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A b s t r a c t .  This paper considers the independence test  for two s ta t ionary  infinite 
order autoregressive processes. For a test, we follow the empirical process method 
and construct  the Cramdr-von Mises type test statistics based on the least squares 
residuals. It is shown tha t  the proposed test  statistics behave asymptot ical ly  the 
same as those based on t rue errors. Simulat ion results are provided for i l lustration.  
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i .  Introduction 

In this paper, we consider the problem of testing the independence of two stationary 
time series. For the past two decades, the issue has drawn much attention from many 
researchers. For instance, Haugh (1976) proposed an independence test for the errors in 
ARMA models based on the sum of squares of residual cross correlations. Later, adopting 
his idea, Pierce (1977), Geweke (1981) and Hong (1996) studied the independence test for 
two stationary time series. In fact, the method using the cross correlations has been much 
popular in the time series context since it is a crucial task to figure out the dependence 
structure of given time series in a correct manner, and any model selection procedures 
require a step for diagnostics to set up a true model. However, the cross correlation 
method merely guarantees the uncorrelatedness of observations and does not ensure 
the independence. Moreover, the cross correlation just checks the linear relationship 
but cannot find a nonlinear dependence. Therefore, instead of it, here we employ the 
empirical process method devised by Hoeffding (1948) and Blum et  al. (1961). Their 
test statistics essentially fall into the category of Cramdr-von Mises (CV) statistics, and 
have been applied under a variety of circumstances. Recently, their method has been 
adopted by Skaug and Tjcstheim (1993), Delgado (1996), Hong (1998) and Delgado and 
Mora (2000) aimed at developing a serial independence test. 

In this paper, we focus on the independence test for two stationary infinite order 
autoregressive processes. We adopted autoregressive processes since they include the 
most popular ARMA processes in time series analysis, and a method based on residuals 
usually discards correlation effects. In fact, the infinite order autoregressive process has 
been in a central position in the study of the asymptotic efficiency of model selection 
criteria (see Shibata (1980), Lee and Karagrigoriou (2001) and the papers therein). For 
a test, we construct the CV statistic based on residuals. It will be seen that the limiting 
distribution of the residual based CV statistic is the same as the CV statistic based on 
the true errors. 
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In fact, the CV statistic is designed for testing the independence for a specific lag 
k. However, in real situations one should check the independence for several lags, say, 
lk[ < K,  where K is a positive integer larger than 1, since the test for only one lag 
is not sufficient to ensure the independence between the two times series. To this end, 
we consider three types of test statistics. First, we consider the summation of the CV 
statistics based on residuals, which Skaug and Tjcstheim (1993) suggested as a test 
statistic for testing serial independence. Second, we consider the weighted summation 
of the CV statistics which was proposed in Hong (1998) for testing serial independence, 
since the summation type test statistic may suffer from severe size distortions as K 
increases. Finally, we propose as a test statistic the maximum of the CV test statistics. 
We consider this because it is less affected by the CV statistics with large values and 
will have more stability compared to other tests. Our simulation study shows that  
the method based on the CV statistic with residuals turns out to be suitable for the 
independence test of two stationary time series. 

The rest of the paper is organized as follows. In Section 2, we present the procedure 
for the independence test of two stationary infinite order autoregresive processes. In 
particular, we derive the asymptotic distribution of the proposed test statistics. This 
task requires extending the result of Lee and Wei (1999) to the residual empirical process 
with bivariate time parameters, which may be of independent interest in its own sake. In 
Section 3, we report the result of our simulation study. Finally, in Section 4 we provide 
the proofs of the theorems presented in Section 2. 

2. Main results 

and 

Suppose that  {Xt} and {Yt} satisfy the following difference equations: 

o o  

x ,  - .  - Cj ( x , _ j  - . )  = . , ,  
j = l  

t = l , . . . , n  

o o  

Yt - u - E oj (Y t_ j  - r,) = rtt , t = 1 , . . . ,  n ,  
j = l  

where (et, ~h) are random vectors with common distribution F,  et and r h are iid r.v.'s 
with marginal distributions F1 and F2, respectively, and Ee 4 + E~/~ < c~. Furthermore, 
both A l ( z )  := 1 - ~ j ~ l  CjzJ and A 2 ( z )  := 1 - ~-~j~l OjzJ are assumed to be analytic 
on an open neighborhood of the closed unit disk D in the complex plane and have no 
zeroes on D. It can be easily seen that  the last condition implies 

I C j I + I 0 j I - C Y ,  c > 0 ,  0 < p < l ,  

(cf. Lee and Wei (1999)). It is well-known that  the AR(c~) process covers a broad class 
of stationary processes including invertible ARMA processes (cf. Brockwell and Davis 
(1990)). 

Suppose that  one wishes to test the hypotheses 

Ho:  { X t }  and {Yt} are independent, vs. H1 : not Ho. 

The above is equivalent to testing 
! ! i 

Ho: {et}  and {~h} are independent, vs. H i :  not H o 
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since the independence between the processes themselves implies that of the error pro- 
cesses and the converse is also true (cf. Lee and Wei (1999), p. 247). For testing H '  0 vs. 

t 

H~, we consider employing the CV test statistic (cf. Hoeffding (1948)), 

n 

(n  Ikl) -1  E 2 -- Snk@i_k,?]i), k ~ O, 
Bnk ----- i=lk]+l  

S~k(e~,rli_lkl), k < 0, 
i=lk]+l  

with 

(2.1) 

( ~ - I k l )  -1 ~ I(~_~ < x)I(w < y) 
t=]kl-t-1 

-(n-Ikl) -~ ~ I(et-k <_ x) ~ I(rh <_ y), 
t= lk l+l  t= lk l+l  

S ,k (x ,y )  = ( n -  IkI) -1 E I(et < x)Z(rh_lk I < y) 
t=lkH-1 

- (~-Ikl) -: ~ z(~ _<x) ~ z(,~_~j _< y), 
t=[kl+l  t= lk l+l  

k > 0  

k < 0 .  

Note that since verifying the same lag independence itself is not enough to ensure the 
independence between two time series, we consider the test statistic based on the empir- 
ical distribution of (et-k, ~t). Here, utilizing the similar method of Skaug and Tj0stheim 
(1993) and the result of Carlstein (1988), one can show that under H0 for each k, 

OO 

(2.2) ( n -  k)Bnk d 14~k := E /kiJW~ k' 
i,j=l 

where Wijk, i , j  = 1, 2 , . . .  are iid N(0, 1) r.v.'s and )~ij are the numbers in Theorem 2 of 
Skaug and Tj0stheim (1993). It is well known that )~j = (ijTr2) -2 for continuous type 
r.v.'s. 

In order to test H0 vs. H1, however, true errors should be replaced by residuals since 
they are unknown in practice. For this task, we fit finite order autoregressive models to 
the observations X 1 , . . . ,  Xn and II1, . . . ,  Yn. Let p = Pn and q = qn be certain sequences 
of positive integers that diverge to oc and satisfy p3/n ---, 0 and q3/n --* 0 as n ---* co. 
Writing 

and 

P 

j = l  

q 

Yt - . = ~ 0j(Y,_j - ~) + ~ + v~, 
j = l  

where 

O 0  O 0  

0j(Y,_j - ~), 
j = p + l  j = q + l  
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we estimate gb~ 
~ -- (q~l,..., Cp)' and 0n = (01, . . . ,  0q)', i.e., 

(2.3) 

and 

(2.4) 

~-= ( r  Cp)' and 0 n -~ (01 , . . . ,  0q)' by the least squares est imates 

~)n = (Xt--1 -- f ~ n l p ) ( X t - ,  - [tnlp)'  
t 1 t = p + l  

( x ~ _ ,  - # , x , ) ( x ~  - ~ )  

On = Y t - l - 1 ) n l q ) ( Y t - l - ~ n l q ) '  E ( Y t - - l - - ~ n l q ) ( Y t - - ~ n ) '  
t t=q+l  

where X t  ---- ( X t , . . . ,  X t - p + l ) ' ,  Y t  = (Y t , . . . ,  Yt-q+l) ' ,  l r ,  r ~ 1, denotes the vector in 
R r whose components are all equal to one, and ft,~ and /~n a r e  suitable estimates of # 
and u. Then calculating the residuals 

+t = X t  -- f-tn -- ~) tn(Xt--1  -- fit,~lp) 

and - !  
~t = Yt - ~n - On( Y t - 1  - ~n lq ) ,  

we define 

(n [kr) -1 ~ - 2 -  - S~k(c i_k ,7 ) i  ),  k > 0, 
g n k  = i = [ k [ + l  

(n Ikl) -1 ~: -2 - 
- -  S'Znk(Ci,~i_[k[), k < 0, 

i=lkl+l 

where Snk(x, y) is defined in the same way as Snk(X, y) in (2.1) with et and ~t replaced 
by ~t and ~t- Throughout this paper, we assume that 

(C1) n-X(p  5 + q5)(logn)2 ~ 0 and n2(pp p + qpq) --* 0 for all p C (0, 1) as n ~ c~; 

(C2) sup~ o~ [ < c ~ , a n d s u p ~  Oz'~ I < c ~ , i = 1 , 2 ;  
(C3) nl/2(f~, - #) = Op(1) and nl /2( l]  n - -  /2) = Op(1). 
The first condition in (C1) implies that the rate of p and q is not so fast; otherwise, 

we are in a situation that  there are too many parameters to be estimated, while the 
second condition requires those to be large enough for a good approximation. A typical 
example of p and q is p = q = [C(log n) 2] for some C > 0. Then it can be shown that 
under H0, for each nonnegative integer k, 

(2.5) 9 ~ k  - Bnk = o p ( n - 1 ) ,  

proof of which result is provided in Section 4. 
However, with /)nk, it is just  tested that (et-k,~?t) are dependent for given k. In 

order to testing the independence for k's, one should consider the test statistic based on 
more than one /)~k's. If the true errors were known, typically one could consider the 

K summation type test statistic G n K  :-~ n ~-]k=-K Bnk as Skaug and Tjcstheim (1993) ex- 
amined this for testing the serial independence of random observation. In fact, similarly 
to Serfling ((1980), pp. 194-199), it can be shown that under H0, 

( 2 . 6 )  G n K  ~ E ~ i j C i j ( 2 K  -~ 1) ,  
i , j=l  
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where Cij (K), i, j = 1, 2 , . . .  are independent chi-square r.v.'s with K degrees of freedom. 
Combining (2.6) and (2.5), we obtain the following. 

K THEOREM 2.1. Assume that (C1)-(C3) hold, and let GnK = n E k = - K  Bnk, where 
K is a nonnegative integer. Then under Ho, 

oo 
GnK d.~ ~K := E (ijTr2)-2Cij (2K + 1) 

i,j=l 
as n ~ ce, 

where C i j ( K )  are independent chi-square r.v. 's with K degrees of freedom. 

K Remark. Under the assumption of Theorem 2.1, we have that 17nK := ~-~k=_K(~t-- 

k)Bnk has the same limiting distribution as GnK. 

Although the idea of using the summation type statistic sounds quite natural, Hong 
(1998) pointed out that it suffers from severe size distortions as K increases and suggested 
a weight sum of the CV test statistic for testing the serial independence. Similarly, in 
our set-up, we can also employ weighted sum o f /~k ' s :  

n--2 }--1/2 n--1 

/~nK. := 2170 E gn(k /Kn)  E g 2 ( k / K n l { ( n -  k)Bnk - /~f0n},  
k=2-n k=l -n  

where g is a kernel function, {K.}  is a sequence of positive real numbers, 

and 

n n 

1 E Fln(~t)(1 - Fln(~t)} 1 E F2n(?~,)(1 - F2n(/~/s)} 
t=l t=l 

-- n- l {#ln( s A - 2 
s,t=l 

1 n 
x V 

s,t=l 

with Fin(u) = 1 n n n E t = l  I(~t <<_ u) and F2n(u) = • • t= l  I((Tt _< u). Then we have the 
following result, of which proof is provided in Section 4. 

THEOREM 2.2. Assume that (C1)-(C3) hold and the function g : R ~ [-1, 1] is 
symmetric,  continuous at 0 and all except a finite number of points, with g(O) = 1, 

1 a n d O < C < o o ,  and f_~176 < oo and Ig(z)[ < Clzl -b as z ~ oo for some b > 
Kn = cn v for  some O < ~ < l and O < c < oo. Then under Ho, we have 

/~nK. d N(0, 1). 

Notice that the truncated (g(z) = I(Iz  I < 1)), Bartlett (g(z) = (1 - ]z[ ) I ( ]z]  < 
1)) and Daniell (g(z) = sin(Trz)/(Trz)) kernels satisfy the above conditions (cf. Hong 
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(1998) and Priestley (1981)). As it will be seen in our s imulat ion study, ~InK n c u r e s  the 
drawback of Gng .  

Now, we propose another  test  statistic, which is obtained as the max imum of/~nk'S, 
namely, 

/ • / , , K  -- n max /~nk. 
Ik[<_K 

It will be seen in our simulation s tudy  tha t  the maximum type statist ic is the most stable 
among the test statistics considered here. The proof of the following theorem is given in 
Section 4. 

THEOREM 2.3. Assume  that (C1)-(C3) hold. Then under  Ho, 

/~/nK d .s := max  14;k as n ---* c<), 
Ikl_<K 

where 14]k is as defined in (2.2) with Aij = (ij~r2) -2. 

Remark.  The results of Theorems 2.1-2.3 are applicable to the serial independent  
test  for the autoregressive models. In practice, some may  prefer to use A R M A  models 
instead of infinite order autoregressive models despite the residuals in A R M A  models are 
harder to deal with in deriving the limiting distr ibution of the residual empirical process 
(cf. Bai (1994)). Since this is not our pr imary concern, we do not intend to pursue it 
here. However, in light of the result of Bai (1994), one can easily guess tha t  the same 
results hold in A R M A  models. 

One may argue that using the autoregressive model approach may cause a model 
bias, and the observations themselves must be used in constructing test statistics. But 
it is well known that the empirical process for dependent observations has a limiting 
distribution depending upon their correlation structure. Therefore, the limiting distri- 
butions of the test statistics as in Theorems 2.1-2.3 will depend upon the correlation 
structure as well. This will certainly cause a serious trouble when performing the test 
in real situations. It may be worthwhile from a theoretical viewpoint to investigate the 
limiting distribution of the test statistics, for instance, for strictly stationary strong mix- 
ing processes. However, this issue is somewhat beyond the scope of the present paper. 
So, we leave it as a task of future study. 

Recently, there exists a tendency to release the iid assumption on the true errors 
in time series models. To our knowledge, there are few literatures pertaining to the 
residual empirical process based on a sequence of martingale differences. Convention- 
ally, the functional central theorem for martingales requires higher moment condition. 
Therefore, one may expect that Theorems 2.1-2.3 will hold for strictly stationary mar- 
tingale differences under fairly mild conditions. But, a caution should be taken since 
serial dependence in high order moments, for instance, induced by volatility clustering, 
may affect the asymptotic variance (and so the form of the tests statistics) of the tests in 
Theorems 2.1 and 2.3. This, however, is not necessarily true for the test in Theorem 2.2. 

In the next section, we will study the empirical sizes and powers of the test statistic 
based on our asymptotic results. 
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3. Simulation results and discussion 

In  this sect ion we evaluate  the  pe r fo rmance  of the  tes t  s ta t i s t ics  in t roduced  in Sec- 
t ion 2 t h rough  a s imulat ion study. First ,  we calcula te  the  a s y m p t o t i c  cri t ical  values 
of the  test  s ta t is t ics  under  Ho. The  figures in Table  i denote  the  number s  gK,a and  
rnK,c~, such t h a t  for a = 0.01,0.05,0.1,  and  K - 5 ,10,15,  P(~K > gK,a) = O6 and 
P(A4K > mK,~) = a ,  respectively. 

In  ca lcula t ing gK,~ and rrtK,a, we followed the  same  m e t h o d  as Skaug and  T j0s the im  
(1993): we calcula ted  the  empir ical  quanti les  for each a and  K f rom the 10000 number s  

200 ' '  2 --2 X "~200 genera ted  f rom the t runca ted  r.v.'s. Eij=l(g271 ) Cij(2K + 1) and  maxlkl_< g z_,ij=l 
( i j ~ ) - 2 W ~ k ,  and repea ted  this p rocedure  1000 t imes.  

Here,  as in Hong  (1998), we also examine  the  pe r fo rmance  of the  leave-one-out  tes t  
s tat is t ics .  Towards  this end, we define 

( n - k -  1) -1 ~ nkk i-k,qi},  k k 0, 
~.  i=k+l  

Bn : (n Ikl 
- - S , ~ k ( ~ i , ~ _ l k l ) ,  k < O, 

i=[k[+l 

where  

S t k ( e i - - k , n ~ )  = 

(n -- k - 1) -I ~ I(~t-k ~-- ~i-k)I(~t ~_ (~i) 
t=k + l,t#i 

n 
-- (n -- k - 1) -2  ~ I(gt-k <_ ei-k) 

t=k+l,t#i 

x E I(~t < ~), k > o, 
t = k + l , t # i  

(n - [ k [ -  1) -1 k I(gt <_ ~i)I((?t-lkl <-- ~i-lkl) 
t=lkl+l,tr 

n 

- ( n - [ k l -  1) -2  E I(gt  _< ei) 
t=lkl+l,t#i 

• E X(Ot-lkl -< ')~-Ik,), k < o. 
t=lk]+l,t#i 

We deno te  -* - * by  G nK , V~K , HnK ~ ~* and M* K -  * be  the  leave-one-out  tes t  s ta t i s t ics  cor respond-  

ing to GnK, (/nK, ff-Ingn and Mng,  respectively.  In  this s imulat ion,  for all tes t  s ta t i s t ics  
considered in Sect ion 2 and their  associa ted  leave-one-out  tes t  s tat is t ics ,  we calcula te  
the empir ica l  sizes and  powers at  a nomina l  level 0.05. In each s imulat ion,  200 initial  
observa t ions  are discarded to remove  ini t ial izat ion effects. For calcula t ing the  empir ica l  

K 

Table 1. Asymptotic critical values of GK and JldK. 

GK A/IN 
C~ 0.1 0.05 0.01 0.1 0.05 0.1 

5 0.3731 0.3982 0.4511 0.0892 0.1018 0.1323 

1 0.6747 0.7070 0.7736 0.1074 0.1205 0.1531 

15 0.9707 1.0087 1.0873 0.1187 0.1323 0.1669 
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size and  power,  sets of 100 and  300 observat ions  are genera ted  f rom the following models:  

Xt = 0 .5Xt-1  + et and  Yt = 0.5Yt-1 + ~/t, 

a n d  

X t  = 0 .5Xt -1  + et + 0 . 5 c t _ 1  a n d  Yt ~- 0 . 5 Y t - 1  --~ ?~t -1- 0.57~t-1.  

U n d e r  H 0 ,  b o t h  et a n d  ~?t a r e  a s s u m e d  t o  b e  i id  s t a n d a r d  n o r m a l  r . v . ' s .  M e a n w h i l e ,  

u n d e r  H 1 ,  w e  a s s u m e  t h a t  

p : =  C o r r ( X t _ 2 ,  Yt)  = 0 .2  a n d  0 .5 .  

H e r e  w e  u s e  p = q = [ 0 . 1 ( l o g n )  2] f o r  t h e  A R  a p p r o x i m a t i o n .  

Table  2. Empir ica l  sizes in AR(1)  model.  

n 100 300 

K 5 10 15 5 10 15 

GnK .112 .202 .352 .066 .070 .108 

VnK .088 .100 .126 .062 .060 .058 

/~T .104 .122 .134 .056 .066 .062 n K n  

f / B  .090 .100 .106 .048 .046 .054 n g n  

fID .098 .126 .152 .044 .052 .066 n g n  

l~/InK .054 .036 .030 .030 .026 .026 
~ .  

GnK .120 .192 .334 .074 .076 .112 

VnK .086 .102 .130 .060 .058 .060 

/~'~T n .108 .142 .130 .052 .072 .064 
~ * B  HnK n .108 .114 .114 .050 .050 .056 
~ * n  HnK n .108 .120 .142 .052 .052 .060 

l~InK .062 .024 .036 .036 .032 .020 

Table 3. Empir ical  powers wi th  p = 0.2 in AR(1)  model.  

n 100 300 

K 5 10 15 5 10 15 

GnK .226 .278 .428 .514 .442 .410 

VnK .174 .146 .170 .502 .386 .348 

/~T .202 .176 .172 .546 .416 .330 n g n  
~ B  HnK ~ .336 .298 .266 .700 .664 .628 

/~D .316 .278 .272 .714 .628 .588 n g n  

l~InK .158 .094 .078 .602 .480 .392 
~ .  

GnK .176 .234 .360 .456 .388 .378 

l~n* K .132 .108 .114 .440 .344 .304 

H~K ~ .152 .118 .138 .506 . 3 8 2  .302 

/~*B .282 .242 .214 .652 .616 .584 n g n  

HnK n .260 .220 .190 .682 .590 .536 

l~nK .140 .076 .064 .560 .414 .356 
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The figures in Tables 2-7 indicate the percentages of rejections of the null hypothesis. 
Tables 2-7 exhibit the empirical sizes and powers of GnK, VnK, /:/TK n, /IBK~, /tDK., 

M n K  and their leave-one-out test statistics, where /tTK~ , /tnBKn, /~DKn denote the test 
statistic using the truncated, Bartlett  and Daniell kernels, respectively. 

From Tables 2 and 5, we can observe that the sizes of all test statistic except -~/nK 
are larger than the nominal size and increases as K increases. However, when n is 300, 
all test statistics except G~K achieved the sizes close to the nominal level. 

Tables 3 and 6 and Tables 4 and 7 show the powers of the test statistics under the 
alternative with p = 0.2 and p = 0.5, respectively. We can see that all test statistics 
produce good powers as either p gets close to 1 or n increases. In some cases, such as 
n = 100 and p = 0.2, f /~K produced lower powers than the others, which is, however, 

Table  4. Empi r ica l  powers  w i th  p ---- 0.5 in AR(1)  model .  

n 100 300 

K 5 10 15 5 10 15 

(~nK .848 .824 .856 1 1 .998 

VnK .816 .704 .638 1 .998 .996 
- T  H~K ~ .860 .734 .652 1 1 .996 

f i B  .976 .962 .934 1 1 1 ~ g n  
f i D  .964 .938 .900 1 1 1 n g n  
l~InK .920 .856 .798 1 1 1 

G* .786 .770 .798 1 .998 .996 n K  

l~n* K .746 .636 .562 1 .998 .996 
- * T  H~K n .790 .656 .586 1 1 .996 

fin*B .962 .932 .890 1 1 1 Kn 
~*D HnK n .944 .890 .828 1 1 1 

l~[nK .884 .784 .744 1 1 1 

Table  5. Empi r ica l  sizes in A R M A ( 1 ,  1) model .  

n 

K 

100 300 

5 10 15 5 10 15 

G n K  

C.K 
f-I T 

n g n  
f i  B 

n g n  
~D HnK,~ 

.132 .193 .349 .057 .078 .091 

.111 .102 .114 .050 .061 .049 

�9 126 .119 .120 .082 .070 .064 

�9 099 .116 .135 .066 .073 .073 

�9 114 .151 .165 .070 .075 .073 

�9 069 .051 .040 .044 .037 .033 
~ .  

GnK 

fi*T 
n K n  

- * S  
HnKn 
fi*D 

Kn 

�9 123 .193 .327 .057 .075 .081 

�9 099 .097 .101 .053 .056 .046 

�9 119 .121 .111 .078 .063 .061 

�9 113 .119 .121 .062 .080 .075 

�9 118 . 1 4 2  .139 .060 . 0 7 5  .075 

�9 066 .053 .046 .041 .037 .029 
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due to size distortions. In the case tha t  n = 300 and p = 0.2, we can see t ha t  MnK 
produces bet ter  powers than Gag  , ~/rnK and /~TK~ , and slightly less powers t han  /4nB/~n 

and/~rDKn. 
In fact, in all tests one can observe power losses when K becomes large. In part icular ,  

the powers of VnK and ]lT/nK are remarkably reduced, but  both/~nUK~ and/~DK~ produced 
less power losses. Despite we do not report here, we simulated the powers for different 
alternatives, for instance, HI : Yt is correlated with Xt-k: the correlation is 0.2, where 
k is taken to be 5, 10 and 15. From this study, we could see tha t  when n is small, e.g., 
n = 100, and the correlation is low, e.g., p = 0.2, ]~/~K has the best powers among all 
test  statistics when Yt is correlated with Xt-K, but  its power is diminished significantly 
compared to the others when Yt is correlated with Xt-t, l < K.  From this result, we 

Table 6. Empirical powers wi th  p = 0.2 in ARMA(1,  1) model. 

n 100 300 

K 5 10 15 5 10 15 

enK .252 .358 .480 .538 .463 .442 

VnK .210 .199 .204 .517 .415 .363 

/4nTKn .253 .219 .229 .557 .432 .370 

/~rffK" .416 .341 .324 .682 .659 .630 

/~nDK~ .365 .330 .330 .726 .648 .594 
l~nK .203 .135 .099 .617 .500 .441 

(~* .208 .304 .420 .489 .421 .405 n K  

~ K  .172 .160 .174 .474 .373 .325 

/~*T .203 .190 .203 .523 .396 .339 

/~n *B .339 .286 .267 .646 .630 .597 
g n  

/ ~ D _  .291 .274 .246 .689 .618 .546 

l~/InK .160 .105 .083 .582 .465 .380 

Table 7. Empirical powers with p ---- 0.5 in ARMA(1,  1) model. 

n 100 300 

K 5 10 15 5 10 15 

GnK .835 .821 .861 1 1 1 

VnK .793 .696 .633 1 1 1 

/ ~ K ~  .830 .729 .672 .998 .998 .998 

/7/~K ~ .970 .946 .920 I I i 
- D  HnK ~ .949 .923 .890 1 1 1 

l~nK .900 .828 .779 1 1 1 
~ .  

GnK .782 .745 .806 1 1 1 

V~K .752 .623 .569 1 .998 .998 

/~.T .790 .653 .610 .998 .998 .998 n ~ n  
- * B  

HnK ~ .952 .921 883 1 1 1 

9 3 1  8 7 8  .844 1 1 1 

MnK .858 .782 .717 1 1 1 
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could conclude tha t  in small samples, M n K  is  somewhat  sensitive to a choice of K ,  
and might produce poor powers with high chance if a very large K is selected. But  in 
practice, there are no universal ways to choose the best K .  Meanwhile, one can notice 
tha t  using the leave-one-out test  statistics alleviates the size distort ions in some cases, 
but  it also drops powers. Overall, we did not find a solid proof tha t  the leave-one-out 
method  outperforms the original one in a significant manner.  

So far, we have seen the performance of several residual based CV tests. As an- 
ticipated, d n K  has severe size distortions and the others cure this drawback to a great  
degree. In particular,  we could see tha t  MnK is the most stable among all test statistics 
considered here. From this simulation study, we figured out  tha t  for fairly large samples, 
the three tests: /~/nK, /JBK n and /:/nDKn are all recommendable.  However, when the 
sample size is small, one should keep in mind tha t  the first test has a power loss problem 
as mentioned earlier depending upon situations, and the other two tests have the size 
distort ion problem. In conclusion, when one prefers a conservative test  in small samples, 
we recommend to use MnK. Otherwise, we recommend /tBK~ and /-~rDK . 

4. P roo fs  

In this section, we provide the proofs of the results presented in Section 2. For 
brevity, we will consider the nonnegative k case. Before we proceed, we introduce some 
notation.  Note tha t  the least squares est imates of r and O n in (2.3) and (2.4) can be 
rewrit ten as ~n = On + ")'in + ~ l n  "~ ~ l n  and 0n = 0n + ~'2n + 62n + ~2n, where 

- 1  

~ l n  = X t - 1  - # n l p ) ( X t - 1  - # n l p )  t 

k t=p-t-1 

61n = X t - 1  -- # n l p ) ( X t - 1  -- #nip) '  
kt=p-I-1 t = p + l  

r = (Xt-i -- # n l p ) ( X t - 1  - # n l p ) '  ( X t _  1 - -  # n l p ) ( , n  - -  ~t) 

t = p + l  t = p + l  

1) M -- , 

n 

E ( X t - 1  -- #nlp)rl t ,  
t = p + l  

~ ( X t _  1 - # n l p ) e t ,  

and 72~, 62n and ~2n are similarly defined. Note tha t  if we set r  = ~b n + 61n -I- ~ln 
and ~)~ = 0~ + 62~ + (2n, ~bn and On are the least square estimates of r  and 0n when 
rjt = 0, j = 1, 2. Imita t ing the proof of Lemma 3 of Berk (1974), we can easily show 
tha t  under  (C1), 

]l~bn - ~bnll 2 = Op(n - ' p )  and II~)n - O~ll 2 = Op(n- lq ) .  (4.1) 

(cf. Lee and Wei (1999), Lemma 3.3). If we put  

^! 

and At := Yt - ~n - On(Y t -1  - z)nlq), : =  - - - 

we can write 

~t = ~t --  9 ' ~ n ( X t - i  - # n i p )  and ~t = ~t  --  "Y'2n( Y t - 1  - r ' n l q ) .  
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The following lemma is proven in a similar fashion to Lemma 2.2 of Lee and Wei 
(1999)(cf. Lemmas 5.1 and 5.2 of Neuhaus (1971)), and the proof is omitted for brevity. 

LEMMA 4.1. Suppose that k is a nonnegative integer, (e~',~/~') are random vectors 
satisfying 

n 

O/n :----- sup 7/-1/2 E [I(e~_k -- < x ) I ( l ] ;  _< y)  -- F ( x - ~ - ~ t _ k  -- ~*t-k,Y-~- l]t -- I];) 
x,y [ t=k+l  

+ F(x,  y) - I(~,_k _< x)I( ,~ _< y)] 

= op(1), 

and ~jn, j = 1, 2, are r.v. 's with/~jn = o p ( n - W 2 )  �9 Then i f  (C2) holds, 

sup 7/-1/2 ~ [ i (e ;_  k ~ X -F ~lt)/(r]; ~_ y q- fl2t) 
x,y t=k+l 

- -  F ( x  ~- ~ t - k  - -  s -~- ~ l t ,  Y -[- ?~t - -  ? ~  q -  ~2t) 
! 

F ( z ,  y) - I ( e t - k  <_ x ) I ( rh  < Y)]I + 

I 
= Op(1). 

LEMMA 4.2. 
addition, assume that 

n 

(a) sup n -1/2 ~ [ I ( ~ - k  
x,y t=k+l 

Let k be a nonnegative integer. Suppose that (C1)-(C3) hold. In 

< x ) I ( ~  h < y)  - F ( x  + e t - k  - g t -k ,  Y + ~h - ~h) 

+ F ( x , y )  - Z(~,_~ < x) (~ ,  < y)] 

(b) sup n -1/2 ~ [I(~t_  k ~ x )  - F l ( X  -[- s  -- ~ t - k )  -]- FI(X) - I ( e t - k  <_ x)] 
t=k+l 

= op( i ) ;  
n 

(c) sup 7/-1/2 E [I(?Tt-k ~ y)  - -  r2(y -~- ?~t-k - -  ~ t - k )  -[- F2(y) - -  I ( ~ t - k  ~-- Y)] 
t=k+l 

= op(1). 

Then,  under Ho, we have 

(4.2) sup [Snk(X,  y) - gnk  (X, y)[ = 0 p ( 7 / - 1 / 2 ) ,  
x ~ y  

where Snk( ' )  is the same as Snk( ' )  in (2.1) with et and ~t replaced by gt and ~)t. 

= OR(l); 
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P ROOF. Let 

n 
(4.3) ~nk(X,y) = (n - k) -1/2 E [ I ( ~ t - k  ~- x ) i ( ~ t  ~- y )  --  F ( x t y ) ] ,  

t = k +  l 

(4.4) 21nk(X ) = (n - k) -1/2 ~ [ I ( i t - k  <_ x)  -- Fl(X)] 
t=k+l 

and 
n 

(4.5) g2nk(Y) = (n -- k) -1 /2  E [ I (~ t -k  <_ y) -- F2(y)I. 
t=k+l 

Define ~ n k ( x , y ) ,  ~lnk(X) and $2nk(Y) similarly to E n k ( X , y ) ,  Elnk(X) and g2nk(Y) by 
replacing ~t and ~)t by ~t and ~)t. Using this notat ion,  we can write  tha t  

(4.6) nl /2{Snk(X,  y) -- Snk(X, Y)} 

= {rt(n -- ~ ) - l } l / 2 [ { 2 n k ( X  , y) -- ~nk(X, y ) }  -- F2(y){Elnk(X ) - ~lnk(X)}  

-- F 1 (x ) { 22n  0(y)  -- 22n 0 ( y ) }  

-- n - i / 2  { 2ink(X) - 2 1 n k ( X )  } { ~ 2 n O ( Y  ) --  22n0(Y)} 

- ~ - ' / ~ { ~ i n k ( X )  - 2 i . ~ ( x ) } ~ o ( y )  

-- rt-1/2 { ~2nO(Y ) -- ~2nO(Y) }~lnk(X)].  

! ! 
Since ~t = ~t - " I l n ( X t - 1  - f tnlp)  and r)t = ~)t - "/2n( Y t - 1  - 1)nlq), the first te rm in the 
right hand side of (4.6), viz., SUPx,y I~nk (X, y ) -  ~nk (X, Y) I is bounded  by l i n  k ~-12n k Jr-I3nk, 
where 

I lnk  ~- sup (n -- k) -1/2 
x ,y  

hnk  = sup (n - k) -1/2 
x , y  

I3nk = sup (n -- k) - U 2  
x ,y  t=k+l 

n 

t=k+l 

- F ( x  + e t - k  -- ~ t -k ,  Y + rh - ~t) 

+ F ( x ,  y)  - I ( e t - k  <_ x ) I ( ~ t  < y)] , 

n 

t=k+l 

+ V~n( r ~ _ ,  - ~ n l q ) )  -- F ( x  + ~ - k  -- ~ - k  

Jr- " ~ J l n ( X t - k - 1  - -  f zn lp) ,  y + rh - ~)t 

A- ~/2n( Y t - 1  -- ~nlq))  -4- F ( x ,  y) 

- I ( ~ - k  _< x ) •  <_ y ) ] ,  

~-% [ E ( x  + ~ - k  -- ~ - k  + ~ i ~ ( X ~ - k - ~  -- p n l p ) ,  y + ~ -- ~ 

+ ~12n( Y t - 1  - ~nlq))  - F ( x  + e t - k  -- e t - k ,  Y + ~t -- ~)t)] - 
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First, note that I lnk = Op(1) due to (a). Next, using (C1) and the arguments used 
to prove Lemmas 2.1 and 3.2 of Lee and Wei (1999), we can show that  

(4.7) 

and 

! 
m a x  [ ' ~ [ i n ( X t _ l  -- f t n l p )  I = Op( f t  - I / 2 )  

l < t < n  

(4.8) max ['r'2,~( Y t - 1  - s = Op(rt-1/2),  
l < t < n  

whose detailed proof is omitted for brevity. The arguments (4.7) and (4.8) with Lemma 
4.1 and (a) imply hnk = op(1). Finally, I3nk is op(1) from (4.7), (4.8), (C2) and Taylor's 
series expansion. Combining all these results, we have 

(4.9) sup [g~k(x, y) - gnk(X, Y)[ = OF(l). 
X , y  

Then (4.2) is yielded by (4.6), (4.9) and the fact that: 

sup [Elnk (X)  --  g l n k  (X)[ = Op (1 ) ,  
x 

sup [g2nk(y) - g2nk(Y)[ = OR(l), 
y 

and SUPx [gink(X)l = OR(l) (cf. Lee and Wei (1999)). [] 

Notice that  the arguments in (b) and (c) hold due to Corollary 2.2 of Lee and Wei 
(1999) under (C1)-(C3). The following lemma is concerned with (a). 

LEMMA 4.3. Let  k be a nonnegative integer, and assume that (C1)-(C3) hold. 
Then,  under  H0, 

sup n -1/2 n C~k := ~ [I(gt-k  < 
x ,y  t=k+l  

= o p ( 1 ) .  

x)I(7)t < y) - F ( x  + e t -k  - e , - k ,  Y + rh - ~)t) 

+ F(x,y) - /(e,_~ < ~)(~, < y ) ]  

PROOF. Letting 

~, ~, ( ~ n  ' - ~ n l p ) ,  * = - - ~ n )  ( X , - 1  

~ = (~.-- ~) (~-~r -- 1), ~:1 
x* = x - #~, y* -- y - ~,,  

we can write C,k < II ,k  + I2,k, where 

n 

I lnk  -= sup n -1 /2  E [I(e~-k <- X* -- 
x ,y  [ t=k+l  

?~ = ?~t --  (On -- O n ) t (  Y t - 1  - l / nXq) ,  

1) , 

r l , t - k ) I ( ? ] ;  ~ y* -- r2t) -- F ( x *  -}- s  
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and 

t - k  -- r l , t - k , Y  + ~t -- ~t -- r2t)  

+ F(x*, v*) - < x*)I% < y*)], 

n 
/2nk = sup  Tt -1 /2  E [ I ( ~ t - k  ~ X)I(?~t ~ y)  -- F ( x ,  y)  

x,y t=k+l  

- <_ x * ) I %  < y*) + F(x*,F)] t. 

First ,  we can see tha t  I2nk = op(1)  in view of Lemmas  5.1 and 5.2 of Neuhaus  
(1971). On the other  hand,  due to (C1), we have tha t  

max  Irltl = op(n  -W2) and m ax  
p+l<t<n  q+l<t<n 

Ir2tl = op (n  -1/2) 

(cf. Lee and Wei (1999), Lemma 3.2). Therefore ,  in view of L e m m a  4.1, it suffices to 
show tha t  

sup IC~ := sup n -1/2 f i  [I(et-k <_ x + (r -- r  - - /hnlp))  
x,y x,y t=k+l  

• IQ]t  <_ y + (On -- O n ) ' ( Y t - I  - ~'nlq))  

-- F ( x  n t- ( ~ n  -- ~ ) n ) t ( X t - k - 1  -- f ~n lp ) ,  

y + (On -- O n ) ' ( Y t - 1  -- v n l q ) )  

+ F(x ,  y) - I ( e t - k  <_ x)IOTt < y)] = OF(l) .  

Let  xi and yj,  i , j  = 1 , . . . , n  be such tha t  - c o  = Xo < "-- < Xn = oo, - o c  = 
Y0 < "'" < Yn = cx~, FI(Xi) = i / n ,  and F2(Yj) --- j/n, where F1 and F2 denote  the 
marginal  d is t r ibut ion of el and 771 , respectively. Observe tha t  for any x E (Xnr, Xn,r+l] 
and y E (Yns, Yn,s+l], C~ Y) is bounded  by I l l nk  + II2nk + II3nk, where 

I I l n k  = m a x  
i=r,r+ l , j=s ,s+ l 

I I 2 n k  = m a x  
i=r,rW l , j=s,s+ l 

n 

n- t~2 E [ I (c t -k  _< zi  + (~n - 4 ) ~ ) ' ( X t - k - 1  - - /~nlp) )  
t=k+l  

• IO?t <- Vj +(On - O ~ ) ' ( Y t - 1  - Pnlq))  

-- F ( x i  + ( ~ n  -- ~ n ) t ( X t - k - 1  -- f~nlp), 

yj + (On - 0,~)'( Y t - 1  - ~,,,lq)) 

+ F(x i ,  yj) - I ( e t - k  < xi)I(~h < yj)] , 

n 

n - l ~ 2  E [ F ( x i  + ( ~ n  -- r  -- f Z n l p ) , y j  

t=k+ l  

+ (On -- On) ' (  Y t - 1  - ~'nlq))  
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- F ( x  + ( ~  - r  - #~1 , ) ,  

y + (On -- O n ) ' ( Y t - 1  - t ) n l q ) ) ]  , 

n 

H ~ k  = max ~-~/~ ~ [I( , , -k < z , )I (v ,  < yj) - F(x , ,  Vj) 
i=r,r + l , j=s,s+ l 

t = k + l  

+ F ( x ,  y) - I ( , t - k  < z ) I (~ t  < y)l �9 

Using Taylor's series expansion and the proposition in the Appendix of Lee and Wei 
(1999), we can readily show that supx,y flI2nkl = op(1). On the other hand, it follows 
from Lemmas 5.1 and 5.2 of Neuhaus (1971) that sup~,y iII3.kI = op(1). Therefore, it 
suffices to prove that 

* m a x  /'t -1/2 (4.10) Cnk := ~-<~'~-<"1 [I(,,_~ < x~ + ( ~  ' x - r  ( t - k -1  - - /2alp))  
t = k + l  

x I(rh <_ y~ + (On - O,~) ' (Yt_l  - s 

- F(x~ + (r - r  - / 2 n i p ) ,  

Ys + (On - O n ) ' ( Y , - ~  - / ) n l q ) )  

+ F(xr ,  Ys) - I ( e t - k  < xr)I(~h < Ys)] = OF(l). 

Let 7 be any positive real number. In view of (4.1), we can choose a positive real 
number K,  such that P(U3_I Sc) < 7 for all sufficiently large n, where 

S1 = {ll~n - qbnll <-- M ( n - l p )  1/2, lion - Onll < M ( n - l q ) l / 2 } ,  

m a x  IIX~-i- #nlpll_ M(np) 1/2, m a x  I] Y t - 1 -  inlqll _< M ( n q ) l / 2 ~ .  Sa 
l l < t < n  l <t<n ) 

Then for A > 0, 

P(C~k > ~) < P(C~k > ~, n~\ lS~)  + 

< P ( max n -1/2 
-- ~kO<<r,s<_n,zjCZj,j=l, 2 

n 

d,k((x~,y~), z)  
t = k + l  

> A, s2ns3) + 7, 

w h e r e  z = ( Z l , Z 2 ) t ,  z j  C Z j ,  j = 1 ,2 ,  Z 1 : ( z 1  C RP;  I]Zll] _~ K } , Z 2  7_ { z  2 E 

m ;  IIz=[I _ K}, a n d  

dtk( (x ,y) ,  z)  = I ( e t - k  < x + z1X t_k_ l ) I ( I ] t  ~ y -}- 21 2 Y t - 1 )  
I * I * 

w i t h  X t = ( n - l p ) l / 2 ( X t  - f~n lp )  a n d  Y t  = ( n - l q ) l / 2 (  Y t  - fJnlq) .  
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In order  to verify (4.10), it suffices to show tha t  

sup n - ' /~  ~ dta((x~,y~),z) I ( $ 2 ~ $ 3 ) = 0 p ( 1 )  
O~_r,s~_n,zj~Zi,j=l,2 t = k + l  

since 7 can be chosen arbi t rar i ly  small. 
To this end, we par t i t ion  the rectangle I - M ,  M] p in R p by subrectangles genera ted  

by the vertices Vp = { ( z l l j , . . . , Z l p j ) ; j  = 1 , . . . , n } ,  where Zlij = - M  + 2 M j / n ,  i = 
1 , . . .  ,p, j = 0 , . . . ,  n. Similarly, we par t i t ion  I - M ,  M] q in R q by Vq = { (z21 j , . . . ,  Z2qj); 
j = 1 , . . . , n } ,  where z2ij = - M + 2 M j / n ,  i = 1 , . . . , q ,  j = 0 , . . . , n .  Let  By be the class 
of all subrectangles Cj such tha t  C j A Z j  # O, and denote  it by Bj = {Bl~;lj = 1 , . . . ,  kin}, 
j = 1, 2. Here, rnl~ and rn2n are at  most  n p and nq, respectively. For Zl C Bh,  we define 
V + t * -- t * tk,ll = SUpz~et3,t Z l X t - k . 1  and Vtk,l 1 = infz~ct3q Z l X t _ k _  1. Similarly, for z2 E 13t2, 
we define v + * - " * tk,12 : SUpzueB~2 Z~2 Y t - k - 1  and vtk,~ 2 = l n f z 2 c B t 2  z~2 Y t - k - 1 .  Note t h a t  

+ v + (vtk,h, t,o,t:) and (v~k,h,V~,o,z2) are ~ t_k_ l -measu rab le ,  where ~ , - k  = a((e~-k,  ys); S _< 
t). 

Now for z j  ~ B,,, we have tha t  Ltk((x, y), z) <_ dtk((x, y), z) <_ Utk((x, y), z), where 

+ ) Utk((x ,y) , z )  = I(et -k  < x + v  + )I(~t <y+Vt,o,z2 ) - F ( x + v + , l ,  y + v  + 
- -  t k , l l  - -  ' t--l,12 

+ y) - < < y) 
+ t * t * + F(x  + v +& ,y + Vt,o,t2 ) - F (x  + Z l X t _ k _ l , y  + z 2 Y t -1 ) ,  

and L tk ( (x ,Y) , z )  is the same as Utk((x,Y),Z) withv+tk,lj replaced by vtk,t ~- . On $ 2 N S 3 ,  
we have tha t  

IF(x + v + + , �9 , �9 tk,ll 'Y  + Vt,o,12) -- F ( X  + Z l X t _ k _ l , y  + Z 2 Y t - 1 ) l  

< s u p  OF(x,y)  , . OF(x,y)  v+ , . 
- x,y Ox Ivt+& - Z l X t - k - l l  + sup x,y Oy t,Ol2 -- z 2 Y t - l l  

= o ( p l / 2 n  - 1 )  -t- O(ql/2Tt -1)  ---- o(n-1/2), 

and similarly, 

IF(x + vt%,l~,y + V~,o,z2) - F (x  + zI  X ~ _ k _ l , y  + z~ Y2-1)1 = o ( f t - 1 / 2 )  �9 

Therefore,  we can wri te  tha t  

sup 
O~_r,s<n,zj EZj , j ~  1,2 

n 

n-1/2 E d tk( (xr ,ys ) , z )  
t = k + l  

I($2 ~ $3) <_ IIIl,~k + III2nk + 0(1), 

where 

I I I lnk  = 

I I I2nk = 

max max 
1 < l j  ~ m j n  , j = l , 2 0 ~ _ r , s ~ n  

max max  
l ~lj <rnj,~,j=l,2 0~_r,s~_n 

n -1/2 f i  

t = k + l  

n 

n-1/2 E 
t=k+l 

+ I(S2 n S3), Vtk,ll , 

e,k((xr, ys), ( % . ,  I(S2 n $3), 
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and 

etk((xl, yl) ,  (x2, y2)) = I(ct-k <_ Xl + x2)IO?t <_ Yl + Y2) -- F(xl  + x2, Yl + Y2) 

+ F ( x l , y l )  - I ( ~ t - k  <_ Xl)I(?Tt ~_ Yl). 

Here, we only prove tha t  I I I lnk  = op(1) since the negligibility of III2nk is similarly 
proven. 

Define 
n 

I I I l n  = m a x  m a x  n -1/2 ~ ~ etk , 
l_~lj ~rnj,~,j=l,20~_r,s~_n t = k + l  

where 

etk := e tk((xr ,ys) ,  + + 

x I IIX~-k-~ - [~nlpll <_ Mnp  1/2, E II g ~ - i  - / ' n l q l l  ___ Mnq 1/2 �9 
i=p+k+l ~=q+l 

Note tha t  {~tk,.~t-k} forms a sequence of mart ingale differences with I~tk[ _< 1 a.s. for 
all t, and 

n I cgF(x ' y) P 3/2M2nU2 E E(e2k I 9r t - k - l )  < sup + sup 
t = k + l  -- x,y C~X x,y 

< B(p 3/2 + q3/2)nl/2, B > O. 

OF(x, y) q3 /2K2nl /2  

Then,  using Bernstein 's  inequali ty for martingales (cf. Shorack and Wellner (1986), 
p. 855) we have tha t  for any A > 0, 

n)~2/2 ) 
P(I~[Ilnk > ~) <: Dn (p+q+2) exp B(p3/2 + q3/2)nl/2 + nl/2)~/3 , D > 0 .  

Since 
P(eta • etk((xr,ys),  + + (vtk,ll,Vt,o,12)) for some t < n on $2 N $3) = 0, 

we have P(I I I lnk  > A) = P(I~[Ilnk > )~) = o(1). This completes the proof. [] 

PROOF OF (2 .5) .  Write tha t  n / ~ k  = nBnk + II~k + I2~k, where 

Ii~k = n / { : ~ 2 k ( x  , y) - S2nk(X, y) }dFnk(x, y), 

[2nk = rt / S2nk(X, y )d{  ~'nk(X, y) - Fnk(X,  y ) } ,  

Fnk(x,y) = (n - k ) - l  y~.t~=k+l I(et_k < x)I(~?t < y), and /~nk(x,y) is the  same as 
Fnk(X, y) with et and Yt replaced by ~t and Or. Since 

I l n  k ~ n sup I S2k (x, y) -- S2nk (x, Y)I <- 2nl/2 sup I S~k (x, y) - S,~k (x, y)], 
x,y x,y 
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it suffices to show that  

(4.11) 

and 

(4.12) 

sup  ISnk(X,  y)  -- S n k ( X  , Y)I ---- o p ( n - 1 / 2 ) ,  
x,y 

I2~k = Op(1). 

First, we prove (4.11). Since sup~,y ISnk(x,y)  - Snk(X,y)l  = op(n  -U2)  by L e m m a  
4.2, it suffices to show that  

(4.13) sup ISnk(x, y) - Snk(x,  Y)I = op(n-1/2)  �9 
x,y 

Write tha t  

(nAn) n l /2{Snk(X ,y  ) -- Snk(X,y)}  

- F~(x ){g~o(y )  - E~o(y)}  

-- ?2--1/2{glnk(X) -- ~ lnk (X)}{g2nO(Y)  -- ~2n0(Y)} 

- n - ~ / 2 { g l ~ k ( x )  - E~k(x)}E2~o(y) 
-- r t -1 /2  { 22nO(Y ) -- ~2nO(Y) }~ lnk (X) ) ,  

where gnk(X,y) ,  s and g2nk(y) are the same as 2nk(X,y),  21nk(x) and $2nk(Y) in 
(4.3)-(4.5) with ~t and 7)t replaced by et and rh. Here, split s y) - S n k ( x , y )  into 
I I lnk  (x, y) + II2nk (x, y), where 

n 

t=k+ l  

+ F(x, y) - I(~_k <_ x)/(~t < y)] 
and n 

t=k+ l  

First, note tha t  supx,~ [II1~k(x, Y)I = op(1) due to (C1)-(C3) and L e m m a  4.3. Next,  
using a Taylor 's  series expansion we have tha t  

oF(x, y) i i 2 n k ( X ,  y)  _ O F ( x ,  y)721/2~t.  Ttl/2/].  -~- ~n(X ' y)  
Ox Oy 

with supx,y I~n(X, Y)I = OF(l). Hence, 

OF(x, y) n l / 2 ~  aF(x, y) ~1/2~ + ~ ( x ,  y) 
(4.15) d~k (x, y) - s (x, y) -- Ox Oy 

with supx,y [~n(X, y)] = OR(l). Similarly, we can show tha t  

o F ~ ( X ) n ~ / 2 ,  * + r  (4.16) gl~k(x) - $1nk(X) = -- OX ~u 

and 
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(4.17) 
g 2 . k ( v )  - E2 .k (V)  --  - OV 

with supx l~ei~(x)l = oe(1), i = 1, 2. Then (4.13) follows from (4.14)-(4.17) and the fact 
that sup~ ISj,~k(X)l = OR(l) (cf. Billingsley (1968), pp. 103-108). 

Meanwhile, (4.12) is a direct result of the equality 

~[2nk : 7~-1/2 f{Tt l /2gnk(X,  Y)}2d{~nk(X, ~/) -- ~nk(X, y)} ,  

(4.9), (4.15) and the fact that supx,u Inl/2S,~(x,y)l = OF(l) .  
argument in (2.5). 

PROOF OF THEOREM 2.2. Define 

HnK,~ :~ 

This establishes the 

with 

and 

Put  

n--2 }--I/2 n--1 
2110 E 94(k/gr~) E 92(k/K'~){(n-klB'~k-M~ 

k=2-n k=l -n  

j = l  

11o ---- H {Fj(uj A u}) - Fj(uj)Fj(u})}2dFj(ujldFj(u}) �9 
j = l  

~  H ~ K .  := 2Vo 
n--2 ~ - 1 / 2  n--1 

E 94(k/Kn)l E g2(k/Kn){(n- Ikl)f3nk - ~/on}. 
k=2-n k-=l-n 

Then, provided 

(4.18) 21}/0n - Mo = Op(n-U~), 

in view of (2.5) we have 

(4.19) /~K~ -- H~K~ = op(1). 

Note that  under the conditions in Theorem 2.2, we have H,~K. 
(1998)), and then by (4.19), 

(4.20) HnK,,- ~ A X(0, 1). 

Furthermore, if it holds that 

(4.21) ~o,  - Vo = o~(1) ,  

N(0 ,  1) (cf. Hong 
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then from (4.20), (4.21) and Slusky's theorem, we have 

i-InK,, d N(O, 1). 

Hence, to establish the theorem, it suffices to show (4.18) and (4.21). 
Put  

s ~) :=  ~;,,(~5 A 4) - 2;~(uj)~5~(~) 
and 

A(us,u}) := Fs(u 5 A u}) - Fs(us)Fs(u}). 

Then it is obvious that  

/fl }fl M~ Mon = j An(uj'us)- H An(uj'u5) dFjn(Uj) 
( j = l  j = l  j = l  

+ f II An(~5,~) d~j~(~5)- H eFs(~5) . 
j = l  j = l  j = l  

From (4.10), (4.11), (4.16) and (4.17), we have that  

2 2 

H dFsn(?'tJ) - H dFs(~J) = Op(n-1/2)' 
5=1 5=1 

and 
2 2 

H s u~)- H An(~, us)= oP(n-'/2). 
j = l  5=1 

Therefore, since 1-I~=l A(uj, u~) is bounded,  we obtain (4.18). 
Meanwhile, note that  

?on Vo -~ - = An(uj'uj ) - A2(uj'u} ) H dFjn(uj)dFjn(@) 
"= j = l  j = l  

+ / H A2(uj'u} ) dF'jn(uj)dT'jn(u})- U dFj(uj)dFj(u}) . 
j = l  j = l  j = l  

Since I-I2=1 A2(uj, u~)is bounded, it can be shown that  

and 

2 2 

I I  dkj~(~)aPj.(~)- H aYj(~j)dYj(~}) Op(n-~/:), 
j = l  j = l  

2 2 

A~(uj,u}) U A2(uj,u}) Op(n--1/2). ~ 2 

j=l j=l 

This establishes (4.21). [] 
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PROOF OF THEOaEM 2.3. As in Skaug (1993), we can write t ha t  for Zs  = 

(Xs, Ys), 

where 

Bnk = ( n -  k) -2 f i  h k ( Z s , Z t )  + OF(n-3~2), Ikl 
s,t=k + l 

f 
hk(zs, zt) = / qk(u, zs)qk(u, z t )dF(u) ,  

and 
{ (~(Xs-k ~ ~tl) -- Fl(~tl)}(I(ys ~_~ ~t2) - F2(~t2)}, 

qk(u, zs) = {I(xs <_ Ul) -- Fl(Ul)}{I(ys-lkl <_ u2) - F2(u2)}, 

Also, we can wri te  tha t  

where {)~ijk, r  

k > 0 ,  

k < 0 .  

(x)  

h k ( z s ,  z , )  = 
ij=l 

are an or thogonal  set of eigenvalues and eigenfunctions of hk (cf. 
Serfling (1980) and Dunford and Schwartz (1963)). Now following essentially the same 
arguments  as in Serfling ((1980), pp. 194-199), one can readily show tha t  

(4.22) ( n B n , - K , . . . ,  nBng)  d ( W - K , . . . ,  ~/VK), 

of which detailed proof  is omi t ted  for brevi ty  since the proof  is r a the r  s tandard .  There-  
fore, we have 

d 
max  nBnk '* max )/Yk as n ---* oc 
Ikl<_g Ikl<_K 

by continuous mapping  theorem,  (4.22) and (2.5). This  completes  the proof, [] 
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