1+(n——1)5’2) F( 2 )/B’“(X)’

o{is) [ ([ oo (5o

x exp <—Wﬁ) do/ By(X)

1 9 (n+c)/2
> DkEk§ (‘—)SQ‘) /Br(X),

and
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(nt+c—1)/2
1 2 n+c—1
BuX)< = [ ———— r{2t=—").
’“(X)—2<1+(n-1)s2) ( 2 )

Using these inequalities in (A.8), we have

1+(n-1)82 1/21" n+c—1
2 2

arbiugS < ( ) (A+ b1e®/2") /Dy B,

for any X with |X| < k — vk and § < k'/3, which yields (A.2) for large k.
It follows from (A.2) that for large &

IX'—ukSl <k

for any X with |X| < k — vk and S < k/3. When |X — uS| < k,

P(u<)—(—uS|X):/Ooo </_):—u5 \Q/fanp(—ﬁ(%%Lﬁ)du)

x 1 exp <_1—+("‘—1)52) do | By(X),

onte 202
which follows
iP( < X —uS | X)
ou H
© Jn 1 ( 1+(n—1)52+nu252)
=-5 S - do/Bi(X).

ghtetl 202

Combining this with (A.4) gives

(A.9) D \P(u < | X) + E{L (0, ) | X}
= S(“)\Tl - a1b1T2 + alblT3)/Bk(X),

where

© Jn 1 1+ (n—1)S% 4+ nu?s?
T, = Ny - _
! /0 /o oot €xp ( 902 do,

= [ (/_’;exp (@1 (X~ 05 — )/0) L L exp (—"%;ﬂ) du)

1 1+ (n-1)82
1LY,

and
o Foyml (X — p)? 1 1+ (n—-1)82
= (/k g (<M ) e (G o

Note that
N

(nte)/2
(A.10) Ty = Y- 2 r(2te).
Vor 2 \1+ (n-1)5% + nu?s5? 2
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Using (A.5),
i5/12 2
a? 1 14 (n-1)8
(All) Ty >e 1/2"Ck/ exp(—a1uS/0) —s exp ('———(202 ) )d"
0
) 1 9 (n+c)/2
> a1/2nC - e
=€ k3 (1+(n_1)52)

oo u282y 1/2
-2 v J (nte)/2=1 .~y g0
x/ic exp( \/_a1(1+(n_1)52) y e Ydy

It is seen that

(A.12) T, < 601/2"'/ eXp(—aluS/O')m exp <_ (202 ) )do
0]
~ a?/znl 9 (n+e¢)/2
¢ 2\Irm-1s2

oo u2S%y 1/2
_ g ___ (nt+e)/2-1,-y
X/o exp( V2a, (l—i—(n—l)S?) Y e Ydy.

Note that
k5712 o
1+(n-1)8
(A13) T3 2 Dk/o mexp (“‘T do
(n+c)/2
1 2
> DiEp= [ ——2
2 DBy (1 +(n— 1)52)
and (nte)/2
1 2 nre n+c
.14 In< - —m 8 ——— r .
(A14) 3—2(1+(n—1)s2> ( 2 )
Let

K(u) ==X —-a1bhhTs 4+ a1bT3.
Using (A.10) to (A.14), we have

(A.15) % (ﬁg)(nm/z gk (%-13-5—2) < £(u)

1 ) (n+c)/2 u2S2?
<slo——F—r kl—F— |-
2(1+(n—1)52) <1+(n~1)S2>

where fi and gi are (3.1) and (3.2), respectively. From (A.9) £(ux) = 0, so that from
(A.15) for large k

Vi -1+1/8?) v <up <v/(n—1+1/5%)wy

for any X with |X| < & — vk and S < k'/3. The result then follows from (3.4).
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PRrROOF OF (3. Note that

3.7)
[ d6uio) = s [ ey
0 I'(c/2) 1/2v2

.
F(C/2 + ].) 2 1/2’!}2 )

Since ¢ = (loglog k)™, choosing k, = exp(e?) yields

lim clogv = 0.

Vo0

Hence

¢ 1 c 1
_/ yc/2—le—ydy < __/ yc/2—1dy =1 (2U2)~c/2,
2 1/2v2 2 1/2v2

which goes to zero as v — 0o, and this completes the proof.

PROOF OF (3.9). Though the proof of (3.9) is almost the same as that given by
Chen (1966), we shall provide the proof for the sake of completeness. Let T = /n(X —
©)/S. Then it follows from (3.5) that
(A16)  Po(p < i)

=PF (T > \/ﬁuk)
> Po(T > Vnug, | X| < k—Vk, S < k'/3)
> Py(T > vn(v/(n — Dwi + M/S),|X| < k — Vk, S < k'/3)
> Po(T > vn(v/(n — Dwyg +¢), | X| < k—VE,S < k3.8 > Me)
> Po(T > v/n(\/(n — Dw, + €)) + Po(|X| < k — Vk)
+ Pp(S < kM3) + Py(S > M/e) — 3,

where € is an arbitrary constant. When v < o < k'/4,

Py(S < kY3) > Py (S < kY/1?)
and
Py(S > M/e) > Py, (S > M/ve),

where 6 = (0, 1). Using these inequalities and (3.12), the right side of (A.16) is bounded
below by

Ak(Bo) = Poo(T > V/n(v/(n — Dwi + €)) + 28(v/nk'/*) — 1 + Py, (S < k'/12)
+ Pyo (S > M/ve) ~ 3,

when |u| < k — 2vk and v < ¢ < k'/4. Hence

p1/4

k—2vVk
Q2 > Aw(8o) / dGi (o) / AR,

so that from (3.4) and (3.7)
lim inf Q2 > Py, (T > vn(v/(n — Dug + ¢€)).
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Since u* = m and e is arbitary,
hvrg i£f Q2 > Po, (T > u*)
= Poo (1 < 1),
which proves (3.9).
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