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Abstract. For location families with densities fo(z — 0), we study the problem
of estimating 6 for location invariant loss L(6,d) = p(d — 6), and under a lower-
bound constraint of the form § > a. We show, that for quite general (fo,p), the
Bayes estimator 6y with respect to a uniform prior on (a, o0) is a minimax estimator
which dominates the benchmark minimum risk equivariant (MRE) estimator. In
extending some previous dominance results due to Katz and Farrell, we make use
of Kubokawa’s TERD (Integral Expression of Risk Difference) method, and actually
obtain classes of dominating estimators which include, and are characterized in terms
of éy. Implications are also given and, finally, the above dominance phenomenon is
studied and extended to an interval constraint of the form 6 € [a, b].

Key words and phrases: Lower-bounded parameter, location family, constrained pa-
rameter space, minimax estimation, minimum risk equivariant estimator, dominating
estimators.

1. Introduction

Consider estimating, under loss L(8,d) = p(d — ), based on one observation X,
the parameter 6 of a location family with probability density functions of the form
fo(z) = fo(z — 8), with known fo. For an unconstrained parameter space (—00,00), the
minimum risk equivariant (MRE) estimator is, under mild conditions, uniquely given by
80(X) = X + ¢y, where ¢y minimizes in ¢ the constant risk R(6, X + ¢) = Eo[p(X + ¢)]
(see for instance Lehmann and Casella (1998), Chapter 3, for a presentation). Also, the
representation of the MRE as the generalized Bayes estimator with respect to the right
invariant Haar measure 7(6) = 1; (see Lemma 2.3, part (¢)) is well known, and will play
a pivotal role in our results, as well as their interpretation.

The first part of this paper (Sections 2, 3 and 4) is concerned with the estimation
framework above, but for a restricted parameter space of the form © = [a,00) with a
known. For estimators written in the form 8,(X) = 60(X) + h(X), we produce simple
conditions on h for 8, to dominate &y. Namely, these conditions are fundamentally
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related to the generalized Bayes estimator éy associated with the uniform prior density
7a(0) = [0 > al], which is shown as well to dominate 8.

Although 6¢ produces implausible estimates in taking values outside the paramecter
space [a,00), it serves as a useful benchmark for assessing estimators in our truncated
parameter space problem. More precisely, we establish in Section 4 that, for quite general
location family fs and continuous bowl-shaped loss, the MRE estimator’s constant risk
matches the minimax risk which implies, in such situations, that dominating estimators
of 6y are necessarily minimax. We initially thought this result may have been known,
but to our knowledge the strongest result in this direction is due to Farrell (1964) and
applies (only) to cases where p is strictly convex.

For the normal case with squared-error loss (i.e., p(y) = y?), Katz (1961) showed
that the generalized Bayes estimator 6y dominates §p(X) (which is X here), and is
a minimax and admissible estimator of §. For the general model fo, Farrell (1964)
established: (i) the minimaxity of éy (and hence (ii) domination of §) under general
strictly convex loss p, and (iii) the admissibility of 8y under squared-error loss p. For
the particular case of an exponential location model with fo(z) = Le=*/?[z > 0]; with
known o, Parsian and Sanjari Farsipour (1997) gave a proof of (i) and (ii) and established
(iii) for Linex losses p(y) = e% —dy — 1 with d # 0 and d < 1.

The dominance results given in Theorem 3.1 and Corollary 3.1 not only extend
Farrell’s result (ii) to strictly bowl-shaped loss for families of densities fy with a strict
monotone likelihood ratio property, but also provide explicit classes of dominating es-
timators. We also: (a) obtain an alternative proof of Farrell’s result (ii) for strictly
convex loss p, (b) obtain a version of these dominance results for convex loss and strictly
positive densities fg, and (c) show how various implications follow from our conditions
for dominance (i.e., Remark 3.1 and Theorem 3.2). Finally, as previously mentioned, we
extend in Section 4 Farrell’s minimax result (i) for general location families to general
bowl-shaped loss.

The key technique used in the derivation of our dominance results is Kubokawa's In-
tegral Expression of Risk Difference (IERD) method. Introduced by Kubokawa (1994a),
and further illustrated by Kubokawa (1998, 1999), the method has proven useful in var-
ious and diverse settings. In particular, the work of Kubokawa (1994b) and Kubokawa
and Saleh (1994), involves restricted parameters and an approach similar to Section 3’s.
We note that our results are not limited to samples of size 1, and hold for a general loca-
tion parameter family with density f(z, —6,22—9,...,z, — 6) provided the conditional
distribution of z, given the maximum invariant y = (21 — Zn, %2 — Zn,...,Tn_1 — Tp)
satisfies the conditions required for fo (a.e. y). Also, one of the key features of the re-
sults below resides with the generality of the loss function and the family of distributions
under study.

The usefullness of Kubokawa’s IERD method is further illustrated in Section 5 where
we consider parameter spaces which are intervals; of the form [—m,m] without loss of
generality. Again here, our dominance results involve the Bayes estimator associated
with a uniform prior on the parameter space, which is shown to dominate the MRE &,
for general strictly convex loss p and general location families. A discussion of related
historical developments and implications is relegated to Section 5.

We now proceed in Section 2 in specifying some further notations and assumptions,
as well collecting some properties for later use.
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2. Preliminaries and notations

Throughout, we work with loss functions of the form L(6,d) = p(d — 6), with
absolutely continuous strictly bowl-shaped p, which we characterize (without loss of
generality) by the properties: p > 0; p(0) =0, p'(u) < 0 for u < 0, p'(u) > 0 for u > 0.
We also work with loss functions p such that the associated MRE 6,(X) = X + ¢ has
finite risk.

It is convenient to define C' as the following class of estimators.

DEFINITION 2.1. Let C = {6y, : 6p(X) = 8o(X) + h(X) with h absolutely continu-
ous, nonincreasing, and lim;_,, h(t) = 0}.

Except for those estimators considered in Section 5, all the estimators considered
will belong (or be shown to belong) to the class C. Moreover, these properties of the
class C will imply that we are working with a.e. differentiable functions h, as in part (i)
of Theorem 3.1. Finally, to assure the validity of the interchange of limit and integration
in part (a) of Lemmas 2.3 and 5.1, we assume there exists a function k such that |p’(y)| <
k(y), and [ K(z)fo(z)dz < oo.

Now, we pursue with two technical lemmas concerning functions with a sign change.
We will say that a function g changes sign from — to +, if there exists on its domain
a pair of values ¢y and ¢}, with ¢ < ¢ such that g(z) < 0 for z < ¢o, g(z) > 0 for
co <z < ¢p, and g(z) > 0 for z > ¢f.

LEMMA 2.1. Let X be a continuous random variable with density f. Let g be a
non-constant real valued function, continuous almost everywhere, that changes sign from
— to + on the support of X. Then, for any pair c¢1,ce such that ¢y > ca, P(X < ¢3) > 0,
and P(c; < X < ¢1) > 0; it follows that

Elg(X)| X <ea1] <0= E[g(X)| X < ca] <O.

PROOF. First if g(ca) < O, the result is immediate. Now suppose g(cz) > 0, and
define I(c) = f(“oo’c] g(z) f(z)dx. Since g(x) > 0for z € (c2,¢1], we obtain I(c;)—I(c) =
f(cwl] g(x)f(z)dz > 0. It then follows that I'(ca) < 0 with I(cz) = 0 only possible if
I(¢;) = 0 and g(z) = 0 for € (c2,c1]. But these conditions would imply g(e2) = 0,
and coupled with the condition I{cg) = 0 would lead: P(g(X) =0 X < ¢2) = 1, thus
contradicting the sign change assumption on g. Hence I(c2) < 0 and the stated result
follows.

LEMMA 2.2. Consider a family of continuous distributions with strict monotone
likelihood ratio (MLR) in X with 6 being the parameter; (and hence strictly positive
densities fg on R). Suppose g is a function that changes sign once on the real line from
— to +, and suppose ¢y and 01 are such that either

g(c1) >0 and /

— 00

c1 c1

g(x)fe,(x)dz <0, or / 9(z) fo, (z)dz = 0.

—0o0

Then, for all 8y < 6,, we must have

/ " 4(@) fao (@)dz < 0.

-0
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PROOF. Set ¢y as a point where g changes sign, and note that we must have ¢; > ¢g
given the characterization of ¢;. Now observe that

0> /c1 9(x) fo, (z)dz = /CO 9(9”)'100—1’(36—)f"ﬂ(w)dw+/c1 9l );ZIE ;fo()( e

— oo f90( ) o
fo,(co) “ fo,(co)
>/ e >f90(0)f <>da:+/ o) 22 o (o)
f91( )
=1 g(ﬂf)feo(fc)dx

which yields the result. In the above expansion, note that the second inequality is indeed
strict given the assumed MLR property and the assumptions on g and fs which imply
Pgo[g(X) <0 [ X < Co] > 0 and Peo[g(X) <0 | X < Co] = Poo[g(X) >0 I o < X <
01] = 1.

LEMMA 2.3. For general strict bowl-shaped loss p and a general location family of
densities fo having a strict monotone increasing likelihood ratio, the generalized Bayes
estimator 6y (X) = 60(X) + huy(X), associated with the prior density mo(6) = 1[0 > a];

a € R or a = —o0, satisfies the following properties:
(a) Eolp'(60(X)+hy(t)) | X <t—a] =0, forallt € R.
(b) by eC.

(¢) When a = —o00, 6y = 6o (i.e., here 6y (X) = 60(X) = X + co)-

PrROOF. (a) By definition, the generalized Bayes estimator §;y minimizes the pos-
terior risk, so that it also minimizes in h(t), for all £ € R,

t—a

/ ot + o+ h(t) — 0) fo(t)dO = / p(u + co + (t)) fo(u)du.

a — 00

Hence, by assumptions on p, we must have

t—a
[t o) fowdn =0,
— o
or again Eo[p'(60(X) + hu(2)) | X <t —a] =0, as stated.

(b) Without loss of generality, we set a = 0. We need to show (1) that hy is
nonincreasing with (2) lim; .. hy(t) = 0.

(1) To show that hy is nonincreasing, assume in order to arrive at a contradiction
that there exists ty > t; such that hy(t2) > hy(t1). From part (a),

0= Eo[p/(X 4+ co + hu(tz)) | X< t2] = EhU(tQ)[pl(X + Co) | X' <tg+ hU(t2)]
> Eny ()0 (X + c0) | X < t2 + hy(t2)];
with the inequality being a consequence of Lemma 2.2, and assumptions on p and fy.

Now, if the latter inequality were actually true, we could deduce from Lemma 2.1 the
implication:

Ehu(tl)[p,(X + C()) [ X<ty + hu(tz)] <0= EhU(tl)[pl(X -+ CO) | X<t + hU(tl)] < 0,
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which would contradict the property in part (a) of this lemma, i.e., since Ep 4,) [0 (X +
Co) | X <t + hU(tl)] = E()[pl(X + co + hU(tl)) | X < tl]. Therefore, hU(tz) < hU(tl)
as claimed.

(2) To show that lim; o hy(t) = 0, we begin by showing that we must have hy >
0. Coupled with the nonincreasing property of hy, this will permit us to set as a
contradiction:

(2.1) tlim hy(t)=¢, with €>0.

So suppose that h,(to) < 0 for some to. Property (a) of this lemma (with t = o)
would then, in conjunction with Lemma 2.1, imply Eo[p'(60(X) + hy(to))] > 0. But
Eolp'(50(X) + hu(to))] = En, uo) |/ (8(X))], and the inequality By, |6’ (5o(X))] > 0,
in conjunction with Lemma 2.2, would imply Ey[p’(60(X))] > 0, which would contradict
properties (a) and (c) of this lemma.

Hence, hy > 0, and suppose now that (2.1) holds, which would imply hy (t) > € for
allt € R. Note that the quantity Eg[p'(60(X)+¢€)] = Ec[p'(60(X))] must be positive since,
otherwise, Lemma 2.2 would tell us (with ¢; = 00, 61 = ¢, and 6y = 0): Ep[p'(60(X))] <
0, which is false given parts (a) and (c) of this lemma. But if E.[p'(60(X))] is positive,
so must it be the case that ffoo 0’ (60(X)) fe(z)dz is positive for a large enough ¢, and so

must ff;h[’(t ) 0’ (60(X)) fry ¢ (z)dz be positive, given Lemma 2.2 and the assumption
hy(t') > e. Finally, this contradicts part (a) of this lemma. Hence, expression (2.1)
cannot be true and we must have lim;_,, Ay () = 0 as claimed.

(c) This is well known. See for instance Berger ((1985), p. 410).

To conclude this section, we should point out and prove that, under the conditions of
strictly bowl-shaped loss and of monotone likelihood ratio for the family fy of densities,
the Bayes estimate 6y (o) is unique for all ¢ € R. This can be shown by contradiction
with the help of Lemmas 2.1 and 2.2. Suppose indeed, as required by part (a) of Lemma
2.3, that

(22) [ # @) + hotta)) @) = 0

— 00

where ho(to)—hi (to) = € > 0 (the case € < 0 can be handled with a similar development).
Now, Lemma 2.2 can be applied to yield

to—a
/ P (60() + ho(to)) f.(z)dz > 0.
Then, 0 < [°-% ¢'(80(z) + ho(to)) fe(x)dz = [°°7° p/(bo() + hu (to)) fo()dz, and an
application of Lemma 2.1 with c3 = t9 — a — € and ¢; = tg — a tells us that, if (2.2) were

indeed true, then ff‘ga p'(60(z) + hu(to)) fo(z)dx > 0, which contradicts the fact that
6y (to) is the Bayes estimate for x = to. Therefore, the uniqueness of & follows.

3. Main dominance results for the parameter space © = |a, c0)

THEOREM 3.1.  For general strict bowl-shaped loss p and a general location family
of densities fo having a strict monotone increasing likelihood ratio, either one of the
following two conditions are sufficient for estimators 6, € C, b, # by, to dominate &p:
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(i) Eolp'(60(X) +h(t)) | X <t—a] <0; for all t € R;
(ii) h < hy.

ProoF. (i) Following Kubokawa (1994a, 1998, 1999), we may write
p(60(x) - 8) — plolz) + h(z) — ) = p(Bole) + h(t) — 8) =
o ¢]
[ #tata) + ho) - o)n @y

Il

so that
An(8) = R(6,60) — R(8,6,)
- /_ / p'(8o(x) + h(t) ~ O)K'(t) fo(z)dtdz

00 t
= [Tww{ [ s6ota)+n) - o)sa(oe | a
—0o0 — 00
Given that k' < 0, the difference in risks Ax(6) will be nonnegative whenever, for
all t € R,

Eglp' (60(X) +h(t) - 6) | X <t] <0
S Eplf(X—0+co+h(t) | X-0<t—-0]<0
(3.1) & Eolp’(6o(X) +h()) | X <t-6] <O

Now since p'(8p{z) + h(t)) changes sign at most once as a function of = from — to +
on (—00,00), Lemma 2.1 tells us that Ap(#) will be nonnegative for all § > a, whenever
for all t € R, Ep[p'(60(X) + h(t)) | X < t—a] < 0. Now, observe that for 6, € C with
61, # 6o, we must have b’ < 0 on a set of positive measure; so that, if condition (i) holds,
Ap(0) > 0 for § > a by virtue of Lemma 2.1.

(ii) Here, we show that (ii) implies (i). Defining I(u,v) = [“_* o' (60(x)+v) fo(z)dz,
it will suffice to establish that I(¢,h(t)) < O whenever h(t) < h,(t). By setting 7 =
h(t) — hu(t) < 0, we use part (a) of Lemma 2.3 to obtain

t—T—-a

0= It hu®) = 16RO - 1) = [ F(60(@) + hO) - (@),
—o0
and deduce, with the aid of Lemma 2.2, that I(t — 7, h(t)) < 0. Finally, use Lemma 2.1
to obtain the implication I(t — 7, h(t)) < 0 = I(t, h(t)) <0, and the desired result.

Part (a) of the following is now immediate from Theorem 3.1 and Lemma, 2.3, while
part (b) follows from the development that led to expression (3.1) and the uniqueness of
the estimates 6y (t).

COROLLARY 3.1. Under the assumptions of Theorem 3.1,

(a) The generalized Bayes estimator by with respect to the uniform prior density
7q(8) = 1[0 > a] dominates 6y on the parameter space [a, o).

(b) For estimators 8, € C satisfying either sufficient condition (i) or (ii) of The-
orem 3.1, we have R(6,6p) < R(8,60) for 8 > a, with equality iff 6 = by and 8§ = a.
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Before moving on to further remarks and implications, we wish to point out that
Lemma 2.3 (and the uniqueness of i), Theorem 3.1 and Corollary 3.1, which were
established under the assumptions:

(A) of a strictly bowl-shaped loss and a strict MLR family of densities f;
also hold under the assumptions:

(B) of a strictly convex loss p and a general family fy;
or alternatively under the assumptions:

(C) of a convex loss p and of strictly positive densities fy.

The key observation is that we may still make use of Lemma 2.1 and we can invoke,
given that o’ is increasing the stochastically increasing property in £ of the family of
distributions X | X < ¢ (under fy). In the case of assumptions (B), Corollary 3.1 is due
to Farrell (1964), but our proof differs and, as seen with its validity under assumption (A)
or (C), permits to extend the result to more general losses for some families of densities
fo. Furthermore, for all three sets of assumptions, Theorem 3.1 gives a novel and simple
characterization of a class of dominating estimators of the MRE 6&;.

Remark 3.1. Further interesting implications follow from the benchmark estimator
by, which, ubiquitously, plays the same role in our dominance conditions irrespective of
loss p and location family fo being considered. For instance, the dominance result of
part (ii) of Theorem 3.1 is simply stated as: if 6§ € C (6§ # &) and § < 8y, then 6§
dominates §,. Examples include the truncation of §, onto the parameter space [a, o),
the generalized Bayes estimators (say 6y,) with respect to uniform priors on [b, 00), with
b < a; as well as their truncations max(6y p,a). On the other hand, we may infer from
part (b) of Corollary 3.1 the following condition for non-dominance: if §' > éy (with strict
inequality on some set of positive probability when 8 = 0), then R(a, é') > R(a, 60), and
such an estimator 8’ neither dominates g, nor is minimax. This latter situation arises
for instance when we consider 8’ = 6y with b > a.

Finally, observe from part (b) of Corollary 3.1, that 6y fails to dominate any other
of the dominating estimators of Theorem 3.1. In particular, §;y does not dominate the
truncation of & on the parameter space [a,00), which corresponds to the maximum
likelihood estimator for symmetric and unimodal densities fy. This latter observation
has previously been observed in the normal case with squared-error loss (see Rukhin
(1990)).

Ezample 3.1. For squared-error loss, the generalized Bayes estimator is given by
Su(z) = z — Ep|X | X < z — a] while the MRE is given by §p(z) =  — Ep[X]|. For
absolute value loss, the estimators become 6y(z) = z — Mediang[X | X < z — a] and
bo(xz) = =z — Mediang[X]. These expressions can be derived from part (a) of Lemma
2.3; and Corollary 3.1 tells us that §y dominates &y in both situations for strict MLR
families of densities fy. The dominance of §y over & for squared-error loss also holds
for a general location family (subject to risk-finiteness of ép), while the dominance in
the absolute value loss case also holds for a general location family with strictly positive
densities (see points (B) and (C) raised following Corollary 3.1).

Now, let us write 6y ,, and ¢, to emphasize the association between our general-
ized Bayes estimators and our MRE’s with the loss pg. Observe that 6y, ,, belongs to the
class C for any (other) p, and therefore will also dominate g ,, for other loss functions
p as long as condition (i) of Theorem 3.1 is satisfied. Motivated by this idea, we state
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and prove the following result which may be viewed as either providing dominating esti-
mators of dg ,, under convex loss function p,, or as providing a class £; of convex losses
such that a given estimator 6, € C' dominates &g ,, simultaneously for all losses in L.

THEOREM 3.2. An estimator 6, € C which satisfies sufficient condition (i) of
Theorem 3.1 in dominating the MRE &g ,, under convex loss Lo(d,0) = po(d — ), also
dominates 8o p, under all losses L1(d,8) = p1(d — 6) for which

(3.2) pjl (y)

Po(y)

is nonincreasing iny, y&EN.

PrOOF. We show that, with condition (3.2), W(p) < 0, where W(p) =
Ey[p'(60(X) + h(t)) | X <t — a]. Indeed, for such losses p1,

W(p1) = Ep [Zéggg; i}]zgg;pf)(%(){) +h() | X <t- a]

p1(80(X) + h(t))
Po(bo(X) + h(t))

IA

W (po)Eo [ | X <t- a]

<0,

given: (i) condition (3.2) and the convexity of po; (ii) that pi1(y) and pe(y) are both
strictly bowl-shaped implying that p}(y) and pj(y) have matching signs (for all y € R);
and (iii) W{(po) < 0 by assumption on &, under loss po.

Example 3.2. Note that if both pg and p; are symmetric, then so is the ratio %2)%;;
whence the impossibility of (3.2) whenever p; # po. However if either py or p; is not
symmetric, then we can entertain the possibility of (3.2) being satisfied. Suppose for
instance that pg is LP loss with p > 1 (i.e., po(y) = |y|P). Then (3.2) is satisfied for
asymmetric losses of the form p;(y) = |y|P*[y < 0] + |y|P2[y > 0] with ps < p < p;. For
the particular case where pg is squared-error loss, the class of losses p; which satisfy
(3.2) include losses for which p} is concave, as well as losses for which p} is concave on
(—00,0) and p; is concave on (0,00). An interesting subclass of losses for which p} is
concave consist of Linex type losses of the form p;(y) = e — dy — 1 with d < 0. More
generally, it is possible to show that, for strictly convex pg, the concavity of pj (pg‘l)
is sufficient for (3.2) to hold. Finally, observe again that the above inferences of this
example are applicable for general strictly positive fp (see point (C) above).

We conclude this section by pointing that our work does not address the interesting
issue of the admissibility of the estimator 8y (but recall Farrell’s general admissibility
result for squared-error loss). We now turn to the issue of minimaxity.

4. Minimaxity of 6;y and of other dominating estimators

In this section, we show whenever an unique MRE estimator exists for the un-
constrained parameter space § € (~00,00), that the minimax risk for the constrained
parameter space § € [a,00) matches the minimax risk for the unconstrained problem
for general (fo,p). This result may be viewed as an extension of Farrell’s (1964) result
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established for general (fo, p) with strictly convex p. As well, Theorem 4.1 follows for
squared-error loss p from more general results given by Blumenthal and Cohen (1968),
and Kumar and Sharma (1988). We show the result by following a well-known minimax
search strategy (for instance see Lehmann and Casella (1998), p. 316) which consists in
identifying a sequence of priors whose Bayes risks converge to Ry = suPg¢|q,00) { R(6,0)}-
Below, we denote r, as the Bayes risk associated with prior .

THEOREM 4.1. Whenever an unique MRE estimator 6y exists for the uncon-
strained problem 8 € R with constant risk Ro, then Ry is also the minimax risk for
any constrained problem 6 > a.

PrROOF. Without loss of generality, we set @ = 0. The proof is subdivided into two
parts: (A) first we prove the result for a bounded loss p < M; (B) secondly, we use the
result (A) to obtain the result for unbounded losses p.

(A) Here we assume p < M, for some constant M < co.

Let {m,}22, be a sequence of proper prior densities such that
(4.1) lim r., = Rg.

n— 00
Such a sequence exists (e.g., Wald (1950), p. 90) since Ry = sup, {rx}. Define, for a fixed
element 7, of this sequence, the sequence of densities {7, m }5°_; as the truncations of
7 onto [—m,m], i.e.,
Tn(0)[-m <0 <m]
Hym '

Tn,m(0) =
where Hp, p, = f:"m dr,(6). We next show that for an element m,; n > 1;

(4.2) lim r,,  ="7n,.
m—00 !

To establish (4.2), first observe that with the boundedness of p,

re < / R(0, 6y, .. )dma(0)

_ { / R(, 5,rn’m)d7rn,m(9)} Hon + / R(8, 6, .. )dma(0)
—oo 16| >m v
S (Tﬂ‘n,m)(Hn,m) + M(l - Hn,m},
which implies

(4.3) Tr, < liminfry, .
m—00

Secondly,
re > / R(6, 8,)dm, (8) = { / R(G,én)drn,m(e)} Hom > (e ) (Hom),

so that

(4.4) Tr, > lHmsupry, ..

m—00
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From (4.3) and (4.4), we obtain (4.2).

Now, it follows from (4.1) that: for all € > 0, there exists ng such that r, > Ro—e€
for all n > ng. Also, from (4.2) it is true that: for all € > 0 and n > nyg, there exists
m(n) such that v, . > rp, — € for all m > m(n). Hence, for all ¢ > 0, there exists
119 such that Tominy 2 Trn — €2 Ry — 2¢ for all n > ng. But, since Ry represents the
integrated risk under 7, p,(n) of o, we also have T mn) = Ry. Therefore, we have a

sequence of priors 7, = 7, m(n), Such that

(4.5) lim 7. = Ro.

n—00
Finally, as the sequence {7} is not supported on the parameter space [0,00), define the
sequence of prior densities {m}*} such that

T (6) = 778 — m(n)).

By location invariance and (4.5), lim,_,oo{7rs+ } = limp_,oo{7x; } = Ro. Hence, we have
a sequence of prior densities {m**} on compact support such that the associated Bayes
risks converge to Ry = supyso{R(6,8)}. This completes the proof that the minimax
risk is indeed given by Ry for bounded losses p (note that for this part, it is not necessary
that the MRE estimator be unique).

(B) Here, we define truncated loss p™(y) = (M A p(y)), and we approach an un-
bounded loss p by a sequence of bounded losses p*:, with M; — oo, and take advantage
of the result in (A). To do so, begin by defining 6/ (X) = X + co ar and R}! as the MRE
estimator and risk for loss L(#,d) = p™ (d— ). Note that, from (A), R} is the minimax
risk under loss p™, not only for the parameter space (—00, 00), but also for [0, 00).

Suppose now that:

(4.6) lim RY = R,.
Moo

If property (4.6) holds, there exists an increasing sequence {M;}$2, such that
limas, oo Ré”" = Ry, whence the existence, for all € > 0, of a value M* such that
R(I)V[" > Ro — ¢ for all M; > M*. Also we can infer from (4.5) that for all M;, there exists

a sequence of prior densities {}", }o%; such that limp_,co 7rre > RY: whence the

existence, for all € > 0 and M;, of a value nq(M;) such that Tasey, = R(I)V[" — ¢, for all

n > n1(M;). From the above, it follows that, for all € > 0, there exists a sequence of
priors W;T(M,-),Mi such that, for all M; > M*, THAY oty s > Ry — 2¢ = supyxq R(8, bo),
which proves the theorem as long as (4.6) is valid.

Now to prove (4.6), first observe that p™ > pM for M’ > M which implies that
the (risk and) maximum risk of any estimator §(X) under loss p™ is a non-decreasing
function of M. Hence, the minimax risk R} is also a non-decreasing function of M, so
that limsup,,_,., R = R* < Ro. There remains to prove that liminfy/—.oo R} > Ry,
and we handle separately the two cases:

(i) there exists a subsequence {M;}32; with lim; . M; = oo, such that
lim; o0 co,n; = g and |c| < o0o;
(ii) there exists a subsequence {M;}32; with lim;,.o M; = oo, such that

limj_,oo CO,Mj = Fo00.
Now observe that we may represent R} as the expected posterior loss p™ (for any
x) corresponding to the uniform prior on (—00, 00). Hence in case (i), by Fatou’s lemma



IMPROVING ON A LOCATION MRE UNDER A CONSTRAINT 139

and since p™ is continuous in M,

lim inf Réwj = lijrginf/ pMi (6(1)\4j () — 8) fo(z — 6)db

j—oo [e5s)

> [ timint(p (53" @) — 0)} ol — 0)a0

o0

_ /°° p(z + ¢ — 6)fo(z — 6)d6 > Ro.

-0

Similarly, in case (ii), we have

liminf Ry = lim in / o™i (63" () — 0) fo(z — 0)db

j—oo

z / " timinf (o™ (6% () - 6)} folw — 0)d0
—o0 JT0O©

— [ sup plu)fo(z - 0)d6 > Ro

—oo UER

vielding (4.6) and completing the proof.

Remark 4.1. As mentioned above, the fact that the minimax risks coincide for the
unconstrained and constrained problems implies that dominating estimators of 6y are
necessarily minimax for the constrained parameter space [a,00). These dominating esti-
mators include 6y, its truncated version max(6y,a), and all the dominating estimators
which can be generated by Theorem 3.1.

We conclude this section with a result which offers (we believe) additional insight
into the minimax phenomenon behind Theorem 4.1. Indeed, the following is a short
version of Theorem 4.1, which applies to the subclass C* of estimators &;(x) = 8(x) +
h(z) € C such that lim, . h(z) exists.

THEOREM 4.2. Whenever 8y is unique minimaz for the unconstrained problem with
minimaz risk Ro, the minimaz risk among estimators in C* for the constrained problem
[a,00) is (also) given by Ry, for any pair (fo, p) (with p continuous).

Proor. It will suffice to show that lim infg_,oo R(8,8p) > Rp for any 6, € C*. Let
lim; o h(z) = c. We have by Fatou’s lemma

oo

liem inf R(6,6r) = li()rr_l}inf/ p(6o(z) + h(z) — 0) fo(x)dx

— 0

~ timint [ pléo(a) + h(a + 6)) olz)da

> /—oo lioniigf{p(éo(x) + h(z + 0))}fo(z)dx

o0

- / " p(6o(@) + ) fo(z)dz > Ro;

-0

establishing the result.
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5. The case of the parameter space © = [—-m, m)|

In this section, we present a similar development for the restricted parameter space
© = [-m,m|, where m is known. In particular, we show that the (proper) Bayes
estimator §; with respect to the uniform prior density 7} (8) = (2m)~![-m < 6 < m]
dominates the MRE 6y, for strictly convex losses p(d — 6) and general location families
(but also see Remark 5.1). This generalizes the result in the normal case under squared-
error loss, which was obtained by Gatsonis et al. (1987), and offers a different method of
proof (in contrast to their sign change arguments). Marchand and Perron (2001) showed

that, in a multivariate generalization of the normal case with X 4 N, (0,1,), |10]] <m
and L(#,d) = ||d — 6|2, the Bayes estimator 6}; with respect to the uniform prior on
the ball {6 : 0] < m} dominates the maximum likelihood estimator &, for sufficiently
small m, i.e., m < mo(p). Namely, for p = 1, they obtain that §;; dominates 8mje for
the sufficient condition m < mg(1l) =~ 0.5230. Recently, Hartigan (2004) proved for
X ~ Np(6,I,) with 8 € A, where A (A # RP) is a convex set with a non-empty interior
but otherwise arbitrary, that the Bayes estimator §; with respect to the uniform prior
on A dominates X under loss ||d — 8]|2. For p = 1, this result applies here for a normal
model fo and squared-error loss p, and also applies to the case © = [a,00) studied in
Section 3.

Although implications following from such dominance results are more limited for
restricted parameter spaces of the form © = [—m,m)], it is nevertheless of interest to
characterize and obtain estimators that are adapted to the restricted parameter space
in the sense of passing the minimum test of improving upon the MRE §éy. Furthermore,
it is particularly interesting to witness (see Corollary 5.1):

(1) that the dominance property of 6f; occurs for quite general (fo, p);

(2) the phenomenon for which the truncation 7}, of the prior 7y (6) = 1 onto the
parameter space [—m,m] leads to a dominating estimator 8}, of the original Bayes esti-
mator 8 associated with the untruncated prior ;.

Note that the estimators 6, € C of Section 3 which satisfy condition (i) or (ii) of
Theorem 3.1 in dominating the MRE &, on the parameter space [—m, c0) (or (—o0, m|)
necessarily dominate 6y on the parameter space [—m,m], but that these estimators take
some values outside [—-m,m] as lim,_, h(z) = 0. Rather, we describe dominating
estimators below which take values in [—m, m] only.

The estimators considered in this section will be written in the form 8, (X) = 8o (X)+
h(X), and will belong (or be shown to belong) to the class D of estimators defined as:

D = {6 : 6n(X) = 60(X) + h(X) with h absolutely continuous, nonincreasing,
and 6, () € [-m,m] for all z € R}.

As before, these properties will imply that we are working with a.e. differentiable
function h. Also, given these properties, observe that there will exist, for the estimators
6n € D, a value zo(h), such that 6,(xzo(h)) = fo(zo(h)). The dominance conditions of
Theorem 5.1 are expressed in terms of zo(h) and zo(h{;). Note, with the applicability
of condition (ii) of Theorem 5.1 in mind, that for symmetric fo and p, we will have
80(X) = X, and zo(h) = 0 for sign invariant 6,’s (i.e., 8y (x) = —6x(—x)) such as 6.

The next lemma establishes some useful properties of the estimator 6f;, and it is
followed by general conditions for an estimator 6 € D to dominate & on the parameter
space [—m,m].



IMPROVING ON A LOCATION MRE UNDER A CONSTRAINT 141

LEMMA 5.1. The Bayes estimator 6;(X) = 60(X) + h{;(X) associated with the
uniform prior on [—m,m] satisfies the following properties:

(a)
(1) Eold(6o(X) +hi(t) [t—m< X <t+m|=0, forall teR

(b) 6 € D.

Proor. We prove (b) only, as part (a) is quite similar to part (a) of Lemma 2.3. We
only need to show that h}; is nonincreasing. Define B(v, w) = f:_t;n P (u+co+w) fo(u)du.
Suppose, in order to arrive at a contradiction, that there exists values a pair of t; and {2,
both on the support of fo, such that ¢t > t; and h{;(t2) > h{;(t1). If such were the case,
we would have by (5.1), and since p’ is increasing: 0 = B(te, Af;(t2)) > B(t1,h{;(t2)) >
B(t1, hj;(t1)) which contradicts the property B(ti, hf;(¢1)) = 0 given in (5.1).

THEOREM 5.1. FEither one of following two conditions are sufficient for estimators
8n € D to dominate &y on © = [—m,m|:
(i) Eolp'(8o(X)+h(t) | X < t-+m] <0, for allt < zo(k) and Eols'(8o(X) +h(t)) |
X >t—m] >0, for all t > xo(h).
(i) @o(h) = zo(hty) and |h| < |h.
Proor. (i) Following Kubokawa (1994a, 1998, 1999), we may write
p(60(x) — 0) — p(8o(x) + h(x) — 0) = p(8o(x) + h(t) - 6) [

zo(h)
- / o (60(2) + h(t) — )R (t)dt,

so that
Ah(e) = R(01 60) - R(e,éh)
oo pzo(h)
= [ [ e(a) + he) - O (@) fa(o)dtde
zo(h) zo(h)
= [ [ p@@ + b - o O sa(o)dtde
[ o)+ h) - 0N ) (e
zo(h) Jzo(h)
= I »(0) — I 1(9),
where
zo(h) t
Ln(6) = /_ h’(t){ /_ o (60(z) + h(t) — 6) fo(x)dsc} dt
and

@ = [~ K { [ 5 6oa) + b0 - (e o

o(h)
Now, observe that I ,(f) > 0 whenever, for all t < zo(h),
Eold/(60(X) + h(t) — 6) | X < ] <0
& Eolp'(6o(X) +h(1)) | X <t 6] <0,
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as in (3.1). From this, Lemma 5.1 tells us that I ,(—m) > 0 and I; 4(6) > 0 for
all @ € (—m,m] whenever, for all t < zo(h), Eolp'(6o(X) + h(t)) | X < t+m] < 0.
Similarly, Iy ,(m) < 0 and I» ,(8) < O for all 6 € [—m, m) whenever, for all ¢ > z¢(h),
Eolp'(60(X) + h(t)) | X >t —m] > 0. Hence, the two inequations of condition (i) are
jointly sufficient for Ap(8) to be positive.

(ii) We show that condition (ii) implies (i). Indeed, if zo(h) = zo(h};) and || <
|h{;|, then

Eo[p'(6o(X) +h(t)) | X <t+m] < Eplp'(6o(X)+ h(t)) |[t-m <X <t+m] <0
for t < zo(h), and
Eo[p,(éo(X) -+ h(t)) [ X>t— m} > Eo[p/(éo(X) -+ h(t)) J t-m<X<t+ m] >0

for t > zo(h), given the convexity of p, the nonincreasing property of h for §, € D, and
part (a) of Lemma 5.1.

COROLLARY 5.1.  Under general strictly convez loss p and for general location fam-
ilies, the Bayes estimator &}, with respect to the uniform prior on [—m, m] dominates
the MRE 6y on the parameter space © = [—m,m)].

Observe that the dominating estimators &, € D shrink &y towards zo(h) (i.e., |65 —
zo(h)] < |80 — zo(h)[), while dominating estimators 6, € D with zo(h) = zo(h{;) shrink
less towards the origin than the benchmark estimator 6;;, (i.e., |84 > [6;]). We also note
the interesting case of squared-error loss where the uniform Bayes estimator, as derived
from part (a) of Lemma 5.1, is given by 6;;(z) =z — Eo[X |z —m < X <z +m), and
dominates the MRE 60(X) = X — Ep[X].

Remark 5.1. Theorem 5.1 and Corollary 5.1 also hold under strictly bowl-shaped
losses p and for densities fy having a strict monotone increasing likelihood ratio. This
is so since, in such cases and as in part (b) of Lemma 2.3, part (b) of Lemma 5.1 can
be established with the aid of Lemma 2.2. Finally, as in Section 3, the assumption of
convex loss and strictly positive densities fy also suffice for the validity of Theorem 5.1
and Corollary 5.1.
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