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A b s t r a c t .  On the problem of estimating a positive normal mean with known vari- 
ance, it is well known that one minimax admissible estimator is the generalized 
Bayes one with respect to the non-informative prior measure, the Lebesgue measure, 
restricted on the positive half-line. When the true variance is misspecified, however, 
it is shown that this estimator does not always retain minimaxity and admissibility. 
In particular, it is almost surely inadmissible in the misspecification case. 
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1. Introduction 

Let X be a normal random variable with unknown mean 0 and known variance 1. 
Under the restriction 0 > 0, we consider the problem of estimating the mean 0 by 6(X) 
under  the quadratic loss function. Therefore, any estimator 6(X) is evaluated on the 
risk function R(O, 6) = Eo [(6(X) - 0)2]. 

The usual estimator of 0 in the unrestricted problem is clearly X. This estimator is 
minimax with constant risk 1, generalized Bayes with respect to the non-informative prior 
distribution, the Lebesgue measure, and admissible. Under the restriction above, X is 
still minimax, but inadmissible because X takes negative values with positive probability 
and the improved estimator 6+(X) = max(0, X) is easily found. Furthermore, 6+(X) 
is also inadmissible because any admissible estimator should be generalized Bayes, as 
was shown by Sacks (1963). To our knowledge, the sole admissible minimax estimator 
previously derived is 6r (X) -- X + r (X) where 

(1.1) r = f 2 ~  t e x p ( - t 2 / 2 ) d t  
f 2 ~  e x p ( - t  2 /2 )d r '  

which was derived by Katz (1961) and Sacks (1963) independently. This estimator is 
generalized Bayes with respect to the non-informative prior distribution, that is, the 
Lebesgue measure restricted on the positive half-line. See Lehman and Casella (1998) 
for details. 

In this paper, we consider the situation where the true variance is not 1, that is, 
we misspecify X ~ N(O, 1) while X ~ N(O, c ~2) with a 2 r 1 truly. In the unrestricted 
case, the natural estimator X clearly retains both minimaxity and admissibility for any 
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a 2. In the restricted case, however, the decision-theoretic properties of 5r (X) are not 
clear. Hence we are interested in determining when 5r (X) retains minimaxity and 
admissibility under a 2 r 1. 

In Section 2, we show that  5r (X) retains minimaxity if and only if a 2 > 1. In 
Section 3 we consider the problem of determining whether 5r (X) under a 2 ~ 1 is 
admissible or not. We show that  it reduces to the problem of whether or not the function 
f ( z )  '~ for a = a-2  with 

// (1.2) f ( z )  = exp( -z t  - t2/2)dt  

can be expressed as the Laplace transform of some nonnegative measure. When c~ 
is a positive integer, we see that  such a positive measure exists and hence 5r (X) is 
admissible. However when c~ is not a positive integer, the admissibility is not apparent. 
Note that  f ( z )  ~ is a multi-valued function in this case. To solve it we consider the 
inverse Laplace transform of f (z)  ~, that  is, 

1; 
(1.3) g(t) = ~ i  f (z )aeZtdz '  t > O, 

where F is a suitable contour in the complex z-plane (see Fig. 1 in Section 5). In Section 4, 
we investigate some properties of the entire function f(z) ,  i.e., its zeros and asymptotic 
behavior as z --~ (x~, and we show in Section 5 that,  when a is not a positive integer, 
the function g(t) for sufficiently large t > 0 oscillates between positive and negative 
values (see Theorem 5.1). Thus, 5r (X) is not generalized Bayes by the unicity of the 
inverse Laplace transform and hence is inadmissible when a -2 is not a positive integer 
for the true variance a 2. These results suggest that  the decision-theoretic properties 
of the estimator 5r (X) are quite sensitive to the misspecification of the variance. In 
particular, it is inadmissible for any a 2 > 1 and for almost every a 2 < 1. Such sensitivity 
of 5r (X) in the restricted problem exhibits a striking contrast to the robustness of X 
in the unrestricted problem. 

The additional contributions of our article are the following. 
(i) As far as we know, the Sacks-Brown complete class theorem has been applied 

only to show the inadmissibility of non-differentiable estimators, for example, the James- 
Stein positive-part estimator on the estimation of a multivariate normal mean. Our work 
is the first at tempt at determining whether an estimator having infinite differentiability 
is admissible. 

(ii) We demonstrate that  classical complex and asymptotic analysis can be a very 
powerful tool in discussing statistical estimation problems. 

2. Minimaxity 

In this section, we consider the minimaxity of 5r (X) given by (1.1) when the true 
variance is not 1. First we derive a sufficient condition for minimaxity when the true 
variance is ~2. For an estimator of the form 5r -- X + r  with lim=__,~ r = 0, 
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the difference 

( 2 . 1 )  

in risks between X, which has constant minimax risk, and 6r is 

a = R(0, X) - R(0, 5r 

F = ~ { ( x  - o)  ~ - ( x  + r  - o ) ~ }  e x p { - ( x  - O ) ~ / ( 2 ~ , ~ ) } d x  
O 0  

= c cr -~{ + r + t) - O)2}dt exp{- (x  - O)2/(2a2)}dx 

= 2c  r  + t ) ( x  + r  + t)  - o)  e x p { - ( x  - O)~/(2~)}dxdt 
O(3 

/?/o = 2c r - t + r  - O) e x p { - ( w  - t - O)2/(2a2)}dwdt 
O 0  

where c = (27ra2) -1/2 and 

(2.2) r (w, O) = f ~  (t - w + 9) exp{-( t  - w + O)2/(2~r2)}dt 
J o  exp{- ( t  - w + O)2/ (2cr2) }dt 

(2.3) --~2 (j~0CCexp ( -  ~ 2  q- t2 t(w--_cr -~ 0)]~ dr) -1 

By (2.3), ~2~2 (w, 9) is increasing in 0 and hence %b,2 (w, 0) > %br (w, 0) for 0 > 0. Let 
~b~2 (w) = ~b~2 (w, 0). Hence A is nonnegative for any 0 > 0 when r is nonincreasing 
and r < r (w). Noting that limw__.~ r (w) = 0, we have the following result, 
which is almost the same as one in Kubokawa (1999). 

THEOREM 2.1. For X ..~ N(O,a 2) with 0 >_ 0, 6r = X + r  is minimax if 
r is monotone decreasing (or nonincreasing) and 0 < r < r (w). 

Using Theorem 2.1, we have the following result on the minimaxity of 6r (X) given 
by (1.1). Note that r corresponds to r  with ~2 = 1 because, by (2.2), r 
is also written as 

( 2 . 4 )  
f 2 ~  t exp{- t2  / (2a2) Idt 

c~2 (w) = f.,_~ exp{_t2/(2a2)idt  

THEOREM 2.2. The estimator 5r (X) is minimax if and only if the true variance 
a 2 is greater than or equal to one. 

PROOF. The function r (W) is monotone decreasing because 

d~ r (w) exp{ -w2 /2}  f~_~(w - t) exp{ - t2 /2}d t  
{f:wo~ exp{-  t 2/2 }dt }2 

< 0 .  

The function r176 (w) is increasing in a 2, as shown in the lemma below. When ~2 > 1, 
we have r (w) < r (w) for all w and hence 6r (X) is minimax. When a 2 < 1, we have 
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el(W) > r (W) and from the right-hand side of (2.1), R(0, 6r (X)) > R(0, X),  which 
implies that  5r (X) is not minimax. 

The following lemma is used in the above proof. 

LEMMA 2.1. The function r is monotone increasing in a 2. 

PROOF. Let ~ = a 2. The derivative of Cn(w) with respect to r/is calculated as 

0r f"-~ t2e-t'12ndt ,~-oo te-t '12ndt-  J~-~ t3e-t'12ndt f~-oo e-t212~dt 
o n  ( w ) =  - - 2r#2 { f ,  ~oo e-t212ndt} 2 

The correlation inequality implies that  the derivative (ocn/orl)(w) for w < 0 is nonneg- 
ative because the function t 2 is monotone decreasing for t < 0. Next we consider the 
case w > 0. Letting Z(x) = (27r) -1/2 exp( -x2 /2 )  and P(x) = fx_oo Z(t)dt, we have 

f~_2/2w t exp(-t2/2)dt 

Because P(x) is expressed as the power series 

_Z(r#-ll2w) 
- =  . 

1 r162 X 2n+1 
P(x) = -~ + Z(x) E (2n + 1)!!' 

n = 0  

(see e.g., Abramowitz and Stegun (1964)), Z(x) /P(x)  is monotone decreasing for x > 0. 
Hence Cn(w) is increasing in r/. 

3. Admissibi l i ty 

As was explained in Section 1, Sacks (1963) showed that any admissible estimator 
should be generalized Bayes in this estimation problem. Under the quadratic loss func- 
tion, the generalized Bayes estimator with respect to the prior measure T(O) is written 
a s  

where 

f0 ~ 0 e x p { - ( X  - O)2/(2a2)}dT(O) d 
f0~ e x p { - ( X  _ O)2/(2a2))dv(O ) = X + a 2~-~ logmB(X) ,  

B L ~ m r (x) = e x p { - ( x  - 0)2/(2o'2)}dT(0). 

Brown (1971) extended the complete class theorem to the multiparameter case and pre- 
sented a powerful sufficient condition for a generalized Bayes estimator to be admissible. 
The sufficient condition in our setting is stated as follows. 

THEOREM 3.1. The generalized Bayes estimator with respect to re(O) is admis- 
sible if a2(d/dx)logmB(x) is uniformly bounded for x >_ 0 and if the two integrals 

S (x ) - ldx  diverge. f l  rn~(x) - ldx  and f-_-~ m~ 
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The est imator 5r (X) is rewrit ten as X + ~2(d/dX)logml(X), where 

--2 (// ml(X) = e x p ( - ( x  - 0)2/2)d0 

As we have asymptot ic  representations, for c~ = a -2, 

{ v ~  + o(1) 
m l ( x ) l / a  = e x p ( - x 2 / 2 ) ( - x ) - l { 1  + o(1/x)}  

x ----+ oo) 

(X --~ --OO), 

which are special cases of (4.4) and (4.3) in Section 4, respectively, bo th  f~o ml (x)-ldx 
and f--loo ml (x)-]dx diverge. Moreover, ~r2(d/dw)log ml  (w), which is equal to r (w), is 
uniformly bounded for w > 0 because l i m ~  r = 0. Therefore, by Theorem 3.1, 
if 5r (X) is generalized Bayes, tha t  is, if there is a nonnegative measure r such tha t  

f0 ~ 
ml(x) = e x p { - ( x  - O)2/(2a2)}dr(O), 

then  it is admissible. This is equivalent to the condit ion tha t  the  function f(x) ~ for 
ce = a -2 ,  where f(x) is given by (1.2), cam be expressed as the Laplace t ransform of a 
nonnegative measure, say, G(t): 

(3.1) 

Indeed, if (3.1) holds then we have 

m,(x) = exp{-2/(2~r2)} (fo ~176 

~0 ~176 
f (x)  ~ = e-X~dG(t). 

\ o~ 
exp(x8 - 02/2)d0) 

// = e x p { - : c 2 / ( 2 c ~ 2 ) }  exp(zt)da(t) 

// = e x p { - 2 / ( 2 o 2 ) }  exp(zc~O)da(c~O) 

/o = e ~ p  - ( ~  - 0 ) ~ / ( 2 ~ D I a ~ - ( 0 )  

where dr(0) = exp(at92/2)dG(aO). 
If a is a positive integer, {(2/Tr)l /2f(x)}a i s  a moment  generat ing function of the 

o~ distr ibution of Z = Y~-i=I Y/where  Y1,.. �9 , Ya are independent  random variables having 
a probabil i ty density (2/7r) 1/~ exp(-y2/2)I(o,oo)(y). Therefore 5r (X) is admissible when 
a -2 is a positive integer. 

Next we consider the case where a is not  a positive integer. Taking the inverse 
Laplace t ransform of (3.1) yields 

dG(t) = g(t)dt, 

where g(t) is given by (1.3). Hence, if such a nonnegative measure G(t) as in (3.1) exists, 
then  the function g(t) must be nonnegative.  In Section 5, however, we will show tha t  
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the function g(t) for non-integer c~ oscillates between positive and negative values for 
sufficiently large t > 0 and therefore cannot  be nonnegative for all t > 0 (see Theorem 
5.1). This means tha t  when cr -2 is not a positive integer, 5r (X) is not generalized Bayes 
and hence is inadmissible. 

THEOREM 3.2. The estimator 5r ( X )  is admissible if and only if a -2 is a positive 
integer for the true variance a 2. 

4. Laplace transform 

We discuss some function-theoretic properties of the function f ( z )  in (1.2), which 
is the Laplace t ransform of the Gaussian function e -x2/2. It is easy to see tha t  f ( z )  is 
an entire function satisfying the functional  equat ion 

(4.1) f ( z )  + f ( - z )  = v ~ e  z2/2, 

as well as the first-order inhomogeneous linear differential equation 

(4.2) f l (z)  = z f ( z )  - 1. 

As for the asymptot ic  behavior of the function f ( z ) ,  Watson's  lemma (see e.g., w 
of O1ver (1997)) yields a uniform asymptot ic  representat ion 

oo  

(4.3) f ( z )  ,~ E ( - - 1 ) n ( 2 n  -- 1)[!z -2n-1 
r t = 0  

as z ~ oc in any proper subsector of the sector [ argz[ < 37r/4, where we set ( -1)!!  = 1 
by convention. Because the change of variable z H - z  takes the sector [ argz[ < 37r/4 
onto the sector 7r/4 < a rgz  < 77r/4, the asymptot ic  formula (4.3), together wi th  the 
functional equation (4.1), leads to another  uniform asymptot ic  representation 

o o  

(4.4) f ( z )  -- X / ~ c  z2/2 ,~ E ( - - 1 ) n ( 2 n -  1)!!Z -2n-1 
n~-=0 

as z --+ oc in any proper subsector of the sector 1r/4 < arg z < 71r/4. Note tha t  formulas 
(4.3) and (4.4) cover asymptot ic  behaviors as z -~ cc in every directions. They  imply 
tha t  f ( z )  is an entire function of order two. 

The following information about  the zeros of f ( z )  will be impor tant  in the sequel. 

LEMMA 4.1. (i) The function f ( z )  has infinitely many zeros. Each zero, say, w, 
has the derivative f l (w) = - 1  and hence is simple. 

(ii) The function f (z )  has no zeros on the closed half-plane Re z >_ 0 or  on the 
closed sector 37r/4 < arg z < 57r/4. 

(iii) The function f ( z )  has at most finitely many zeros outside the sectors 3~r /4 -5  < 
]arg z I < 37r/4 for any 0 < 5 < 37r/4. 

PROOF. Assertion (i): Assume the contrary, tha t  f ( z )  has at most  finitely many  ze- 
ros. Because f ( z )  is an entire function of order two, Hadamard ' s  theorem (see e.g., Chap- 

ter 5, w of ahlfors  (1979)) implies tha t  f ( z )  can be represented as f ( z )  = e~Z2+VZp(z) 
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with some complex numbers  u, v and a polynomial  p(z).  On the other  hand, the asymp- 
totic formula (4.3) implies tha t  f ( z )  = O(1 / z )  as z --~ oo in any proper  subsector  of 
the sector l arg z I < 3~ /4  and hence one must  have u = v = 0 and p(z) - 0, which is 
a contradict ion.  Hence f ( z )  has infinitely many  zeros. It follows from the differential 
equat ion (4.2) tha t  f ' ( w )  = - 1  at each zero z = w. In par t icu lar  the  zero w is simple. 

Assert ion (ii): If z is real, the  integrand of (1.2) is posit ive and so is f ( z ) .  P u t  
z = ~ + i~. It  follows from (1.2) tha t  

Im f ( z )  = - e  ~ /2  e -(x+~)2/2 sin(~x)dx. 

If ~ = Re z is nonnegat ive  then  the funct ion e -(x+~)2/2 is s t r ict ly decreasing in x _> 0. 
Hence the a l te rnat ing  series test  implies tha t  if r; = Im z is positive (negative) then  so is 
the negative of Im f ( z ) .  Therefore  f ( z )  has no zeros on the closed half-space Re z _> 0. 
To show tha t  f ( z )  has no zeros on the sector 37r/4 < arg z _< 57r/4, we notice tha t  (1.2) 
yields 

~000 ~000 2 I f ( - z ) [  < e-X2/2+(Rez)Xdx < e -x  /2dx = V/~/2 for R e z  < 0. 

This es t imate  and the functional  equat ion (4.1) lead to  an es t imate  

If(z)l  ~ vZ~leZ~/2l- I f ( - z ) l  ~ v / ~ -  v/-~/2 : v/-~//2 > 0 

on the sector 3~ /4  < arg z < 5~r/4. Hence Assert ion (ii) is proved. 
Assertion (iii): The  asympto t ic  formula (4.3) implies tha t  f ( z )  = 1/z  + O ( 1 / z  3) as 

z ---, c~ in the sector [arg z I _< 37r/4 - 5. Hence f ( z )  has at most  finitely many  zeros 
there. Then,  in view of Assert ion (ii), we have Assert ion (iii). 

Let  {Zn}nC~= 1 be the zeros of f ( z )  in the  upper  half-plane Im z > 0, total ly  ordered so 
tha t  m < n implies ei ther  (i) Re Zm > Re zn, or (ii) Re Zm = Re zn and Im Zm < Im zn. 
Because f ( z )  is a real ent ire  function, the zeros of f ( z )  consist of {zn}~_l  and thei r  
complex conjugates  {hn}n~176 . We pu t  

Zl = a + ib, 

where a < 0 and b > 0 (see Fig. 1 in Section 5). 

Remark 1. Let  m > 1 be the unique integer such tha t  

(4.5) Re zl . . . . .  Re zm = a > Re zm+l. 

Numerical  computa t ions  s trongly suggest t ha t  m = 1, a l though it has not  been logically 
established. Hereaf ter  we shall assume tha t  m = 1 is the case. This  assumption is not  
essential for our  discussion, bu t  is made  only for simplicity of presentat ion.  At the end 
of the next  section, we shall indicate how to modify  the argument  if m happens  to be 
greater  t han  one (see Remark  2 in Section 5). 
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5. Inverse Laplace transform 

We consider the inverse Laplace t ransform g(t) in (1.3) of the function f ( z )  ~ with 
a > 0, where f ( z )  is defined by (1.2). We are only interested in the case where c~ is 
not  a positive integer as we have already t reated the positive integer case in Section 3. 
Take a real number  c such tha t  a < c < 0, as indicated in Fig. 1. Note tha t  f (c )  > 0 by 
(1.2). Then the branch of the multi-valued function f ( z )  ~ is specified by f (c )  a > 0 at  
the point z = c. 

We specify the contour of integration F in (1 �9 Usually, the contour of integrat ion 
of an inverse Laplace t ransform is chosen to be a suitable line parallel to the imaginary 
axis. In the current si tuation,  such a choice is feasible when a > 1/2. One can take F to 
be the vertical line passing through the point c, as indicated in Fig. 1 (left). Indeed, the 
asymptot ic  formula (4.3) implies tha t  f ( z )  ~ -- O(z  -a )  as z --~ oc along _P and hence, if 
a > 1/2, then f ( z )  ~ is square integrable on F and the integral (1.3) converges in the 
mean.  Wi th  this choice of F ,  however, the integral is divergent when 0 < c~ < 1/2. To 
cover this case also, we should replace the line F by a contour as in Fig. 1 (right), which 
is the union of two rays meeting at  c, slightly inclined toward the negative real axis, 
and lying to the right of all the zeros of f ( z ) .  Because the integrand f ( z ) ~ e  zt of (1.3) 
is exponential ly decreasing along the new contour, this replacement makes the integral 
(1.3) absolutely convergent for every a > 0, wi thout  changing the values of (1.3) for 
a > 1/2 by Cauchy's  integral theorem. Thus, from the beginning, we may and shall 
assume tha t  F is the contour as in Fig. 1 (right). 

To investigate the asymptot ic  behavior of the function g(t) for sufficiently large 
t > 0, we modify the contour of integration F ,  via the one in Fig. 2 (left), to 7 + ( - 9 )  + F '  
in Fig. 2 (right). Here 7 is a loop tha t  s tar ts  and ends at zl + ei~ wi th  an angle 0 such 
tha t  Ir/2 < 0 < 37r/4 and encircles the first zero zl in the positive direction, and - 9  is 
the complex conjugate of 7 with orientat ion reversed. The contour F'  consists of a line 

�9 TT , o z  
%. �9 

"'"-~_e F 

..�9 ~ . . . . . . .  b 
�9 - "Q 21 

�9 z3 

".z2 
%0 

" " ' " ' i ' " " "  

�9 ," z3 

Fig. 1. Contour of integration F. 

b I m z  

- b  

Rez 
P 
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" " . . .  

" % 0  

F "" 

""""  

.'" Z3 

Imz 

~ z  

0 

- b  

". Z3 

�9 .. �9 ~ ~ .  
%@ 

/.,~ .. : 

o . 

~ ")' 

�9 0 ,[1 

' 7 / - '  
Fig. 2. Modification of the contour F. 

Iraz 

B ~ z  

segment on the vertical line Re z = d with d < a and two rays parallel to 7 and - 9 ;  it 
2 oo should be located to the right of the remaining zeros {Zn, n}n=2. This modification of 

/ '  leads to a decomposit ion 

(5.1) g(t) = h(t) + h(t) + H(t), 

where the functions h(t) and H(t) are defined by 

1 ~  1It f(z)~eZtdz ' (5.2) h(t) = ~ y(z)~e*tdz, H(t) = ~ , 

and ft(t) is the complex conjugate of h(t). We shall investigate h(t) and g( t )  separately 
and see tha t  the asymptot ic  behavior of g(t) for sufficiently large t > 0 is controlled by 
h(t) + h(t). Let us first t reat  the minor term H(t). 

LEMMA 5.1. There is a constant M, independent oft ,  such that 

(5.3) Ig( t ) l  <_ Me dt (t >> 1). 

PROOF. If  we put  H(t) = K(t)e  at, then  

1 /r  f(z)~e(z-d)tdz" K(t) = ~ , 

The asymptot ic  formula (4.3) implies tha t  f ( z )  is bounded on F '  so tha t  there is a 
constant  g such tha t  ]f(z)] ~ <_ N on F ' .  Hence for any t > 1, 

/; NfreRe(z-d)ldzl=:M<+ , N eRe(z_d)t]dz ] < I K ( t ) [  _< ~ , _ , 
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where we used the fact t ha t  Re(z  - d) _< 0 on F ~. This  proves the lemma. 

We proceed to the invest igat ion of the principal  t e rm h(t). Recall  tha t  it is only 
necessary to consider the  case where c~ is not a posit ive integer. 

LEMMA 5.2. There exists an asymptotic representation as t --* +oc, 

(5.4) h(t) - sin(~c~) F ( a  + 1) exp (z l t  - i~a) t  - ~ - 1 { 1  + O(1/ t ) } .  
7Y 

PROOF. The  funct ion f ( z )  has a simple zero at z = zl wi th  derivative f ' ( z l )  = - 1 ,  
so the function f ( z )  ~ is expressed as f ( z )  a -= ( Z - Z l ) ~ { e i ~ + O ( z - z l ) }  in a ne ighborhood 
of z -- zl ,  and hence is mult i -valued across the branch cut  L = {z ~ Zl + xe i~ : 0 < x < 
r By the change of variable z = Zl + we i~ the  first integral  in (5.2) is conver ted to 

(5.5) h(t) -- exp (z l t  + iO) f~  
2i~ , r  exp(wei~  

where r  = f ( z l  + weie) a and ~/' = g~- + CE + g+ is the loop indicated in Fig. 3. Here 
g~ = {x + i0 : e _< x < co} are half-lines directed as in Fig. 3 and CE is the circle of 
radius c, centered at  the  origin, d i rected anti-clockwise. Th e  funct ion r  is expressed 
as r  -- T h e ( w ) ,  where r  is a single-valued holomorphic  funct ion having a Taylor  
expansion r  = co + c lw  + c2w ~ + .- .  with Co = e i~(~ Th e  branch of r  is 
chosen so tha t  w a is posit ive on the half-line g~-. Th e  mult i-valuedness of r  across 
the branch cut  0 < x < c~ is given by r  + i0) = e - 2 i r a r  - i0) --- e -2 i~ar  where 
x - i0 is identified wi th  x. This  yields 

f~, r 1 7 6  = /c~ r176  

+ (1 - e r  exp(xei~ 

Because ct > 0, the first integral  in the r ight-hand side tends to zero as e ~ 0. Hence, 
by let t ing e ~ 0, (5.5) becomes 

h(t) = exp (z l t  + iO) (1 - e -2 i '~)  r  exp(xe i~  
2i~r 

(5.6) _ sin ~-______~_~ exp (z l t  + iO - i~ro~) r  exp(xe~~ 
7r 

C~ 

D 

2[ 

Fig. 3. The loop "/'. 
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On the other hand, Watson's lemma in asymptotic analysis (see e.g., w of Olver 
(1997)) yields 

ff'o ~ r = - c o e - i ~ a F ( a  + 1) s -~ -1{1  + O(1 / s ) }  

as s --~ oc in any proper  subsector  of the  sector [ arg s - 7r[ < 7r/2. Note  that  the  ray 
s = ei~ t > 0, lies in this sector, because zr/2 < 0 < 3zr/4. Subst i tu t ing  the above 
formula into (5.6) and using co = e ~(~ we obta in  (5.4). 

Pu t t ing  Lemmas  5.1 and 5.2 together,  we have the following: 

THEOREM 5.1. There exists an asymptotic representation as t ---* +0% 

(5.7) g(t) -- M ~e a t t - ~ - l { c os (b t  - 7ca) + O(1/ t )  }, 

where M s  = - 2  sin(zca)F(a + 1)/7r. In particular, for  sufficiently large t > 0, the real 
funct ion g(t) oscillates between positive and negative values. 

PROOF. Subs t i tu t ing  (5.3) and (5.4) into (5.1) and using zl = a + ib, we obta in  

g(t) = ( M a / 2 )  exp(z l t  - izrc~)t-a-l{1 + O(1/ t ) }  

+ exp( lt + + O(1 / t ) }  + O(e d') 
= M~eatt  -~ -1  cos(bt - zca) + O(e~tt -~ -2 )  + O(e dr) 

= M ~e a t t - ~ - l { c os ( b t  - zra) + O(1/ t ) } .  

Here the last equali ty follows from O(eatt -~ -2 )  +O(e  dr) = O(ea t t -a -2) ,  which is because  
of the  inequali ty d < a. Hence formula (5.7) is proved. The oscillation p roper ty  of g(t) 
readily follows from (5.7). 

Remark  2. Theorem 5.1 was establ ished under  the assumption tha t  m -- 1 in (4.5) 
(see Remark  1 in Section 4). If rn __ 2, formula (5.7) should be replaced by 

where zj = a + ibj for j = 1 , . . .  ,rn with bl < . ' -  < bin. In this case, the oscillation 
proper ty  in Theorem 5.1 also remains t rue for the  function g(t). 
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