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Abstract. On the problem of estimating a positive normal mean with known vari-
ance, it is well known that one minimax admissible estimator is the generalized
Bayes one with respect to the non-informative prior measure, the Lebesgue measure,
restricted on the positive half-line. When the true variance is misspecified, however,
it is shown that this estimator does not always retain minimaxity and admissibility.
In particular, it is almost surely inadmissible in the misspecification case.
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1. Introduction

Let X be a normal random variable with unknown mean 6 and known variance 1.
Under the restriction § > 0, we consider the problem of estimating the mean 8 by 6(X)
under the quadratic loss function. Therefore, any estimator §(X) is evaluated on the
risk function R(#,6) = E[(6(X) — 6)2].

The usual estimator of 8 in the unrestricted problem is clearly X. This estimator is
minimax with constant risk 1, generalized Bayes with respect to the non-informative prior
distribution, the Lebesgue measure, and admissible. Under the restriction above, X is
still minimax, but inadmissible because X takes negative values with positive probability
and the improved estimator 8, (X) = max(0,X) is easily found. Furthermore, 6 (X)
is also inadmissible because any admissible estimator should be generalized Bayes, as
was shown by Sacks (1963). To our knowledge, the sole admissible minimax estimator
previously derived is 64, (X) = X + ¢1(X) where

J2 texp(—t?/2)dt
[ exp(—t2/2)dt”’

which was derived by Katz (1961) and Sacks (1963) independently. This estimator is
generalized Bayes with respect to the non-informative prior distribution, that is, the
Lebesgue measure restricted on the positive half-line. See Lehman and Casella (1998)
for details.

In this paper, we consider the situation where the true variance is not 1, that is,
we misspecify X ~ N(6,1) while X ~ N(0,02%) with 02 # 1 truly. In the unrestricted
case, the natural estimator X clearly retains both minimaxity and admissibility for any

(1.1) ¢1(w) = —
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o2. In the restricted case, however, the decision-theoretic properties of 64, (X) are not
clear. Hence we are interested in determining when 6y, (X) retains minimaxity and
admissibility under o2 # 1.

In Section 2, we show that 84, (X) retains minimaxity if and only if 62 > 1. In
Section 3 we consider the problem of determining whether &4, (X) under o2 # 1 is
admissible or not. We show that it reduces to the problem of whether or not the function
f(2)@ for a = 02 with

(1.2) flz) = /000 exp(—zt — t2/2)dt

can be expressed as the Laplace transform of some nonnegative measure. When o
is a positive integer, we see that such a positive measure exists and hence 84, (X) is
admissible. However when « is not a positive integer, the admissibility is not apparent.
Note that f(z2)® is a multi-valued function in this case. To solve it we consider the
inverse Laplace transform of f(z)%, that is,

(1.3) o) = 5 [ fE@)eaz, t20,

where I is a suitable contour in the complex z-plane (see Fig. 1 in Section 5). In Section 4,
we investigate some properties of the entire function f(z), i.e., its zeros and asymptotic
behavior as z — oo, and we show in Section 5 that, when « is not a positive integer,
the function g(t) for sufficiently large ¢ > 0 oscillates between positive and negative
values (see Theorem 5.1). Thus, 64, (X) is not generalized Bayes by the unicity of the
inverse Laplace transform and hence is inadmissible when o2 is not a positive integer
for the true variance o2. These results suggest that the decision-theoretic properties
of the estimator 64, (X) are quite sensitive to the misspecification of the variance. In
particular, it is inadmissible for any 62 > 1 and for almost every 02 < 1. Such sensitivity
of §4,(X) in the restricted problem exhibits a striking contrast to the robustness of X
in the unrestricted problem.
The additional contributions of our article are the following.

(i) As far as we know, the Sacks-Brown complete class theorem has been applied
only to show the inadmissibility of non-differentiable estimators, for example, the James-
Stein positive-part estimator on the estimation of a multivariate normal mean. Our work
is the first attempt at determining whether an estimator having infinite differentiability
is admissible.

(ii) We demonstrate that classical complex and asymptotic analysis can be a very
powerful tool in discussing statistical estimation problems.

2. Minimaxity

In this section, we consider the minimaxity of 84, (X)) given by (1.1) when the true
variance is not 1. First we derive a sufficient condition for minimaxity when the true
variance is o2. For an estimator of the form §4(X) = X + ¢(X) with lim,_,. ¢(z) =0,
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the difference in risks between X, which has constant minimax risk, and §,(X) is
(2.1) A =R(8,X)— R(8,86,(X))
=c [ 87~ @+ pla) — b exp{ -z — 0/ 20"}

o0
oo}

c/_oo {/OOO @+ o) - 9)2}dt} exp{—(x — 0)2/(20%) }dz
_ zc/: /Ooo #(@+8)(z+ (@ +t) — 0) exp{—(z — 0)2/(202)}dzdt
2 [~ 7 g w1+ 6(w) - O)exp(~(w —t - 0/ (202w
—2e [~ gwio) - vetw o { [~ ew {5 C bk aw,

~1/2 and

St —w+ 0) exp{—(t —w + 6)?/(202) }dt
(2.2) Vo2 (w, ) = . j‘ooo exp{—(t —w+ 6)2/(202)}dt

(2.3) =0’ (/Oooexp (—%th—(“;;—e)) dt)_l.

By (2.3), ¢,2(w,§) is increasing in 6 and hence ¥,2(w,#) > ¥,2(w,0) for § > 0. Let
o2 {w) = Y,2(w,0). Hence A is nonnegative for any # > 0 when ¢(w) is nonincreasing
and ¢(w) < @y2(w). Noting that limy_co ¢o2(w) = 0, we have the following result,
which is almost the same as one in Kubokawa (1999).

where ¢ = (2702)

THEOREM 2.1. For X ~ N(0,02) with 6 > 0, 64(X) = X + ¢(X) is minimaz if
¢(w) is monotone decreasing (or nonincreasing) and 0 < ¢p(w) < P 2 (w).

Using Theorem 2.1, we have the following result on the minimaxity of 64, (X) given
by (1.1). Note that ¢;(w) corresponds to ¢, (w) with 0 = 1 because, by (2.2), ¢o2(w)
is also written as

fi”oo texp{—t2/(20?%)}dt
fl”oo exp{—t2/(202)}dt

(24) bo2 (w) =

THEOREM 2.2. The estimator 6,, (X) is minimaz if and only if the true variance
a2 is greater than or equal to one.

ProOOF. The function ¢;(w) is monotone decreasing because

exp{—w?/2} f:"oo(w — t) exp{—t2/2}dt -
{2 exp{—t?/2}dt}? -

The function ¢,z(w) is increasing in 02, as shown in the lemma below. When 02 > 1,
we have ¢ (w) < ¢y2(w) for all w and hence &4, (X) is minimax. When o2 < 1, we have

d
7w (w) = —
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#$1(w) > ¢p2(w) and from the right-hand side of (2.1), R(0,64,(X)) > R(0,X), which
implies that 64, (X) is not minimax.

The following lemma is used in the above proof.
2

LEMMA 2.1. The function ¢,2(w) is monotone increasing in o*.

PROOF. Let 7 = o2. The derivative of ¢,(w) with respect to 7 is calculated as

94y [Y 2 /dt [P temt /gt — [V 3¢~ gy [ et /214y
87] ('IU) - 2?72{.[1”00 e_t2/2ndt}2 .

The correlation inequality implies that the derivative (8¢, /0n)(w) for w < 0 is nonneg-
ative because the function t? is monotone decreasing for t < 0. Next we consider the
case w > 0. Letting Z(z) = (2r)~'/2 exp(—2?/2) and P(z) = [*__ Z(t)dt, we have

J10 M texp(— /2t z(y V)
- =7 — .
[ exp(—e2/2)at - P71 w)

(2.5) Pn(w) = —v/1

Because P(z) is expressed as the power series

el 2n+1
P(z) = % +Z(“’)§ (22 ++1)!!’

(see e.g., Abramowitz and Stegun (1964)), Z(z)/P(z) is monotone decreasing for z > 0.
Hence ¢, (w) is increasing in 7.

3. Admissibility

As was explained in Section 1, Sacks (1963) showed that any admissible estimator
should be generalized Bayes in this estimation problem. Under the quadratic loss func-
tion, the generalized Bayes estimator with respect to the prior measure 7(9) is written
as

J5> Bexp{~(X = 0)*/2eM}dr(0) . ,d g
Jo2 exp{—(X — 6)2/(202)}dr(8) X + 0" =~ logm7' (X)),

where
m_\T) = exXpy—(& — 2 (72 dr(0).

Brown (1971) extended the complete class theorem to the multiparameter case and pre-
sented a powerful sufficient condition for a generalized Bayes estimator to be admissible.
The sufficient condition in our setting is stated as follows.

THEOREM 3.1. The generalized Bayes estimator with respect to 7(0) is admis-
sible if o2(d/dz)logmB(z) is uniformly bounded for x > 0 and if the two integrals

7 mB(x) tdr and f__olo mZ(z)~ldx diverge.
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The estimator &4, (X) is rewritten as X + 0%(d/dX)logm1(X), where

-2

my(z) = (/Ooo exp(—(z — 9)2/2)d9)0

As we have asymptotic representations, for o = 072,

V ml(m)l/a — { \/E'i_ 0(1) ('T - OO)
exp(—2?/2)(—z) {1+ o(1/2)} (z — —o0),

which are special cases of (4.4) and (4.3) in Section 4, respectively, both [ m;(z) " ldz
and [~ m(z)~dz diverge. Moreover, 0%(d/dw) log m; (w), which is equal to ¢; (w), is

uniformly bounded for w > 0 because limy_,o ¢1(w) = 0. Therefore, by Theorem 3.1,
if 64, (X)) is generalized Bayes, that is, if there is a nonnegative measure 7 such that

mﬂ@==Amem%—w—9FK&9Hdﬂ®,

then it is admissible. This is equivalent to the condition that the function f(z)* for
a = 072, where f(x) is given by (1.2), can be expressed as the Laplace transform of a
nonnegative measure, say, G(t):

(3.1) flx)* = /Ooo e~ "t dG(t).
Indeed, if (3.1) holds then we have
my(z) = exp{—22/(20%)} (/oo exp(zf — 02/2)(10)0
0

= exp{—z?/(20%)} /Ooo exp(zt)dG(t)

exp{—z°/(20 )}/O exp(zaf)dG(ab)
= [ el =07/ 2")r0)

where d7(6) = exp(af?/2)dG(ab).

If o is a positive integer, {(2/7)'/2f(x)}® is a moment generating function of the
distribution of Z =} ;- | ¥; where Y7, ..., Y, are independent random variables having
a probability density (2/7)"/2 exp(—y?/2)I(0,00)(y). Therefore 64, (X) is admissible when
072 is a positive integer.

Next we consider the case where « is not a positive integer. Taking the inverse
Laplace transform of (3.1) yields

dG(t) = g(t)dt,

where ¢(t) is given by (1.3). Hence, if such a nonnegative measure G(t) as in (3.1) exists,
then the function g(t) must be nonnegative. In Section 5, however, we will show that
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the function g(t) for non-integer « oscillates between positive and negative values for
sufficiently large ¢ > 0 and therefore cannot be nonnegative for all ¢ > 0 (see Theorem
5.1). This means that when 0~ is not a positive integer, 84, (X) is not generalized Bayes
and hence is inadmissible.

THEOREM 3.2. The estimator 64, (X) is admissible if and only if 02 is a positive
integer for the true variance 2.

4. Laplace transform

We discuss some function-theoretic properties of the function f(z) in (1.2), which
is the Laplace transform of the Gaussian function e="/2. It is easy to see that f(2) is
an entire function satisfying the functional equation

(4.1) F(2) + f(=2) = Vane' /2,
as well as the first-order inhomogeneous linear differential equation
(4.2) f'(z) = 2f(2) - 1.

As for the asymptotic behavior of the function f(z), Watson’s lemma (see e.g., §3.3
of Olver (1997)) yields a uniform asymptotic representation

[e o]
(4.3) flz) ~ Y (-1)"(@2n - izt
n=0
as z — oo in any proper subsector of the sector | arg z| < 3w /4, where we set (—=1)!! =1

by convention. Because the change of variable z — —z takes the sector |arg z| < 37 /4
onto the sector m/4 < argz < 7r/4, the asymptotic formula (4.3), together with the
functional equation (4.1), leads to another uniform asymptotic representation

(4.4) F(z) = V2mes /? ~ i(—l)"@n ~ g2t

as z — 00 in any proper subsector of the sector 7/4 < arg 2z < 7m/4. Note that formulas
(4.3) and (4.4) cover asymptotic behaviors as z — oo in every directions. They imply
that f(2) is an entire function of order two.

The following information about the zeros of f(z) will be important in the sequel.

LemMA 4.1. (i) The function f(z) has infinitely many zeros. Each zero, say, w,
has the derivative f'(w) = —1 and hence is simple.

(ii) The function f(z) has no zeros on the closed half-plane Rez > 0 or on the
closed sector 3w /4 < argz < 5w /4.

(iii) The function f(z) has at most finitely many zeros outside the sectors 3m/4—6 <
|arg z| < 3w /4 for any 0 < 6 < 3w /4.

PrOOF. Assertion (i): Assume the contrary, that f(z) has at most finitely many ze-
ros. Because f(z) is an entire function of order two, Hadamard’s theorem (see e.g., Chap-

ter 5, §3.2 of Ahlfors (1979)) implies that f(z) can be represented as f(z) = vz’ Tzp(2)
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with some complex numbers u, v and a polynomial p(z). On the other hand, the asymp-
totic formula (4.3) implies that f(z) = O(1/z) as z — oo in any proper subsector of
the sector |arg z| < 3w/4 and hence one must have u = v = 0 and p(z) = 0, which is
a contradiction. Hence f(z) has infinitely many zeros. It follows from the differential
equation (4.2) that f'(w) = —1 at each zero z = w. In particular the zero w is simple.

Assertion (ii): If z is real, the integrand of (1.2) is positive and so is f(z). Put
z = & +1in. It follows from (1.2) that

o0
Im f(z) = —e52/2/ e (@He)?/2 sin(nz)dz.
0

If ¢ = Rez is nonnegative then the function e~ (®+*/2 i strictly decreasing in z > 0.
Hence the alternating series test implies that if n = Im 2 is positive (negative) then so is
the negative of Im f(z). Therefore f(z) has no zeros on the closed half-space Rez > 0.
To show that f(z) has no zeros on the sector 3n/4 < arg z < 57 /4, we notice that (1.2)
yields

o0 oo
If(—=2)] S/ e~% /2+(Re2)z gy S/ e =24z = \/n/2 for Rez<O0.
0 0

This estimate and the functional equation (4.1) lead to an estimate

1£(2)] > V2rle® /2| - |f(=2)| > V27 — /72 = \/7[2> 0

on the sector 37/4 < arg z < 57 /4. Hence Assertion (ii) is proved.

Assertion (iii): The asymptotic formula (4.3) implies that f(z) = 1/z + O(1/23) as
z — oo in the sector |argz| < 3w/4 — 6. Hence f(z) has at most finitely many zeros
there. Then, in view of Assertion (ii), we have Assertion (iii).

Let {2,}32, be the zeros of f(2) in the upper half-plane Im z > 0, totally ordered so
that m < n implies either (i) Rez,, > Rez,, or (ii) Rez,, = Rez, and Imz,, < Im z,.
Because f(z) is a real entire function, the zeros of f(z) consist of {2,}22, and their
complex conjugates {Z,}52,. We put

21 = a+ b,
where a < 0 and b > 0 (see Fig. 1 in Section 5).
Remark 1. Let m > 1 be the unique integer such that
(4.5) Rez; =---=Rezn =a > Rezpi.

Numerical computations strongly suggest that m = 1, although it has not been logically
established. Hereafter we shall assume that m = 1 is the case. This assumption is not
essential for our discussion, but is made only for simplicity of presentation. At the end
of the next section, we shall indicate how to modify the argument if m happens to be
greater than one (see Remark 2 in Section 5).
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5. Inverse Laplace transform

We consider the inverse Laplace transform g¢(t) in (1.3) of the function f(z)* with
a > 0, where f(z) is defined by (1.2). We are only interested in the case where « is
not a positive integer as we have already treated the positive integer case in Section 3.
Take a real number ¢ such that a < ¢ < 0, as indicated in Fig. 1. Note that f(c) > 0 by
(1.2). Then the branch of the multi-valued function f(z)* is specified by f(c)® > 0 at
the point z = ¢.

We specify the contour of integration I' in (1.3). Usually, the contour of integration
of an inverse Laplace transform is chosen to be a suitable line parallel to the imaginary
axis. In the current situation, such a choice is feasible when o > 1/2. One can take I" to
be the vertical line passing through the point ¢, as indicated in Fig. 1 (left). Indeed, the
asymptotic formula (4.3) implies that f(2)* = O(2~%) as z — oo along I" and hence, if
a > 1/2, then f(2)“ is square integrable on I" and the integral (1.3) converges in the
mean. With this choice of I', however, the integral is divergent when 0 < a < 1/2. To
cover this case also, we should replace the line I" by a contour as in Fig. 1 (right), which
is the union of two rays meeting at ¢, slightly inclined toward the negative real axis,
and lying to the right of all the zeros of f(z). Because the integrand f(z)“e** of (1.3)
is exponentially decreasing along the new contour, this replacement makes the integral
(1.3) absolutely convergent for every a > 0, without changing the values of (1.3) for
a > 1/2 by Cauchy’s integral theorem. Thus, from the beginning, we may and shall
assume that I is the contour as in Fig. 1 (right).

To investigate the asymptotic behavior of the function g(t) for sufficiently large
t > 0, we modify the contour of integration I', via the one in Fig. 2 (left), to v+ (—%)+1I"
in Fig. 2 (right). Here v is a loop that starts and ends at z; +€*co with an angle 8 such
that 7/2 < 6 < 3w/4 and encircles the first zero z; in the positive direction, and —% is
the complex conjugate of v with orientation reversed. The contour I” consists of a line

Imz

AR =8 s

Fig. 1. Contour of integration I'.
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Fig. 2. Modification of the contour I".

segment on the vertical line Re z = d with d < a and two rays parallel to v and —7; it
should be located to the right of the remaining zeros {z,, 2, }52,. This modification of
I leads to a decomposition

(5.1) g(t) = h(t) + h(t) + H(t),
where the functions h(t) and H(t) are defined by

1

- f(2)*e*tdz,
27i Jp

(5.2) h(t) = '2”71?2 / f(2)%edz,  H(t)

and h(t) is the complex conjugate of h(t). We shall investigate h(t) and H(t) separately
and see that the asymptotic behavior of g(t) for sufficiently large ¢ > 0 is controlled by
h(t) + h(t). Let us first treat the minor term H(t).

LEMMA 5.1. There is a constant M, independent of t, such that

(5.3) |H(t)| < Me®* (¢ >1).

ProoF. If we put H(t) = K(t)e?, then

1
K(t) = %/F’ f(z)%elz=Dtgy,

The asymptotic formula (4.3) implies that f(z) is bounded on I so that there is a
constant N such that |f(z)|®* < N on I''. Hence for any ¢t > 1,

N
K(2)] < ﬁ/ eRelz=)t| g < —/ eReG=D)| g, = M < oo,
271' r 27'(' fald
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where we used the fact that Re(z — d) < 0 on I". This proves the lemma.

We proceed to the investigation of the principal term h(t). Recall that it is only
necessary to consider the case where « is not a positive integer.

LEMMA 5.2. There exists an asymptotic representation as t — +o0,

(5.4) ht) = —-S—‘Egi?lr(a + 1) exp(a1t — ima)t=*=1{1 + O(1/8)}.
PRrROOF. The function f(z) has a simple zero at z = z; with derivative f'(z1) = ~1,

so the function f(2)? is expressed as f(2)® = (z—2;)%{e""*+O(z—21)} in a neighborhood
of z = z;, and hence is multi-valued across phe branch cut L = {z = 2, + ze? . 0<z <
co}. By the change of variable z = z; + we®, the first integral in (5.2) is converted to
th

(5.5) h(t) = M/ #(w) exp(wet)dw,
29 oy

where ¢(w) = f(z1 +we*®)* and v’ = €7 + C. + £7 is the loop indicated in Fig. 3. Here
¢ = {x+i0:e < z < oo} are half-lines directed as in Fig. 3 and C. is the circle of
radius ¢, centered at the origin, directed anti-clockwise. The function ¢(w) is expressed
as ¢(w) = w*yP(w), where ¢(w) is a single-valued holomorphic function having a Taylor
expansion P(w) = co + cyw + cow? + --- with ¢g = ¢**(®T™)_ The branch of ¢(w) is
chosen so that w® is positive on the half-line £;. The multi-valuedness of ¢(w) across
the branch cut 0 < z < oo is given by ¢(z + i0) = e~ 2" *¢(z — i0) = e~ 2" *¢(x), where
x — 10 is identified with z. This yields

/ #(w) exp(we®t)dw = / #(w) exp(we*t)dw
v Ce
+(1- e‘2i“a)/ é(z) exp(ze®t)dz.

Because o > 0, the first integral in the right-hand side tends to zero as ¢ — 0. Hence,
by letting € — 0, (5.5) becomes

nit) = SRCEH) | inay / é(z) exp(zet)dz
2 o
(5.6) = sxnw'/ra exp(z1t + 10 — ima) / #(z) exp(ze'®t)dz.
0

N — &
0 N
Ce

Fig. 3. The loop «'.
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On the other hand, Watson’s lemma in asymptotic analysis (see e.g., §3.3 of Olver
(1997)) yields

/000 H(x)e®dr = —coe ™ INa+ 1)s™* {14+ 0(1/s)}

as s — oo in any proper subsector of the sector |args — w| < w/2. Note that the ray
s = €%t t > 0, lies in this sector, because 7/2 < § < 37/4. Substituting the above
formula into (5.6) and using cp = €**(®+™) | we obtain (5.4).

Putting Lemmas 5.1 and 5.2 together, we have the following:

THEOREM 5.1. There exists an asymptotic representation as t — +00,
(6.7) g(t) = Mye®t > Heos(bt — ma) + O(1/t)},

where My, = —2sin(wa)(a + 1)/7. In particular, for sufficiently large t > 0, the real
function g(t) oscillates between positive and negative values.

PrOOF. Substituting (5.3) and (5.4) into (5.1) and using 2; = a + ib, we obtain

g(t) = (M,/2)exp(zit —ima)t~* {1+ O(1/t)}
+ (M, /2) exp(Z1t + ima)t {1 + O(1/t)} + O(e?)
= Mye®t= "1 cos(bt — ma) + O(e*t™*72) + O(e)
= Mye®t™* Ycos(bt — ma) + O(1/t)}.
Here the last equality follows from O(e®*t~%~2)+0(e%) = O(e*t~*~2), which is because

of the inequality d < a. Hence formula (5.7) is proved. The oscillation property of g(t)
readily follows from (5.7).

Remark 2. Theorem 5.1 was established under the assumption that m = 1 in (4.5)
(see Remark 1 in Section 4). If m > 2, formula (5.7) should be replaced by

m
(5.8) g(t) = Mae®t=*71 { N " cos(b;t — ma) + O(1/t)
Jj=1
where z; = a +1ib; for j = 1,...,m with b; < --- < by,. In this case, the oscillation

property in Theorem 5.1 also remains true for the function g(t).
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