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A b s t r a c t .  This  paper  develops necessary condi t ions  for an e s t ima to r  to  domina te  
the  James-Ste in  es t ima tor  and  hence the  James-S te in  pos i t ive -par t  es t imator .  The  
u l t ima te  goal  is to find classes of such domina t ing  es t ima tors  which are admissi-  
ble. Whi le  there  are a number  of resul ts  giving classes of e s t ima to r s  domina t ing  
the James-Ste in  es t imator ,  the  only admiss ib le  e s t ima to r  known to domina te  the  
James-Ste in  e s t ima to r  is the  general ized Bayes e s t ima to r  relat ive to  the  fundamenta l  
harmonic  function in three  and higher  dimension.  The  pr ior  was suggested by Stein 
and the domina t ion  result  is due to Kubokawa.  Shao and  S t r a w d e r m a n  gave a class 
of es t imators  domina t ing  the James-S te in  pos i t ive -par t  e s t ima to r  bu t  were unable  to 
demons t r a t e  admiss ib i l i ty  of any in their  class. Maruyama ,  following a suggest ion of 
Stein, has s tud ied  general ized Bayes es t ima tors  which are members  of a point  mass  at  
zero and a pr ior  s imilar  to  the  harmonic  prior.  He finds a subclass  which is min imax  
and admissible  but  is unable  to  show tha t  any in his class wi th  posi t ive  poin t  mass 
at  zero domina te  the  James-Ste in  es t imator .  The  resul ts  in th is  pape r  show tha t  a 
subclass  of M a r u y a m a ' s  procedures  including the  class t h a t  Stein conjec tured  might  
conta in  members  domina t ing  the  James-S te in  e s t ima to r  cannot  domina t e  the  James-  
Stein es t imator .  We also show tha t  under  reasonable  condi t ions,  the  "constant"  in 
shrinkage factor must  approach  p - 2 for domina t ion  to  hold. 

Key words and phrases: The  James-S te in  es t imator ,  unbiased  e s t ima to r  of risk, 
admissibi l i ty,  general ized Bayes. 

1. Introduction 

Let X be a random variable having p-variate normal distribution Np(O, Ip). Then 
we consider the problem of estimating the mean vector 0 by 5(X) relative to quadratic 
loss. Therefore every estimator is evaluated based on the risk function 

.R(0, 6)= Eo[II (X)-Oll 2] : exp ( llx - ell 2 ) -~ dx. 

The usual estimator X with the constant risk p is minimax. Stein (1956a) showed that  
equivariant estimators relative to the orthogonal transformation group are of the form 
6r --- (1 -r and that  there exists an estimator dominating X among 
these when p > 3. James and Stein (1961) succeeded in giving an explicit form of an 

157 



158 YUZO M A R U Y A M A  AND WILLIAM E. S T R A W D E R M A N  

estimator improving on X as 

5 j s ( X )  = (1 - ( p -  2 ) / t t X l ? ) X  , 

which is called the James-Stein estimator. It is however noted that  when [[x[[ 2 < p - 2 ,  the 
James-Stein estimator yields an over-shrinkage and changes the sign of each component 
of X. The James-Stein positive-part estimator 

6 + s ( X )  = max(O, 1 - (p - 2 ) / I IXI [2 )X ,  

eliminates this drawback and dominates the James-Stein estimator as shown in Baranchik 
(1964). Furthermore, a complete class result of Brown (1971), implies that  the James- 
Stein positive-part estimator is not analytic and is thus inadmissible. 

Estimators which dominate the James-Stein estimator have been given by several 
authors. Li and Kuo (1982) and Guo and Pal (1992) considered the class of estimators 
of forms 6qLK = (1 - CLK(I[X[I2)/ I IXII2DX where 

n 

eLK(W) = p -  2 - E a i w - b "  
i=1 

where a~ > 0 for any i and 0 < bl < b2 < --" < b~. For example when n = 1, 
they both showed that, 5 L K ( X )  for 0 < bx < 4-1(p - 2) and al = 2b12b~F(p/2 - bx - 
1)/r(p/2 - 251 - 1) is superior to the James-Stein estimator. Kuriki and Takemura 
(2000) gave two estimators which shrink toward the ball with center 0, 6~KT(X) ---- ( 1  - -  

Cky(llxIi2)/IIxl?)x for i = 1, 2 where 

= { ~ 2 - E =I p-2 1/2 

r = { ~_ 2_ r/(wl/2 _ r) 

w < r  ~ 

w > r 2, 

w {(p- 
w> {(v-  1)/(v- 2)} r 2. 

They showed that when r is sufficiently small, these two estimators dominate the James- 
Stein estimator. However since the shrinkage factor (1 - CLK(W)/W) becomes negative 
for some w and r for i = 1,2 fail to be analytic, (~LK and ~KT are inadmissible. To the 
best of our knowledge, the sole admissible estimator known to dominate the James-Stein 
estimator is Kubokawa's (1991) estimator 6K = (1 -CK([IXI[2)/[[X[12)X where 

CK(W) = p -- 2 -- 2 exp(--w/2) 
f01 Ap/ -2 exp(-wA/Z)d " 

The estimator is a generalized Bayes with respect to the density If0112-p which was 
suggested by Stein (1973). 

A more challenging and long standing open problem is to find admissible estimators 
dominating the James-Stein positive-part estimator. Kubokawa's estimator 5K fails to 
dominate the James-Stein positive-part estimator because the risks of 5K and 5Js are 
same at I[0[[ = 0 (see Pal and Chang (1996)). Shao and Strawderman (1994) gave a 
class of estimators which dominate the James-Stein positive-part estimator. They were 
unable to show that  any estimators in their class were admissible. Our goal in this paper 
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is to give necessary conditions for domination of the James-Stein (and hence James-Stein 
positive-part) estimator. 

In particular, most statisticians working in the area believe that l imw_~ r = 
p -  2 should be a necessary condition for 5r to improve on the James-Stein estimator. 
However we know of no such result in the literature. We give such a result under natural 
conditions. Additionally we show that no estimator for which r approaches p -  2 
from above can dominate the James-Stein estimator. It follows from this result that  
a conjecture of Stein (1973) to the effect that a mixture of a point mass at 0 and the 
harmonic prior 110 [] 2--p may give a generalized Bayes estimator that dominates the James- 
Stein estimator is false if the mass at 0 is strictly positive. An interesting feature of our 
main result is that it combines two of Stein's most important techniques--namely the 
unbiased estimator of risk and the admissibility of convex acceptance regions for tests 
for exponential families. 

Section 2 is devoted to developing the necessary conditions. Proofs are given in the 
Appendix. 

2. Necessary conditions 

In this section, we develop some necessary conditions for dominance over the James- 
Stein estimator. We consider only orthogonMly invariant estimators. 

The risk of the estimator 5r = (1 - r with any absolutely 
continuous r is given by 

0 

=p+E[[r162 - 2(p - 2)} _ 4r ] 

which was derived by Stein (1973) and Efron and Morris (1976). The absolute continuity 
of r in the above is a sufficient condition for the indefinite integral of r to be equal to 
r See Hudson (1978) for the detail. The James-Stein estimator 6js corresponds to 
r (w) = p - 2 and hence the difference in risks between 6js and 6r is 

[ {r - (p - 2)}2 ] 
A : R(O,  f igs)  - R(O,  4 )  -- E - FX~I ~ + 4r 2) . 

Now we will propose some necessary conditions for domination of fie over figs. Let 

(2.2) gr = {r - ( p -  2)} 2 + 4r 
w 

Our basic result is following: 

THEOREM 2.1. Assume that gr is bounded above. If 5r dominates the James- 
Stein estimator, then, for every w, there exists Wo (> w) such that gr >_ 0. 

PROOF. See the Appendix. 

It follows that under the above boundedness assumption that 50 cannot dominate 
the James-Stein estimator if gr < 0 for all w greater than some arbitrary fixed w0. It 
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is interesting to note that the Proof of Theorem 2.1 is closely related to Stain's (1956b) 
proof of the admissibility of convex acceptance regions for testing a simple hypothesis 
about the natural parameters of an exponential family. Hence our results depend on two 
of the basic tools introduced by Stein. 

COROLLARY 2.1. Assume that r is bounded and absolutely continuous. Nec- 
essary conditions for an estimator 5r to dominate the James-Stein estimator are 
that 

(i) for  every w, there exists Wo (> w) such that r _> 0, 
(ii) / fwr  has a limiting value as w approaches infinity, it must be O, 

(iii) i f  r has a limiting value as w approaches infinity and wr converges to 
0 as w approaches infinity, the limit value for r must be p - 2. 

PROOF. See the Appendix. 

It follows from (i) that if r approaches p - 2 from above (i.e. r < 0 for 
any w > w0), then 5r cannot dominate either the James-Stein or positive-part James- 
Stein estimator. Theorem 2.1 however cannot rule out the possibility that  r for a 
dominating estimator does not have a limiting value. The following result rules out this 
possibility under natural conditions as also assumed in Berger (1976) and Casella (1980) 
in the context of tail minimaxity of estimators related to 5r 

THEOREM 2.2. Assume that both r and r  are bounded, that r =- 
o(w -1) and that r  = o(w-3/2).  I f  5r dominates the James-Stein estimator, 
lim~--,oo r -- p - 2. 

PROOF. See the Appendix. 

3. Discussion 

Stein (1973) suggested that a generalized Bayes estimator with respect to a prior 
which is mixture of a point mass at 0 and the generalized (harmonic) density Ill?l[ 2-p 
may dominate the James-Stein estimator or the James-Stein positive-part estimator. 
Kubokawa (1991) showed that the generalized Bayes estimator with respect to [101[ 2-p 
is admissible and in fact dominates the James-Stein estimator. This suggests that the 
addition of a small point mass at 0 might also produce dominating estimators. Efron 
and Morris (1976) also studied numerically some properties of Stain's (1973) estimator. 

Maruyama (2004) investigates various properties of the behavior of generalized 
Bayes estimators corresponding to priors which are a mixture of a point mass with 
weight/3/(1 +/3) at the origin 0 and a scale mixture of normal distributions given by 

(3.1) ]11( exp 2(-1 ---~))  A-ah(A)dA' 

with weight 1/(1 +/3) for/3 > 0. Let denote the generalized Bayes estimator by 5z(X) = 
(1 - r It is assumed that  h(A) is a measurable nonnegative function 
on (0, 1) and that  lim~__,o h(A) = 1. This prior distribution is a generalization of Stain's 
(1973). Maruyama (2004) showed that  r for a -- 2 approaches p - 2 as w ~ oc 
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d regardless of h(A) and/3 and that  limw__.o~ w.  3-d~r = 0. In particular, Maruyama 
(2004) showed that CZ with a = 2, h(A) - 1 and /3 > 0, which is just Stein (1973)% 
case, approaches p - 2 from above. This, together with (i) of Corollary 2.1, implies that  
Stein's (1973) generalized Bayes estimator fails to dominate the James-Stein estimator. 
Maruyama (2004) also showed that,  for h(X) which is bounded, not a constant function 
and for which Ah'(A)/h(A) is monotone nondecreasing and also for h(A) = (1 - A) b for 
- 1  < b < 0, r with a = 2 and/3 _> 0 approaches p - 2 from above and hence fails to 
dominate the James-Stein estimator. 

Maruyama (2004) showed that  under mild conditions on r admissible domina- 
tion of the James-Stein positive-part estimator requires that  there exists w0(> p -  2) so 
that  r exceeds p - 2. Thus most simple behavior of r desirable for admissible 
domination over the James-Stein positive-part estimator is that  the function r first 
increases above p -  2 then decreases back below p - 2 and finally, increases to p - 2 from 
below. Maruyama (2004) showed that  for h(A) which is bounded, not a constant function 
and Ah'(A)/h(A) is monotone nonincreasing, CZ(w) with a = 2 and suitable/3 behaves 
in this way. It is hoped that generalized Bayes estimator with respect to a subclass of 
such priors will give classes of admissible minimax estimators which dominate both the 
James-Stein and James-Stein positive-part estimator. 
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Appendix 

PROOF OF THEOREM 2.1. Suppose to the contrary that  there exists Wo such that  
9r (w) < 0 for any w _> wo. Under the assumption on boundedness of gr there exists an 
M ( >  0) such that  g,(w) <_ M for any w. Under the assumption of absolute continuity 
of gr there exist two points (w0 <)Wl < w2 and e(> 0) such that  gr < - e  on 
w E [wl,w2]. Using M and e, we define gM,~(w) as 

(A.1) 

M w<_wo 

gM,c (W)  ---- 0 WO < W < Wl  

--~ W 1 ~ W ~_ W 2 

0 w > w 2 .  

The inequality gM,c(w) >_ gr for any w implies that  

(A.2) A = E[gr < MPo[W <_ wo] - cPo[Wl _< W _< w2], 

where W = IIXII 2. 
Now let a be a fixed p-dimensional unit vector (see Fig.  1). Then the half plane 

{x: a'x _< v/-~} includes the p-dimensional sphere {x: Ilxll 2 < Wo}. For 8 --- (v/-~+A)a,  
we have 

1 ( 
(A.3) Po[W <_ wo] < '~-<v~ (2~') p/2 exp dx 
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/. ." 

~ a'x=~ ~ 

Fig.  1. 

1 /" Ilxll 2 
= 'z<J-~5 (2~r) p/2 exp ~ 2 

-< exp(Av/-w~ ( [[~[2 ) 

x '~-<v'-~ (27r)P/--------~ exp 2 

- < exp(Ax/-w-~ exp ( -  [[0[[----~2 + - ~ )  " 2 

- - -  + ( v ~ a  + : ~ a ) '  x - - -  

- -  + v"-w-oa' x)  dx 

11~ ) dx 

For N = {x:  wl _< Ilxll 2 ~ w2, ~ ~ a'x < x/~-~} and 0 = (v/-~-~ + A)a, we have 

/N 1 ( llx-0ll 2 ) 
(A.4) Po[wl _< W < w2] > (2~-)v/2 exp 2 dx 

/ 1  ( 
= (2~-)P/2 exp - - -  

> exp(~v~)  exp ( 
\ 

[[xl[2+(x/~a+Aa)'x I[~ [2) 
- dx 

2 

1 ( [[x[[2+v,-~-~a,x) dx. 
(27r)v/-------2 exp - - - ~  

Combining (A.3) and (A.4), we have 

(A.5) A _< cl exp (v/-W-oA 11~ (1 - c2exp{(v/-~-- v/-wo)A}), 

w h e r e  Cl = M exp(w0/2) and 

( - ~ ) / N  1 ( Hx]I 2 
c2 = ~ exp - (27r)p/2 exp 2 - - -  + x/'-~--~a' x)  dx. 

Since c 1 and c2 do not depend on A, A is negative for sufficiently large A. This completes 
the proof. Note that this proof is closely related to Stein's (1956b) proof of admissibility 
of convex acceptance regions for testing simple null hypotheses on the natural parameters 
of an exponential family. 
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PROOF OF COROLLARY 2.1. (i) If there exists w0 such tha t  r  < 0 for every 
w > w0, gr < 0 for w _> w0. 

(ii) Let limw~oc we ' (w)  = a (>  0). Note tha t  we have only to consider the case a > 0 
by (i). Suppose tha t  a > 0. For any e > 0, there exists w0 such tha t  a - c  < we ' (w)  < a + e  
for any w _> Wo. Thus 

(a - e){logw - logwo} + r _< r _< (a + e){logw - log Wo} + r 

and 

- -  - - - } - O  
w \ w / 

Hence gr for a > 0 is always negative for sufficiently large w and the result follows 
from Theorem 2.1. 

(iii) Let l imw_,~ r = b. Because for every e > 0, there exists Wo such tha t  
b -  e _< r _< b + e for any w > wo, we have 

9r < min{(b - e - p + 2) 2, (b + c - p + 2) 2} + o(w_l)" 
w 

Hence when b # p -  2, gr is always negative for sufficiently large w and it follows 
from Theorem 2.1. 

PROOF OF THEOREM 2.2. Note tha t  the risk of 6r is given by (2.1). By using 
Lemma A.1 below, the asymptot ic  behavior of risk of 6r for sufficiently large A -- [10[[ 2 
is 

P -~- r162 - 2(p - 2)} -[- o(,~_1) 
A 

when both  r and r are bounded,  tha t  r  = o(w -1) and tha t  r  = o(w-3/2). 
On the other hand,  the risk of the James-Stein est imator  is given by p-(p-2)2E[[[X[[-2]. 
Note tha t  

j~0 ~176 
oo (A/2)i exp ( -A/2 )  y-afp+2i(y)dy E[IfXlr-2J = F_, i! 

i=0 
c~ (A/2)i . F(A/2 - 1 + i) 

: E i! exp ( -A/2 )  2- -F(A~+i)  
i :0 

= exp ( -  A/2) (p - 2 ) -  1M(p/2  - 1, p/2, A/2) 

where fp+2j(Y) is a densi ty function of Xp+2 2j and M(. ,  ., .) is a confluent hypergeometr ic  
function given by 

M ( a , b , z )  -- 1 + bZ + . . .  + a .  ( a +  1 ) . . . ( a + n -  1)z 
b . ( b + l ) . . . ( b + n -  1) n! +'"" 

A confluent hypergeometric  function has an asymptot ic  form 

I~(b) ( ~  ( b - a ) n ( 1 - a ) , z _  n O(z_l) ) M(a, b, z) --- F(a) exp(z)za-b n! + 
n-~O 
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for suff iciently large z (see A b r a m o w i t z  and  S t egun  (1964)),  wh ich  implies  t h a t  

E[HXI1-2] -- A -1 + (2 - p/2)m -2 + O(A-3) .  

Hence  the  a s y m p t o t i c  b e h a v i o r  of  risk of  the  J a m e s - S t e i n  e s t i m a t o r  is g iven by  

R(O, f j s )  = p -  ( p -  2)2A -1 - ( p -  2 ) 2 ( 4 -  p)A -2  § O ( A - 3 ) .  

T h e  difference in r isks be tween  6ys a nd  5r is 

- (p - 2)}2  -1) 

which  takes  nega t ive  values for s o m e  sufficiently large  A unless  limA__,~ r  = p - 2. 

LEMMA A.1. Assume  that g : R p ---+ R is a bounded funct ion  with first partial 
derivatives g(i)(x) -- (O/Oxi)g(x)  for  i -- 1 , . . .  ,p and that g(x)  = g.(]lxll 2) + o(llxl1-2) 
and g(i)(x) = o(]lxl1-2) for  sufficiently large I[x[I 2. Then for  X ~ Np(# ,  Ip), 

E l y ( X ) ]  = g.(ll ll 2) + o(ll lt - 2 )  

for  sufficiently large II#H 2. 

PROOF. This proof is essentially the same as Lemma 4.1 in Maruyama and 
Strawderman (2005). We omit the details. 
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