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A b s t r a c t .  For location families with densities fo(x - 0), we study the problem 
of estimating 0 for location invariant loss L(O,d) = p ( d -  0), and under a lower- 
bound constraint of the form 0 > a. We show, that  for quite general (f0, p), the 
Bayes estimator Sv with respect to a uniform prior on (a, oc) is a minimax estimator 
which dominates the benchmark minimum risk equivariant (MRE) estimator. In 
extending some previous dominance results due to Katz and Farrell, we make use 
of Kubokawa's IERD (Integral Expression of Risk Difference) method, and actually 
obtain classes of dominating estimators which include, and are characterized in terms 
of 5v. Implications are also given and, finally, the above dominance phenomenon is 
studied and extended to an interval constraint of the form 0 C [a, b]. 

Key words and phrases: Lower-bounded parameter, location family, constrained pa- 
rameter space, minimax estimation, minimum risk equivariant estimator, dominating 
estimators. 

1. Introduction 

Consider  est imating,  under  loss L(O, d) -- p ( d -  0), based on one observat ion X,  
the pa ramete r  0 of a location family wi th  probabi l i ty  densi ty functions of the form 
fo (x )  -- f o ( x  - 0), with known f0. For an uncons t ra ined  pa rame te r  space ( - c ~ ,  c~), the 
min imum risk equivariant  (MRE) es t imator  is, under  mild conditions,  uniquely given by 
5o(X)  -- X + co, where co minimizes in c the constant  risk R(O, X + c) = E o [ p ( Z  + c)] 
(see for instance Lehmann  and Casella (1998), Chap te r  3, for a presentat ion) .  Also, the 
representa t ion  of the MRE as the generalized Bayes es t imator  wi th  respect  to the right 
invariant Haar  measure ~-(0) = 1; (see L e m m a  2.3, pa r t  (c)) is well known, and will play 
a pivotal  role in our  results, as well as their  in terpre ta t ion .  

The  first par t  of this paper  (Sections 2, 3 and 4) is concerned wi th  the  es t imat ion 
framework above, but  for a res t r ic ted pa rame te r  space of the form O = [a, ~ )  with a 
known. For est imators  wr i t ten  in the form 5h(X)  ---- 5o(X)  + h ( X ) ,  we produce  simple 
conditions on h for 5h to domina te  5o. Namely, these condit ions are fundamenta l ly  
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related to the generalized Bayes estimator 5u  associated with the uniform prior density 
ra  (0) = [0 > a], which is shown as well to dominate 50. 

Although 50 produces implausible estimates in taking values outside the paramctcr 
space In, c~), it serves as a useful benchmark for assessing estimators in our truncated 
parameter space problem. More precisely, we establish in Section 4 that, for quite general 
location family fo  and continuous bowl-shaped loss, the MRE estimator's constant risk 
matches the minimax risk which implies, in such situations, that  dominating estimators 
of 60 are necessarily minimax. We initially thought this result may have been known, 
but  to our knowledge the strongest result in this direction is due to Farrell (1964) and 
applies (only) to cases where p is strictly convex. 

For the normal case with squared-error loss (i.e., p ( y )  - -  y2 ) ,  Katz (1961) showed 
that the generalized Bayes estimator 5u dominates 50(X) (which is X here), and is 
a minimax and admissible estimator of 0. For the general model f0, Farrell (1964) 
established: (i) the minimaxity of 6u (and hence (ii) domination of 50) under general 
strictly convex loss p, and (iii) the admissibility of 5g under squared-error loss p. For 
the particular case of an exponential location model with f o ( x )  - -  s  > 0]; with 

tT  

known a, Parsian and Sanjari Farsipour (1997) gave a proof of (i) and (ii) and established 
(iii) for Linex losses p ( y )  = e '~y - d y  - 1 with d r 0 and d < 2 

The dominance results given in Theorem 3.1 and Corollary 3.1 not only extend 
Farrell's result (ii) to strictly bowl-shaped loss for families of densities f o  with a strict 
monotone likelihood ratio property, but  also provide explicit classes of dominating es- 
timators. We also: (a) obtain an alternative proof of Farrell's result (ii) for strictly 
convex loss p, (b) obtain a version of these dominance results for convex loss and strictly 
positive densities f o ,  and (c) show how various implications follow from our conditions 
for dominance (i.e., Remark 3.1 and Theorem 3.2). Finally, as previously mentioned, we 
extend in Section 4 Farrell's minimax result (i) for general location families to general 
bowl-shaped loss. 

The key technique used in the derivation of our dominance results is Kubokawa's In- 
tegral Expression of Risk Difference ( I E R D )  method. Introduced by Kubokawa (1994a), 
and further illustrated by Kubokawa (1998, 1999), the method has proven useful in var- 
ious and diverse settings. In particular, the work of Kubokawa (1994b) and Kubokawa 
and Saleh (1994), involves restricted parameters and an approach similar to Section 3's. 
We note that our results are not limited to samples of size 1, and hold for a general loca- 
tion parameter family with density f ( xx  - O, x2  - 0 , . . . ,  Xn - O) provided the conditional 
distribution of x n  given the maximum invariant y --  (Xl  - x,~, x2  - x n , . . . ,  X n - 1  - Xn)  

satisfies the conditions required for f0 (a.e. y). Also, one of the key features of the re- 
sults below resides with the generality of the loss function and the family of distributions 
under study. 

The usefullness of Kubokawa's I E R D  method is further illustrated in Section 5 where 
we consider parameter spaces which are intervals; of the form I -m,  m] without loss of 
generality. Again here, our dominance results involve the Bayes estimator associated 
with a uniform prior on the parameter space, which is shown to dominate the MRE 50 
for general strictly convex loss p and general location families. A discussion of related 
historical developments and implications is relegated to Section 5. 

We now proceed in Section 2 in specifying some further notations and assumptions, 
as well collecting some properties for later use. 
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2. Preliminaries and notations 

Throughout ,  we work with  loss functions of the form L(O,d) = p(d - 0), with 
absolutely continuous strictly bowl-shaped p, which we characterize (without  loss of 
generality) by the properties: p > 0; p(0) = 0, p'(u) < 0 for u < 0, p'(u) > 0 for u > 0. 
We also work with loss functions p such tha t  the associated M R E  5o (X) = X + co has 
finite risk. 

It is convenient to define C as the following class of estimators.  

DEFINITION 2.1. Let C = {hh : 5h(X) = 5o(X) + h(X)  with h absolutely continu- 
ous, nonincreasing, and limt--.oo h(t) = 0}. 

Except for those estimators considered in Section 5, all the est imators considered 
will belong (or be shown to belong) to the class C. Moreover, these properties of the 
class C will imply tha t  we are working with i.e. differentiable functions h, as in part  (i) 
of Theorem 3.1. Finally, to assure the validity of the interchange of limit and integration 
in part  (a) of Lemmas 2.3 and 5.1, we assume there exists a function k such tha t  IP'(Y)[ < 
k(y), and f ~  k(z) fo(z)dz  < oc. 

Now, we pursue with two technical lemmas concerning functions wi th  a sign change. 
We will say tha t  a function g changes sign from - to + ,  if there exists on its domain 
a pair of values co and c~ with  co _< c~) such tha t  g(x) < 0 for x < Co, g(x) > 0 for 
co _< x _< c~), and g(x) > 0 for x > c~. 

LEMMA 2.1. Let X be a continuous random variable with density f .  Let g be a 
non-constant real valued function, continuous almost everywhere, that changes sign from 
- to + on the support of X .  Then, for  any pair Cl, c2 such that Cl > c2, P ( X  < c2) > 0, 
and P(c2 < X < cl) > O; it follows that 

E[g(X)  I x _~ Cl] < 0 ==~ E [ 9 ( X  ) I X  < c2] < 0. 

PROOF. First if g(c2) < 0, the result is immediate.  Now suppose g(c2) > 0, and 
define I(c) = f(-~,c]  g(x) f (x)dx .  Since g(x) > 0 for x E (c2, c1], we obtain I (c1)-I (c2)  = 

f(c2,cl] g (x ) f (x )dx  > O. It then  follows tha t  I(c2) _< 0 wi th  I(c2) = 0 only possible if 

I (e i )  = 0 and g(x) = 0 for x E (c2, el]. But  these conditions would imply g(e2) = 0, 
and coupled with the condition I(c2) = 0 would lead: P(g (X)  = 0 I X  < c2) = 1, thus 
contradict ing the sign change assumpt ion on g. Hence I(c2) < 0 and the s ta ted result 
follows. 

LEMMA 2.2. Consider a family of  continuous distributions with strict monotone 
likelihood ratio (MLR) in X with 0 being the parameter; (and hence strictly positive 
densities fo on ~). Suppose g is a function that changes sign once on the real line from 
- to +, and suppose cl and 01 are such that either 

g(cl) > 0 and /c__~g(x) fol(x)dx<O, or / C _ l g ( x ) f o l ( x ) d x = O .  

Then, for  all 0o < 01, we must have 

f [ '   (x)fOo(X)dx < o. 



132 I~RIC MARCHAND AND WILLIAM E. STRAWDERMAN 

PROOF. Set co as a point  where g changes sign, and note tha t  we must  have Cl >_ CO 
given the  characterizat ion of cl. Now observe tha t  

0>_ L g(x)fol (x)dx = L g X]oo(X)fooxdx()-=--z--v()f~ (x) + ~Clo g'x) f e - - ~  (x) , (x)dx 

f co (eo) (Co) 
> g ( x ) ~ f o o ( x ) d x + ~ '  ~ g ( x ) ~ f e o ( X )  dx 

- foo(co)f~ f_ g(x)foo(x)dz, 
which yields the result. In the above expansion, note tha t  the second inequali ty is indeed 
strict  given the assumed M L R  proper ty  and the assumptions on g and fo which imply 
Poo[g(X) < 0 I X  < Co] > 0 and Poo[g(X) < 0 I X < co] = Poo[g(X) > 0 I Co < X < 
el] • 1. 

LEMMA 2.3. For general strict bowl-shaped loss p and a general location family of 
densities fo having a strict monotone increasing likelihood ratio, the generalized Bayes 
estimator 6u(X) = 6o(X) + hu(X) ,  associated with the prior density ~ra(0) = 110 > a]; 
a C ~ or a = -cr  satisfies the following properties: 

(a) Eo[p'(6o(X) + hu(t)) ] X < t - a] = 0, for all t C ~. 
(b) 5u e C.  
(c) When a = -co,  5u -- 50 (i.e., here 5u(X) = 5o(X) = X + Co). 

PROOF. (a) By definition, the generalized Bayes es t imator  5u minimizes the pos- 
terior risk, so tha t  it also minimizes in h(t), for all t C ~,  

fa(:x) f_~.-a p( t  + eo + h(t)  - O)fo(tldO = p(u + co + h(t))f0(u)d . 
O o  

Hence, by assumptions  on p, we must  have 

/~ -a p'(u + Co + hu(t))fo(u)du = O, 
o o  

or again Eo[p'(50(X) + hu(t)) I X _< t - a] = 0, as s tated.  
(b) Wi thou t  loss of generality, we set a = 0. We need to show (1) tha t  hu is 

nonincreasing with (2) limt__.~ hu(t) = O. 
(1) To show that  hu is nonincreasing, assume in order to arrive at a contradict ion 

that  there  exists t2 > tl such tha t  hu(t2) > hu(tl) .  From par t  (a), 

0 = Eo[p'(X + Co + hu(t2)) I X <_ t2] = Eh,(t2)[p'(X + Co) I X <  t2 + hu(t2)] 

> Ehu(tl)[p'(X + Co) I X < t2 + hu(t2)];  

with  the  inequali ty being a consequence of L e m m a  2.2, and assumpt ions  on p and fo- 
Now, if the  la t ter  inequali ty were actually true,  we could deduce from L e m m a  2.1 the  
implication: 

Ehu(tl)[p'(X + co) I X  <<_ t2 A- hu(t2)] < 0 ~ Ehv(tl)[p'(X-4- Co) I X <_ tl -4- hu(tl)] < 0, 
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which would contradict  the property  in part  (a) of this lemma, i.e., since Ehv(tl)[p'(X + 
co) ] x < tl  + hu(ti)] = Eo[p'(X + co + hu(t l))  I x < tl]. Therefore, hu(t2) <_ hu(t l )  
as claimed. 

(2) To show tha t  l i m t - ~  hu(t) = 0, we begin by showing tha t  we must  have hu >_ 
0. Coupled with the nonincreasing property of hu, this will permit  us to set as a 
contradiction: 

(2.1) lim hu(t) = c, with e > 0. 
t ----* O O  

So suppose tha t  hu(to) < 0 for some to. Proper ty  (a) of this lemma (with t = to) 
would then, in conjunction with  Lemma 2.1, imply Eo[p'(5o(X) + hu(t0))] > 0. But  
Eo[p'(5o(X) + hu(t0))] = Ehu(to)[P'(5o(X))], and the inequali ty Eh~(to)[p'(5o(X))] > O, 
in conjunction with Lemma 2.2, would imply Eo[p'(5o(X))] > 0, which would contradict  
properties (a) and (c) of this lemma. 

Hence, hu >_ O, and suppose now tha t  (2.1) holds, which would imply hu(t) >_ c for 
all t E ~.  Note tha t  the quant i ty  Eo [p'(5o(X)+c)] = E~ [p'(5o(X))] must  be positive since, 
otherwise, Lemma 2.2 would tell us (with Cl = co, 01 -- c, and 00 = 0): Eo[p'(5o(X))] < 
0, which is false given parts (a) and (c) of this lemma. But  if E~[p'(5o(X))] is positive, 

so must it be the case tha t  j ._t '  p'(5o(X))f~(x)dx is positive for a large enough t', and so 

must f t '+hu(t ')p'(5o(X))fhv(t ,)(x)dx be positive, given Lemma 2.2 and the assumption 
J - - o o  

hu(t ')  >_ c. Finally, this contradicts  part  (a) of this lemma. Hence, expression (2.1) 
cannot  be true and we must  have l i m t _ ~  hv(t)  = 0 as claimed. 

(c) This is well known. See for instance Berger ((1985), p. 410). 
To conclude this section, we should point out and prove tha t ,  under  the conditions of 

strictly bowl-shaped loss and of monotone likelihood ratio for the family fe of densities, 
the Bayes est imate 5u(to) is unique for all to E ~. This can be shown by contradict ion 
with the help of Lemmas  2.1 and 2.2. Suppose indeed, as required by part  (a) of L e m m a  
2.3, tha t  

f 
t o - - a  

(2.2) p' (5o(x) + ho(to) ) fo(x)dx = 0 
J - -  O 0  

where ho(to)-hu(to)  = c > 0 (the case e < 0 can be handled wi th  a similar development).  
Now, Lemma 2.2 can be applied to yield 

to-~ p'(5o(x) + ho(to))fr > O. 
( x )  

Then, 0 < [.to-a flt(50(x) + ho(to))f~(x)dx = f to-a-~ p'(5o(X) + hu(to))fo(x)dx,  and an 
J - - O O  d - - ~  

application of L e m m a  2.1 with c2 = to - a - e and Cl = to - a tells us tha t ,  if (2.2) were 

indeed true, then  ft_o~a p'(5o(x) + hv(to)) fo(x)dx > 0, which contradicts  the fact tha t  
5v(to) is the Bayes est imate for x = to. Therefore, the uniqueness of 5v follows. 

3. Main dominance results for the parameter space 0 -- {a, oc) 

THEOREM 3.1. For general strict bowl-shaped loss p and a general location family 
of densities fo having a strict monotone increasing likelihood ratio, either one of the 
following two conditions are sufficient for estimators 6h E C, 5h ~ 5o, to dominate 5o: 
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(i) Eo[pr(5o(X) + h(t)) I X <_ t - a] < 0; for  all t E ~; 
(ii) h < hu.  

PROOF. 

so that  

(i) Following Kubokawa  (1994a, 1998, 1999), we may  write 

p(5o(x) - O) - p(5o(X) + h(x) - 0) p(5o(x) + h(t) O) t=~ 

= p'(5o(x) + h(t) - O)h'(t)dt, 

Ah(e)  = R(e,  50) - R(e,  5h) 

I?L = p'(5o(x) + h(t) - t?)h'( t) fe(x)dtdx 
o o  

i? {i_L ) --- h'(t) p'(5o(X) + h(t) - O)fo(x)dx dt. 
o o  

Given that  h r < 0, the difference in risks Ah(O) will be  nonnegative whenever,  for 
all t E ~,  

Ee[p'(5o(X) + h(t) - 0) I X <_ t] <_ 0 

v:~ E o [ p ' ( X - O  +co + h(t)) ] X - O  <_ t - O ]  < 0  

(3.1) ~ Eo[pr(5o(X) + h(t)) I X < t - O] <_ O. 

Now since p'(5o(x) + h(t)) changes sign at most  once as a function of x from - to + 
on ( - ~ ,  c~), Lemma 2.1 tells us tha t  Ah(0) will be nonnegative for all 0 >_ a, whenever  
for all t E ~,  Eo[p'(5o(X) + h(t)) I X < t - a] < O. Now, observe that  for 5h E C with 
5h r 50, we must  have h ~ < 0 on a set of posit ive measure; so that ,  if condit ion (i) holds, 
Ah (0) > 0 for 0 > a by vir tue of Lemma 2.1. 

(ii) Here, we show tha t  (ii) implies (i). Defining I (u ,  v) = fu~a  p ' (5o(X)+v)fo(x)dx ,  
it will suffice to establish tha t  I ( t , h ( t ) )  <<_ 0 whenever  h(t) < ha(t). By sett ing T = 
h(t) - hv( t )  <_ 0, we use par t  (a) of L e m m a  2.3 to obtain 

f 
t - - T - - a  

0 = I( t ,  hv( t ) )  = I ( t ,  h(t) - T) = p'(50(X) + h ( t ) ) f_~(x )dx ,  
J - -  O 0  

and deduce, with the  aid of L e m m a  2.2, tha t  I ( t  - T, h(t)) < O. Finally, use L e m m a  2.1 
to obtain  the implication I ( t  - T, h(t)) <_ 0 ~ I ( t ,  h(t)) <_ 0, and the desired result. 

Par t  (a) of the following is now immediate  from Theorem 3.1 and L e m m a  2.3, while 
par t  (b) follows from the development  tha t  led to expression (3.1) and the uniqueness of 
the est imates 5v(t) .  

COROLLARY 3.1. Under the assumptions of  Theorem 3.1, 
(a) The generalized Bayes estimator 5u with respect to the uniform prior density 

7ra (0) -- 1[0 > a] dominates 50 on the parameter space [a, oo). 
(b) For estimators 5h E C satisfying either sufficient condition (i) or (ii) of The- 

orem 3.1, we have R(0, 5h) <~_ R(0, 50) for  0 >_ a, with equality i f f  5 h : 5 v and 0 = a. 
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Before moving on to further remarks and implications, we wish to point out that  
Lemma 2.3 (and the uniqueness of ~u), Theorem 3.1 and Corollary 3.1, which were 
established under the assumptions: 

(A) of a strictly bowl-shaped loss and a strict MLR family of densities re; 
also hold under the assumptions: 

(B) of a strictly convex loss p and a general family fe; 
or alternatively under the assumptions: 

(C) of a convex loss p and of strictly positive densities fo .  
The key observation is that  we may still make use of Lemma 2.1 and we can invoke, 

given that pt is increasing the stochastically increasing property in ~ of the family of 
distributions X I X < ~ (under re). In the case of assumptions (B), Corollary 3.1 is due 
to Farrell (1964), but  our proof differs and, as seen with its validity under assumption (A) 
or (C), permits to extend the result to more general losses for some families of densities 
f6. Furthermore, for all three sets of assumptions, Theorem 3.1 gives a novel and simple 
characterization of a class of dominating estimators of the MRE 50. 

R e m a r k  3.1. Further interesting implications follow from the benchmark estimator 
5u, which, ubiquitously, plays the same role in our dominance conditions irrespective of 
loss p and location family f0 being considered. For instance, the dominance result of 
part (ii) of Theorem 3.1 is simply stated as: if 6 E C (5 r 60) and 6 < 6u, then 6 
dominates 50. Examples include the truncation of 50 onto the parameter space [a, co), 
the generalized Bayes estimators (say 6U, b) with respect to uniform priors on [b, co), with 
b < a; as well as their truncations max(6U, b, a). On the other hand, we may infer from 
part (b) of Corollary 3.1 the following condition for non-dominance: if 5 t > 6u (with strict 
inequality on some set of positive probability when 0 = 0), then R ( a ,  5') > R ( a ,  60), and 
such an estimator 5 ~ neither dominates 50, nor is minimax. This latter situation arises 
for instance when we consider 6 ~ = 6g, b with b > a. 

Finally, observe from part (b) of Corollary 3.1, that 6g fails to dominate any other 
of the dominating estimators of Theorem 3.1. In particular, 5u does not dominate t h e  
truncation of 50 on the parameter space [a, co), which corresponds to the maximum 
likelihood estimator for symmetric and unimodal densities re. This latter observation 
has previously been observed in the normal case with squared-error loss (see Rukhin 
(1990)). 

E x a m p l e  3.1. For squared-error loss, the generalized Bayes estimator is given by 
5 u ( x )  = x - E o [ Z  I Z <_ x - el while the MRE is given by 5o(X) -- x - Eo[X]. For 
absolute value loss, the estimators become 5 v ( X )  = x - Mediano[X I X _~ x - a] and 
50(x) = x - Median0 IX]. These expressions can be derived from part (a) of Lemma 
2.3; and Corollary 3.1 tells us that  5u dominates 60 in both situations for strict MLR 
families of densities fo .  The dominance of 5u over 50 for squared-error loss also holds 
for a general location family (subject to risk-finiteness of 50), while the dominance in 
the absolute value loss case also holds for a general location family with strictly positive 
densities (see points (B) and (C) raised following Corollary 3.1). 

Now, let us write 5U, po and 60,po to emphasize the association between our general- 
ized Bayes estimators and our MRE's  with the loss P0. Observe that  5g, p o belongs to the 
class C for any (other) p, and therefore will also dominate 60,po for other loss functions 
p as long as condition (i) of Theorem 3.1 is satisfied. Motivated by this idea, we state 
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and prove the following result which may be viewed as either providing dominating esti- 
mators of 50,po under convex loss function Pl, or as providing a class s of convex losses 
such that a given estimator 5 h C C dominates 50,po simultaneously for all losses in s 

THEOREM 3.2. An estimator 5h E C which satisfies sufficient condition (i) of 
Theorem 3.1 in dominating the M R E  5O,po under convex loss Lo(d, 0) = po(d - 0), also 
dominates 5O,po under all losses LI (d, ~) = Pl (d - O) for  which 

(3.2) pi(y) p (y) - -  is nonincreasing in y, y E ~ .  

PROOF. We show that, with condition (3.2), W ( p l )  < O, where W(p)  = 
Eo[p'(5o(X) + h(t)) I X  < t - a]. Indeed, for such losses pl, 

[pi(50(z) + h(t)) "5 "'" ] 
W(pl) = Eo [p~o(5o(X) + h - - ~ p o (  o ( ~ )  + h(t)) [ X < t - a 

J 

< W(po)Eo [p~(50(X) + h(t)) ] 
- [p~o(5o(X) + h(t)) I X  <- t - a 

_< 0, 

given: (i) condition (3.2) and the convexity of P0; (ii) that Pl(Y) and Po(Y) are both 
strictly bowl-shaped implying that  p~ (y) and p~ (y) have matching signs (for all y E ~); 
and (iii) W(po) <_ 0 by assumption on 5h under loss P0- 

pi(~). Example 3.2. Note that if both P0 and Pl are symmetric, then so is the ratio p~(y), 

whence the impossibility of (3.2) whenever Pl ~ P0. However if either P0 or Pl is not 
symmetric, then we can entertain the possibility of (3.2) being satisfied. Suppose for 
instance that P0 is L p loss with p > 1 (i.e., Po(Y) = lYlP). Then (3.2) is satisfied for 
asymmetric losses of the form Pl(Y) -- lYl pl [Y <_ 0] + lyl p2 [y > 0] with P2 <_ P _< Pl- For 
the particular case where P0 is squared-error loss, the class of losses Pl which satisfy 
(3.2) include losses for which p~ is concave, as well as losses for which p~ is concave on 
( -c~ ,  0) and Pl is concave on ( 0, c~). An interesting subclass of losses for which p~ is 
concave consist of Linex type losses of the form Pl (Y) -- e dy - dy - 1 with d < 0. More 
generally, it is possible to show that,  for strictly convex Po, the concavity of Pl(Po~ ~-1) 
is sufficient for (3.2) to hold. Finally, observe again that the above inferences of this 
example are applicable for general strictly positive fo (see point (C) above). 

We conclude this section by pointing that our work does not address the interesting 
issue of the admissibility of the estimator 5u (but recall Farrell's general admissibility 
result for squared-error loss). We nov~ turn to the issue of minimaxity. 

4. Minimaxity of 6u and of other dominating estimators 

In this section, we show whenever an unique MRE estimator exists for the un- 
constrained parameter space 0 E ( -oo,  c~), that  the minimax risk for the constrained 
parameter space 0 E In, co) matches the minimax risk for the unconstrained problem 
for general (f0, P). This result may be viewed as an extension of Farrell's (1964) result 
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established for general (f0, P) with str ict ly convex p. As well, Theorem 4.1 follows for 
squared-error loss p from more general results given by Blumenthal  and Cohen (1968), 
and K u m a r  and Sharma (1988). We show the result by following a well-known minimax 
search s t ra tegy (for instance see Lehmann  and Casella (1998), p. 316) which consists in 
identifying a sequence of priors whose Bayes risks converge to R0 = suP0e[a,~ ) {R(0, 50)}. 
Below, we denote r,~ as the Bayes risk associated with prior 7r. 

THEOREM 4.1. Whenever an unique MRE estimator 5o exists for the uncon- 
strained problem 0 E ~ with constant risk R0, then Ro is also the minimax risk for 
any constrained problem 0 > a. 

PROOF. Wi thou t  loss of generality, we set a = 0. The proof is subdivided into two 
parts: (A) first we prove the result for a bounded loss p < M; (B) secondly, we use the 
result (A) to obtain the result for unbounded losses p. 

(A) Here we assume p _< M,  for some constant  M < c~. 
Let {~n}n~=l be a sequence of proper prior densities such tha t  

(4.1) l im r ,~  = R0. 
~ - - - *  OO 

Such a sequence exists (e.g., Wald (1950), p. 90) since R0 -- sups{r=}.  Define, for a fixed 
o o  element 7rn of this sequence, the sequence of densities {Trn,m}m=l as the t runcat ions  of 

7rn onto [ - m ,  m], i.e., 
~ n ( e ) [ - - ~  < e < m] 

7rn,m(O) = g,~,m ' 

where  Hn,m =/ '~ d~n(O). We next  show that  for an e lement  ~ ;  n > 1; 

(4.2) lira r~n,, ~ = r~ . 
m ----~ OO 

To establish (4.2), first observe tha t  wi th  the boundedness of p, 

// 
o o  

_< ( r~ . , . . ) (~ . ,~ )  + m ( 1  - Hn,m), 

which implies 

(4.3) 

Secondly, 

m 

so tha t  

r ,~ < lim inf r ~  m. 
?T~ - - ' 4 0 0  

{// ) R(O, hn)dTrn(O ) = R(O, hn)dTrn,rn(O ) gn,rn >_ (rTr,~,m)(Hn,m), 
m 

(4.4) r ~  > :lim sup r~ .m .  
m---*oo 
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From (4.3) and (4.4), we obtain (4.2). 
Now, it follows from (4.1) that:  for all e > 0, there exists no such tha t  r ~  _> Ro - e 

for all n > no. Also, from (4.2) it is true that :  for all e > 0 and n _> no, there exists 
rn(n) such tha t  r~,m >_ r~  - e for all m > re(n). Hence, for all e > 0, there exists 
no such tha t  r~,,~(~) > r ~  - e _> Ro - 2c for all n _> no. But ,  since Ro represents the 
integrated risk under  ~rn,m(n) of 50, we also have r~.m(~) <_ Ro. Therefore, we have a 
sequence of priors 7r~ = lr,~,m(,~), such tha t  

(4.5) lim r~: = R0. 
?l ----4 (:X:) 

Finally, as the sequence {Trn} is not supported on the parameter  space [0, c~), define the 
sequence of prior densities {Tr**} such tha t  

= - 

By location invariance and (4.5), limn__.~{r,~*. } = limn--.oo{r,r~ } = n0.  Hence, we have 
a sequence of prior densities {Ir**} on compact  support  such tha t  the associated Bayes 
risks converge to R0 = supo>0{R(O, 50)}. This completes the proof tha t  the minimax 
risk is indeed given by R0 for bounded losses p (note tha t  for this part ,  it is not  necessary 
tha t  the MRE est imator  be unique). 

(B) Here, we define t runcated loss pM(y) = (M A p(y)), and we approach an un- 
bounded loss p by a sequence of bounded losses time, with Mi --~ c~, and take advantage 
of the result in (A). To do so, begin by defining 5M(x) = X + CO,M and R M as  the MRE 
est imator  and risk for loss L(0, d) = pM(d--0). Note that ,  from (A), R M is the minimax 
risk under  loss pM, not only for the parameter  space ( - c~ ,  c~), but  also for [0, c~). 

Suppose now that :  

(4.6) lim Ro M = Ro. 
M - - - * o o  

M o o  If property  (4.6) holds, there exists an increasing sequence { i}i=l such tha t  
l i m M ~  R M~ = R0, whence the existence, for all e > 0, of a value M* such tha t  
R0 M' _> R0 - e for all M/_> M*. Also we can infer from (4.5) tha t  for all Mi,  there exists 
a sequence of prior densities srr** lc~ such tha t  limn~oo r~** > R M` whence the 

[ n , M i J n = l  n , M ~  - -  ' 

existence, for all e > 0 and M/,  of a value nl(Mi) such tha t  r~** > R M* - e, for all 
n , M i  - -  

n >>_ nl (Mi). From the above, it follows that ,  for all e > 0, there exists a sequence of 
priors ~-~:(M,),M~ such that ,  for all Mi >_ M*, r~:*r > R o -  2e = suPo>oR(O, 5o), 
which proves the theorem as long as (4.6) is valid. 

Now to prove (4.6), first observe tha t  pM' > pM for M ~ > M which implies tha t  
the (risk and) maximum risk of any est imator  6(X) under loss pM is a non-decreasing 
function of M.  Hence, the minimax risk R M is also a non-decreasing function of M, so 
tha t  l i m s u P M ~  R M -= R* < R0. There remains to prove tha t  l iminfM-- .~ R M > R0, 
and we handle separately the two cases: 

(i) there exists a subsequence {Mj}j~=I with limj__.~Mj = c~, such tha t  
l imj~c~ co,M s = c~ and ]c~] < c~; 

(ii) there exists a subsequence {Mj}j= 1 with limj__.~Mj -- c~, such tha t  
l i m j ~  co,Mj = -t-oo. 

Now observe tha t  we may represent R0 M as the expected posterior loss pM (for any 
x) corresponding to the uniform prior on ( - c o ,  c~). Hence in case (i), by f a t o u ' s  lemma 
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and since tiM is continuous in 

lim inf R Mj = 
j---*oo 

_> 

Similarly, in case (ii), we 

lim inf Ro Mj = 
3----~oo 

_> 

M ,  

5 l iminf pMj(5oMh(x ) - O)fo(x - O)dO 
3 ---~ 0 0  O 0  

oo liminf{P M' ( 5M' (x) - O)}fo(x - O)dO 
oo J oo 

/5 = p(x + c~) - O)fo(x - O)dO >_ Ro. 
o o  

have 

liminf f ~  pM~ ( 5 ~  (x) -- O) fo(x - O)dO 
j~oo J-oo 

5 1 i m i n f { p M j  (hMs(x) -- O)}fo(X -- O)dO 
O 0  3 ---~ ( x )  

= sup p(u)fo(x - O)dO > Ro. 
oo u E ~  

yielding (4.6) and completing the proof. 

Remark 4.1. As mentioned above, the fact that  the minimax risks coincide for the 
unconstrained and constrained problems implies that  dominating estimators of 60 are 
necessarily minimax for the constrained parameter space [a, cx~). These dominating esti- 
mators include 6u, its truncated version max(Ty, a), and all the dominating estimators 
which can be generated by Theorem 3.1. 

We conclude this section with a result which offers (we believe) additional insight 
into the minimax phenomenon behind Theorem 4.1. Indeed, the following is a short 
version of Theorem 4.1, which applies to the subclass C* of estimators 5h(x) = 5o(X) + 
h(x) E C such that l imx-.~ h(x) exists. 

THEOREM 4.2. Whenever 5o is unique minimax for the unconstrained problem with 
minimax risk Ro, the minimax risk among estimators in C* for the constrained problem 
[a, c~) is (also) given by Ro, for any pair (/0, P) (with p continuous). 

PROOF. It will suffice to show that lim i n f 0 - ~  R(O, 5h)  ~_ RO for any 6h C C*. Let 
l i m x - ~  h(x) = c. We have by Fatou's lemma 

l iminfR(0,  6h) = l iminf f ~  p(50(x) + h(x) - O)fo(x)dx 
0--,oo 0 ~ o o  J - o o  

= liminf - [ ~  p(5o(X)+ h(x +O))fo(x)dx 
o ~  J-oo 

/? > lim inf{p(50(x) + h(x + O))}fo(x)dx 
- -  O0 0 ---* O0 

/? = p(5o(x) + c)fo(x)dx >_ R0; 
o o  

establishing the result. 
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5. The case of the parameter space O = [ - m ,  m] 

In this section, we present a similar development for the restricted parameter space 
O = [ -m,m] ,  where m is known. In particular, we show that the (proper) Bayes 
estimator 55 with respect to the uniform prior density ~rh(0 ) = ( 2 m ) - l [ - m  < 0 < m] 
dominates the MRE 60, for strictly convex losses p(d - O) and general location families 
(but also see Remark 5.1). This generalizes the result in the normal case under squared- 
error loss, which was obtained by Gatsonis et al. (1987), and offers a different method of 
proof (in contrast to their sign change arguments). Marchand and Perron (2001) showed 

that, in a multivariate generalization of the normal case with X d Np(O, Ip), 11011 < m 
and L(O, d) =I]d - 0112, the Bayes estimator 5 5 with respect to the uniform prior on 
the ball {0 : ]]011 < m} dominates the maximum likelihood estimator 5ml+ for sufficiently 
small m, i.e., m < too(p). Namely, for p = 1, they obtain that 5 5 dominates 5ml e for 
the sufficient condition m < m0(1) ~ 0.5230. Recently, Hartigan (2004) proved for 
X ,.~ Np(O, Ip) with 0 E A, where A (A ~ ~P) is a convex set with a non-empty interior 
but  otherwise arbitrary, that  the Bayes estimator 5u with respect to the uniform prior 
on A dominates X under loss lid - 0I] 2. For p = 1, this result applies here for a normal 
model f0 and squared-error loss p, and also applies to the case O -- [a, c~) studied in 
Section 3. 

Although implications following from such dominance results are more limited for 
restricted parameter spaces of the form O -- I -m ,  rot, it is nevertheless of interest to 
characterize and obtain estimators that  are adapted to the restricted parameter space 
in the sense of passing the minimum test of improving upon the MRE 60. Furthermore, 
it is particularly interesting to witness (see Corollary 5.1): 

(1) that the dominance property of 6 5 occurs for quite general (f0, P); 
(2) the phenomenon for which the truncation rr 5 of the prior ~rv(O) -- 1 onto the 

parameter space [ - m ,  m I leads to a dominating estimator 6 5 of the original Bayes esti- 
mator 60 associated with the untruncated prior 7rv. 

Note that the estimators 5h E C of Section 3 which satisfy condition (i) or (ii) of 
Theorem 3.1 in dominating the M R E  60 on the parameter space [ -m,  c~) (or ( -c~ ,  m]) 
necessarily dominate 60 on the parameter space I -m ,  rn], but  that these estimators take 
some values outside [ -m,  m] as lim~--.oo h(x) -- 0. Rather, we describe dominating 
estimators below which take values in I -m,  m] only. 

The estimators considered in this section will be written in the form 5h(X) = 5o(X)+ 
h(X),  and will belong (or be shown to belong) to the class D of estimators defined as: 

D -- {hh : 5h(X) = 5o(X) + h(X)  with h absolutely continuous, nonincreasing, 

and 5h(X) e [--re, m] for all x e ~}. 

As before, these properties will imply that  we are working with a.e. differentiable 
function h. Also, given these properties, observe that  there will exist, for the estimators 
5h e D, a value x0(h), such that 6h(Xo(h)) ---- 5o(xo(h)). The dominance conditions of 
Theorem 5.1 are expressed in terms of xo(h) and xo(hh). Note, with the applicability 
of condition (ii) of Theorem 5.1 in mind, that  for symmetric f0 and p, we will have 
5o(X) = X, and xo(h) = 0 for sign invariant 5h'S (i.e., 5h(X ) = --hh(--X)) such as 65. 

The next lemma establishes some useful properties of the estimator 65, and it is 
followed by general conditions for an estimator 5h C D to dominate 5o on the parameter 
space [ -m,  m]. 
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LEMMA 5.1. The Bayes es t imator  5~ (X)  = 5o(X) + h ~ ( X )  associated with the 
uni form prior on [ - m ,  m] satisfies the following properties: 

(a) 

(5.1) Eo[p'(5o(X) + h~r(t)) ] t - m <_ X < t + m] = O, for  all t E ~R; 

(b) 5 b e D. 

PROOF. We prove (b) only, as part (a) is quite similar to part (a) of Lemma 2.3. We 

only need to show that h b is noninereasing. Define B(v ,  w) = [~+m p ' (u+co+w) fo (u )du .  
J V - - T / Z  

Suppose, in order to arrive at a contradiction, that  there exists values a pair of tl and t2, 
both on the support of f0, such that t2 > t l  and h~(t2) > h~y(tl). If such were the case, 
we would have by (5.1), and since p' is increasing: 0 = B(t2,  hb(t2))  > B ( t l ,  h~(t2)) _> 
B ( t l ,  hb(t~)) which contradicts the property B ( t l ,  hb(t~))  = 0 given in (5.1). 

THEOREM 5.1. Either  one of  fol lowing two conditions are sufficient f o r  est imators 
5h E D to dominate 50 on O = [ -m,  m]: 

(i) Eo[p' (5o(X) + h(t) ) i X <_ t + m] <_ 0, for  RUt < xo(h ) and Eo[p' (5o(X) + h(t) ) J 
x > t - m] _> o, for all t >_ xo(h). 

(ii) xo(h) = xo(h~)  and Ihl <_ Ihbl.  

PROOF. (i) Following Kubokawa (1994a, 1998, 1999), we may write 

p(5o(X) - O) - p(5o(X) + h(x) - O) = p(5o(X) + h(t) - e) t=xt=~~ 
xo(h) 

= p'(6o(x) + h(t) - e)h '( t )dt ,  
J X  

so that 

where 

and 

A h ( 0 )  = n ( 0 ,  60) -- R ( 0 , T h )  

/ / F  ~ 
= p'(5o(X) + h(t) - O)h ' ( t ) fo(x)dtdx  

O 0  ,J X 

= o ' (5o(x)  + h ( t )  - O ) h ' ( t ) I o ( x ) d t d x  
d - - 0 0  J X  

- O'(5o(x) + h(t) - O)h ' ( t ) Io(z)d tdz  
o(h) o(h) 

= Ii,h(O) -- I2,h(O), 

Ii,h(O) = h'(t) p'(5o(X) + h(t) - O)fo(x)dx dt 
J - - ( : K )  

// {]7 } I2,h(O) = o(h) h'(t) p'(5o(X) + h(t) - O)fo(x)dx at. 

Now, observe that II,h(O) >_ 0 whenever, for all t _< xo(h), 

Eo[p'(5o(X) + h(t) - O) t X < t] < 0 

r Eo[p'(6o(X) + h(t)) I X < t - 0] < 0, 
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as in (3.1). From this, Lemma 5.1 tells us that  I i , h ( - -m)  ~ 0 and -fl,h(0) > 0 for 
all 0 E ( - m , m ]  whenever, for all t < xo(h),  Eo[p'(5o(X) + h(t))  I X < t + m] < O. 
Similarly, f2,h(m) <_ 0 and I2,h(0) < 0 for all 0 E I -re ,  m)  whenever, for all t >_ xo(h) ,  
Eo[p'(5o(X) + h(t))  I X > t - m] > O. Hence, the two inequations of condition (i) are 
jointly sufficient for Ah(0) to be positive. 

(ii) We show that condition (ii) implies (i). Indeed, if xo(h) = xo (h~)  and I hi _< 
IhhI, then 

Eo[p'(5o(X) + h(t))  I x t + m] Eo[p'(5o(X) + h(t))  I t - m x t + m] 0 

for t < x0(h), and 

Eo[p'(5o(X)  + h( t ) )  I X >_ t - m] > Eo[p'(5o(X)  + h( t ) )  I t - m <_ X <_ t + m] >_ 0 

for t > x0(h), given the convexity of p, the nonincreasing property of h for 5h E D, and 
part (a) of Lemma 5.1. 

COROLLARY 5.1. Under general strictly convex loss p and for  general location f am-  
ilies, the Bayes est imator 65 with respect to the uni form prior  on [ - m , m ]  dominates 
the M R E  5o on the parameter space ~ = [ - m ,  m]. 

Observe that the dominating estimators 5 h E D shrink 50 towards xo(h)  (i.e., ihh -- 

xo(h)l  ~ 16o - xo(h)l) ,  while dominating estimators 5 h E D with xo(h)  -- x o ( h h )  shrink 
less towards the origin than the benchmark estimator 65, (i.e., 15hi > 1551). We also note 
the interesting case of squared-error loss where the uniform Bayes estimator, as derived 
from part  (a) of Lemma 5.1, is given by 55(x  ) = x - Eo[X I x - m < X ~ x + m], and 
dominates the MRE 5o(X)  = X - E0[X]. 

Remark  5.1. Theorem 5.1 and Corollary 5.1 Mso hold under strictly bowl-shaped 
losses p and for densities f0 having a strict monotone increasing likelihood ratio. This 
is so since, in such cases and as in part (b) of Lemma 2.3, part (b) of Lemma 5.1 can 
be established with the aid of Lemma 2.2. FinMly, as in Section 3, the assumption of 
convex loss and strictly positive densities f0 also suffice for the validity of Theorem 5.1 
and Corollary 5.1. 
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