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Abstract. This paper considers the independence test for two stationary infinite
order autoregressive processes. For a test, we follow the empirical process method
and construct the Cramér-von Mises type test statistics based on the least squares
residuals. It is shown that the proposed test statistics behave asymptotically the
same as those based on true errors. Simulation results are provided for illustration.
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1. Introduction

In this paper, we consider the problem of testing the independence of two stationary
time series. For the past two decades, the issue has drawn much attention from many
researchers. For instance, Haugh (1976) proposed an independence test for the errors in
ARMA models based on the sum of squares of residual cross correlations. Later, adopting
his idea, Pierce (1977), Geweke (1981) and Hong (1996) studied the independence test for
two stationary time series. In fact, the method using the cross correlations has been much
popular in the time series context since it is a crucial task to figure out the dependence
structure of given time series in a correct manner, and any model selection procedures
require a step for diagnostics to set up a true model. However, the cross correlation
method merely guarantees the uncorrelatedness of observations and does not ensure
the independence. Moreover, the cross correlation just checks the linear relationship
but cannot find a nonlinear dependence. Therefore, instead of it, here we employ the
empirical process method devised by Hoeffding (1948) and Blum et al. (1961). Their
test statistics essentially fall into the category of Cramér-von Mises (CV) statistics, and
have been applied under a variety of circumstances. Recently, their method has been
adopted by Skaug and Tjgstheim (1993), Delgado (1996), Hong (1998) and Delgado and
Mora (2000) aimed at developing a serial independence test.

In this paper, we focus on the independence test for two stationary infinite order
autoregressive processes. We adopted autoregressive processes since they include the
most popular ARMA processes in time series analysis, and a method based on residuals
usually discards correlation effects. In fact, the infinite order autoregressive process has
been in a central position in the study of the asymptotic efficiency of model selection
criteria (see Shibata (1980), Lee and Karagrigoriou (2001) and the papers therein). For
a test, we construct the CV statistic based on residuals. It will be seen that the limiting
distribution of the residual based CV statistic is the same as the CV statistic based on
the true errors.
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In fact, the CV statistic is designed for testing the independence for a specific lag
k. However, in real situations one should check the independence for several lags, say,
k] < K, where K is a positive integer larger than 1, since the test for only one lag
is not sufficient to ensure the independence between the two times series. To this end,
we consider three types of test statistics. First, we consider the summation of the CV
statistics based on residuals, which Skaug and Tjgstheim (1993) suggested as a test
statistic for testing serial independence. Second, we consider the weighted summation
of the CV statistics which was proposed in Hong (1998) for testing serial independence,
since the summation type test statistic may suffer from severe size distortions as K
increases. Finally, we propose as a test statistic the maximum of the CV test statistics.
We consider this because it is less affected by the CV statistics with large values and
will have more stability compared to other tests. Our simulation study shows that
the method based on the CV statistic with residuals turns out to be suitable for the
independence test of two stationary time series.

The rest of the paper is organized as follows. In Section 2, we present the procedure
for the independence test of two stationary infinite order autoregresive processes. In
particular, we derive the asymptotic distribution of the proposed test statistics. This
task requires extending the result of Lee and Wei (1999) to the residual empirical process
with bivariate time parameters, which may be of independent interest in its own sake. In
Section 3, we report the result of our simulation study. Finally, in Section 4 we provide
the proofs of the theorems presented in Section 2.

2. Main results

Suppose that {X;} and {Y;} satisfy the following difference equations:

oo
Xt—ﬂ—z¢j(Xt—j*H):€t, t‘:la"'vn

j=1
and
o0
Yt—V—ZGj(Yt_j—V):nt, t=1,...,n,
j=1

where (€;,7;) are random vectors with common distribution F, € and 7, are iid r.v.’s
with marginal distributions F and Fj, respectively, and Eef + En} < oo. Furthermore,
both Ay(z) := 1~ 372, #;27 and Ay(z) == 1 - Z;’;l ;27 are assumed to be analytic
on an open neighborhood of the closed unit disk D in the complex plane and have no
zeroes on D. It can be easily seen that the last condition implies

il +16;] < Cp?, C>0, 0<p<]1,

(cf. Lee and Wei (1999)). It is well-known that the AR(00) process covers a broad class
of stationary processes including invertible ARMA processes (cf. Brockwell and Davis

(1990)).
Suppose that one wishes to test the hypotheses

Hp : {X;} and {Y;} are independent. vs. Hj :not Hy.
The above is equivalent to testing

Hy: {€:} and {n;} are independent. vs. H, :not H,
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since the independence between the processes themselves implies that of the error pro-
cesses and the converse is also true (cf. Lee and Wei (1999), p. 247). For testing H, vs.
H,, we consider employing the CV test statistic (cf. Hoeffding (1948)),

n

(n - |k|)_l Z Sik(ﬁi—kﬂ?i), k Z 07

Bnk = i=|ﬁ|+l
(n—kD)~Y > 82 (e, mi—pky), k<O,
i={kl+1
with
(k) 3 Ik < )I(m < p)
t=|k|+1
—(n—-1k)™2 X Ie-x<z) Y Im<y), k>0
(21)  Sni(y) = | o T el
(n— k)™ Y I(ee < @) (p—p < )
t=hl+1
—(n=k)™2 Y Ileg<z) > Imp_k<vy), k<O
{ t={kl+1 t=iRl+1

Note that since verifying the same lag independence itself is not enough to ensure the
independence between two time series, we consider the test statistic based on the empir-
ical distribution of (e;_g, n;). Here, utilizing the similar method of Skaug and Tjgstheim
(1993) and the result of Carlstein (1988), one can show that under Hy for each k,

(2.2) (n—k)Bnx 5 Wy = > A W2y,

l?jzl

where Wik, 1,7 = 1,2,... are iid N(0,1) r.v.’s and \;; are the numbers in Theorem 2 of
Skaug and Tjgstheim (1993). It is well known that A;; = (ijw2)~2 for continuous type
r.v.’s.

In order to test Hg vs. H;, however, true errors should be replaced by residuals since
they are unknown in practice. For this task, we fit finite order autoregressive models to
the observations X1,...,X, and Y1,...,Y,. Let p = p, and ¢ = g,, be certain sequences
of positive integers that diverge to oo and satisfy p>/n — 0 and ¢3/n — 0 as n — oo.
Writing

p
Xe—p= Z¢j(Xt_j —M)+T1t+6t
Jj=1

and

q
Yi:—v= Zej(Yt_j — V) + ror + N4,
j=1

where

o) o0
re= ), Xy —p) and = ) 0;(Yee; - ),
j=p+1 j=atl
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we estimate ¢, = (¢1,...,¢,)" and 6, = (01,...,0,)" by the least squares estimates
¢n = (¢1, . ,¢p)l and On = (91, cee ,Hq)l7 i.e.,

(2-3) ‘?)n = { Z (Xt—l - ﬂnlp)(xt—l - ﬂnlp)/} Z (Xt—l - ﬂnlp)(Xt - ﬂn)

t=p+1 it=p+1
and
n -1 n
(24) 6, = { Y (Y = 0a1)(YVey - f/nlq)’} D> (Yo = 01 (Ye — D),
t=q+1 t=g+1

where X, = (X, ..., X¢e—pt1), Y= (Ys,...,Ys—gs1)’s 1, 7 > 1, denotes the vector in
R™ whose components are all equal to one, and f1,, and 7, are suitable estimates of u
and v. Then calculating the residuals

—~ ~ ~/ ~

€t = Xt — Hn — d)n(-Xt-—l - unlp)
and .,

e =Y: — bp —0,(Yio1 — Dnly),

we define
(n—1k)™t > S (&i-k, i), k>0,
Bng = i=“7czl+1

(n— k)" l%) lgﬁk(é,ﬁi_w, k<0,
i=lk|+

where S,k (z,y) is defined in the same way as Spi(x,y) in (2.1) with €; and n, replaced
by €; and 7;. Throughout this paper, we assume that

(C1) n~1(p® + ¢°)(logn)? — 0 and n?(ppP + qp?) — 0 for all p € (0,1) as n — oo;

(C2) sup, |%Z—)| < 00, and sup, ]%ﬂl < o00,i=1,2;

(C3) n'/%(jtn — n) = Oy(1) and n'/*(0, — v) = Op(1).

The first condition in (C1) implies that the rate of p and g is not so fast; otherwise,
we are in a situation that there are too many parameters to be estimated, while the
second condition requires those to be large enough for a good approximation. A typical
example of p and ¢ is p = ¢ = [C(logn)?] for some C > 0. Then it can be shown that
under Hy, for each nonnegative integer k,

(2.5) Bnk: — Bu = Op(n_l),

proof of which result is provided in Section 4.

However, with By, it is just tested that (e;—g,7;) are dependent for given k. In
order to testing the independence for k’s, one should consider the test statistic based on
more than one Bp’s. If the true errors were known, typically one could consider the
summation type test statistic G, :=n Zsz_ i Bri as Skaug and Tjgstheim (1993) ex-
amined this for testing the serial independence of random observation. In fact, similarly
to Serfling ((1980), pp. 194-199), it can be shown that under Hy,

o0
(2.6) Guk 5 Y AijCij(2K + 1),

1,5=1
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where Cy;(K), 4,5 = 1,2,... are independent chi-square r.v.’s with K degrees of freedom.
Combining (2.6) and (2.5), we obtain the following.

THEOREM 2.1. Assume that (C1)—(C3) hold, and let Gpx = "Zk-_ Bk, where
K is a nonnegative integer. Then under Hy,

Grk Z (ij7)2Ci;(2K +1)  as n — oo,

i,7=1

where C;;(K) are independent chi-square r.v.’s with K degrees of freedom.

Remark. Under the assumption of Theorem 2.1, we have that V,x := ZkK:_ x(n—
k)Bnk has the same limiting distribution as Gk

Although the idea of using the summation type statistic sounds quite natural, Hong
(1998) pointed out that it suffers from severe size distortions as K increases and suggested
a weight sum of the CV test statistic for testing the serial independence. Similarly, in
our set-up, we can also employ weighted sum of Boi's:

n—2

1/2 n—1
gnKn = {2‘70 Z 94(k/Kn)} Z QQ(k/Kn){(n_ k)Bnk - MOn}a

k=2—n k=1-n

where g is a kernel function, {K,} is a sequence of positive real numbers,

Mon = % Zﬁln(gt){l - Fln(gt)}% Zﬁbn(ﬁt){l — Fyn(7s)}
t=1 t=1

and
‘7071 = 2 Z {Fln €s A Et) ﬁ‘ln(gs)ﬁ‘ln(gt)}Q

s,t=1

—2— Z {FQn(ﬁs A ﬁt) = F2n(ﬁs)F2n(ﬁt)}2

with Fin(u) = 130 I(& < w) and Fopn(u) = L1 3°7 | I(; < u). Then we have the
following result, of which proof is provided in Section 4.

THEOREM 2.2. Assume that (C1)—(C3) hold and the function g : R — [—1,1] is
symmetriC continuous at 0 and all except a finite number of pomts with g(0) = 1,
f~ z)2dz < 0o and |g(2)| < C|z]7® as z — oo for some b> L and 0 < C < oo, and

= cn for some 0 < v <1 and 0 < ¢ < o0. Then under Hy, we have

Hox, % N(0,1).

Notice that the truncated (g(z) = I(|z| < 1)), Bartlett (g(z) = (1 — |z])I(|2] <
1)) and Daniell (g(2) = sin(wz)/(nz)) kernels satisfy the above conditions (cf. Hong
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(1998) and Priestley (1981)). As it will be seen in our simulation study, H,x,, cures the
drawback of G, k. )

Now, we propose another test statistic, which is obtained as the maximum of B,;’s,
namely,

M,k = n max B,y.
(k| <K

It will be seen in our simulation study that the maximum type statistic is the most stable
among the test statistics considered here. The proof of the following theorem is given in
Section 4.

THEOREM 2.3. Assume that (C1)-(C3) hold. Then under Hy,

~ d
M,k — Mg := max Wy, as n— 00,
|kI<K

where Wy, is as defined in (2.2) with Ai; = (ijn?) 2.

Remark. The results of Theorems 2.1-2.3 are applicable to the serial independent
test for the autoregressive models. In practice, some may prefer to use ARMA models
instead of infinite order autoregressive models despite the residuals in ARMA models are
harder to deal with in deriving the limiting distribution of the residual empirical process
(cf. Bai (1994)). Since this is not our primary concern, we do not intend to pursue it
here. However, in light of the result of Bai (1994), one can easily guess that the same
results hold in ARMA models.

One may argue that using the autoregressive model approach may cause a model
bias, and the observations themselves must be used in constructing test statistics. But
it is well known that the empirical process for dependent observations has a limiting
distribution depending upon their correlation structure. Therefore, the limiting distri-
butions of the test statistics as in Theorems 2.1-2.3 will depend upon the correlation
structure as well. This will certainly cause a serious trouble when performing the test
in real situations. It may be worthwhile from a theoretical viewpoint to investigate the
limiting distribution of the test statistics, for instance, for strictly stationary strong mix-
ing processes. However, this issue is somewhat beyond the scope of the present paper.
So, we leave it as a task of future study.

Recently, there exists a tendency to release the iid assumption on the true errors
in time series models. To our knowledge, there are few literatures pertaining to the
residual empirical process based on a sequence of martingale differences. Convention-
ally, the functional central theorem for martingales requires higher moment condition.
Therefore, one may expect that Theorems 2.1-2.3 will hold for strictly stationary mar-
tingale differences under fairly mild conditions. But, a caution should be taken since
serial dependence in high order moments, for instance, induced by volatility clustering,
may affect the asymptotic variance (and so the form of the tests statistics) of the tests in
Theorems 2.1 and 2.3. This, however, is not necessarily true for the test in Theorem 2.2.

In the next section, we will study the empirical sizes and powers of the test statistic
based on our asymptotic results.
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3. Simulation results and discussion

In this section we evaluate the performance of the test statistics introduced in Sec-
tion 2 through a simulation study. First, we calculate the asymptotic critical values
of the test statistics under Hg. The figures in Table 1 denote the numbers gx o and
MK,q, such that for & = 0.01,0.05,0.1, and K = 5,10,15, P(Gx > gk,.) = @, and
P(Mpg > mg,a) = o, respectively.

In calculating gx o and mg,q, we followed the same method as Skaug and Tjgstheim
(1993): we calculated the empirical quantiles for each a and K from the 10000 numbers

generated from the truncated r.v.’s. fogl(ijw2)_20ij(2K + 1) and max)k<k Z?;.)gl
(ij7r2)"2W2jk, and repeated this procedure 1000 times.

1,
Here, as in Hong (1998), we also examine the performance of the leave-one-out test

statistics. Towards this end, we define

n ~
(n—k—-1)"1 > S%(&—k %), k>0,
% i=k+1
nk -1 G Q2 (= =~
(n—lkl_l) Z Snk(ei>77i—|kl)7 k<0)
i=|k|+1
where
(n—k-1)"" > T(Ek < E_p)I(fie < i)
t=k+1,t#1
n
— (n —k - 1)_2 Z I(gt_k < E,'_k)
b=k 1,4
x > I <), k>0,
e T S
(n— k] —-1)" > (& <& (Ae—ik) < Miziy)
b= (ki1 1,t54
n
—(n—kl-1)"2 ¥ IE<&)
t=|k|+1,t£1
x 3 I(e—ik) < Tiei))s k<O.
{ t=|k|+1, b5

We denote by é‘; K V,:‘K, H ni,, and M? ;. be the leave-one-out test statistics correspond-

ing to Gk, 174 K, H, K, and MnK, respectively. In this simulation, for all test statistics
considered in Section 2 and their associated leave-one-out test statistics, we calculate
the empirical sizes and powers at a nominal level 0.05. In each simulation, 200 initial
observations are discarded to remove initialization effects. For calculating the empirical

Table 1. Asymptotic critical values of Gg and Mg

Gk Mgk
« 0.1 0.05 0.01 0.1 0.05 0.1
5 0.3731 0.3982 0.4511 0.0892 0.1018 0.1323
K 1 0.6747 0.7070 0.7736 0.1074 0.1205 0.1531

15 0.9707 1.0087 1.0873 0.1187 0.1323 - 0.1669
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size and power, sets of 100 and 300 observations are generated from the following models:

X¢=05X;1+e¢ and Y,=0.5Y;_1 +m,

and
Xt = 0.5Xt_1 + €+ 0-5€t——1 and )/t = 0.5Yt._1 + 1+ O.5’fh_1.

Under Hy, both €¢; and 7, are assumed to be iid standard normal r.v.’s. Meanwhile,
under Hy, we assume that

p:= Corr(X;—2,Y;) = 0.2 and 0.5.

Here we use p = ¢ = [0.1(logn)?] for the AR approximation.

Table 2. Empirical sizes in AR(1) model.

n 100 300
K 5 10 15 5 10 15
Gnk 112 202 .352 066 .070 .108
Vo .088 .100 .126 062 060 .058
AT 104 122 134 056 066 .062
HE 090 100 .106 048 046 .054
a5 098 126 152 044 052 .066
Mk 054 .036 .030 030 026 .026
Grx 120 192 334 074 076 .112
Vi .086 .102 .130 060 .058 .060
26 108 142 .130 052 .072 .064
gE 108 114 114 050 .050 .056
1252 108 120 .142 052 .052 .060
Mk 062 .024 .036 036 .032 020

Table 3. Empirical powers with p = 0.2 in AR(1) model.

n 100 300
K 5 10 15 5 10 15
Grx 226 278  .428 514 .442 410
Vi 174 146 .170 502 .386  .348
ar.. 202 176 .172 546 .416 .330
HE, 336 .208  .266 700 664 628
HD 316 .278  .272 714  .628 588
M,k 158  .094 078 602 480 .392
Gy 176 234 .360 456 .388  .378
Ve 132 108 .114 440 344 304
iy 152 .118 .138 506  .382  .302
H;;f;n 282 242 214 652 .616 .584
a2 260 220 .190 682 590 .536

My 140 .076  .064 .560 414  .356
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The figures in Tables 2-7 indicate the percentages of rejections of the null hypothesis.
Tables 2-7 exhibit the empirical sizes and powers of G, x, Vauk, fIEKn, Hp, | I:I,?Kn,
M,k and their leave-one-out test statistics, where AT K, fIfKn, ﬁfkn denote the test
statistic using the truncated, Bartlett and Daniell kernels, respectively.

From Tables 2 and 5, we can observe that the sizes of all test statistic except M,k
are larger than the nominal size and increases as K increases. However, when n is 300,
all test statistics except Gnx achieved the sizes close to the nominal level.

Tables 3 and 6 and Tables 4 and 7 show the powers of the test statistics under the
alternative with p = 0.2 and p = 0.5, respectively. We can see that all test statistics
produce good powers as either p gets close to 1 or n increases. In some cases, such as
n = 100 and p = 0.2, M, produced lower powers than the others, which is, however,

Table 4. Empirical powers with p = 0.5 in AR(1) model.

n 100 300
K 5 10 15 5 10 15
Gnk 848 824 .856 1 1 .998
Vak 816 .704 .638 1 998 .99
A 860 .734 652 11 .996

HE 976 962 .934 11 1
AP 964 938 .900 1 1 1
M,k 920 .856 .798 1 1 1
Gty 786 .T70 798 1 998  .996
Ve 746 636  .562 1 998  .996
a2k 790 656 .586 11 996
HE 962 932 .890 11 1
a2 944 890 .828 11 1
Mnx 884 784 744 11 1

Table 5. Empirical sizes in ARMA(1, 1) model.

n 100 300
K 5 10 15 5 10 15
Gnk 132 193 .349 057 078 .091
Vak 111 102 114 050 .061 .049
AT, 126 119 .120 082 070 .064
HE, 099 .116 .135 066 .073 .073
aD 114 151 165 070 .075 073
Mk 069 .051 .040 044 037 033
Gty 123 193 327 057 075 .081
Vi 099 .097 .101 053 .056 .046
0t A19 121 111 078 063 .061
e 113 119 a21 062 .080 .075
"2 118 142 .139 060 .075 .075

My .066 .053 .046 .041  .037 .029
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due to size distortions. In the case that n = 300 and p = 0.2, we can see that Mnx

produces better powers than G, x, Vi.x and ﬁ}; K, » and slightly less powers than HEB,

and ﬁ,?Kn.

In fact, in all tests one can observe power losses when K becomes large. In particular,
the powers of V,, i and M,k are remarkably reduced, but both ﬁfK" and H 111)Kn produced
less power losses. Despite we do not report here, we simulated the powers for different
alternatives, for instance, H; : Y; is correlated with X; j: the correlation is 0.2, where
k is taken to be 5, 10 and 15. From this study, we could see that when n is small, e.g.,
n = 100, and the correlation is low, e.g., p = 0.2, M, x has the best powers among all
test statistics when Y; is correlated with X;_ g, but its power is diminished significantly
compared to the others when Y; is correlated with X;_;, | < K. From this result, we

Table 6. Empirical powers with p = 0.2 in ARMA(1, 1) model.

100 300

n
K 5 10 15 5 10 15
Gri 252 .358  .480 538 463  .442
Vo 210 199 .204 517 415 .363
AL, 253 219 .229 557 432 370
HE, 416 341 324 682 659 630
HE, 365 .330 .330 726 648 594
M,k 203 135 .099 617 500 441
G* 208 304 420 480 421 405
Vi 172 160 174 474 373 325
0L 203 190 .203 523 396 339
H2E 339 286 267 646 630 597
a2 291 274 246 689 618 .546
My 160 105 .083 582 465 380

Table 7. Empirical powers with p = 0.5 in ARMA(1, 1) model.

n 100 300
K 5 10 15 5 10 15
Gnk 835 .821 .861 1 1 1
Vak 793 696 .633 1 1 1
HT, 830 729 672 998 998 998
A5, 970  .946 .920 1 1 1
ap. 949 923 .890 1 1 1
M.k 900 .828 .779 1 1 1
Gy 782 745  .806 1 1 1
Vi 752 623 .569 1 998 .998
"0 790 653 610 998 998 998
a2 952 921 883 1 1 1
122 931 .878 .844 1 1 1

My .858 .782 .T17 1 1
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could conclude that in small samples, M,x is somewhat sensitive to a choice of K,
and might produce poor powers with high chance if a very large K is selected. But in
practice, there are no universal ways to choose the best K. Meanwhile, one can notice
that using the leave-one-out test statistics alleviates the size distortions in some cases,
but it also drops powers. Overall, we did not find a solid proof that the leave-one-out
method outperforms the original one in a significant manner.

So far, we have seen the performance of several residual based CV tests. As an-
ticipated, G,k has severe size distortions and the others cure this drawback to a great
degree. In particular, we could see that M, x is the most stable among all test statistics
considered here. From this simulation study, we figured out that for fairly large samples,
the three tests: M, K, I:I,?K and fI,?Kn are all recommendable. However, when the
sample size is small, one should keep in mind that the first test has a power loss problem
as mentioned earlier depending upon situations, and the other two tests have the size
distortion problem. In conclusion, when one prefers a conservative test in small samples,
we recommend to use M. Otherwise, we recommend HZ, and HD,

4. Proofs

In this section, we provide the proofs of the results presented in Section 2. For
brevity, we will consider the nonnegative k case. Before we proceed, we introduce some
notation. Note that the least squares estimates of ¢,, and 6, in (2.3) and (2.4) can be
rewritten as ¢,, = @, + Y1, + O1n + ¢y, and 0, = 0, + 7o, + 82n + Cy,, where

n -1 5
= { Z (Xi-1 = finlp) (X1 ~ ﬂnlp)l} Z (Xt-1 = finlp)T1e,

t=p+1 t=p+1

n ~1 n
61 = { Z (Xt—l - ﬂnlp)(Xt—l - ﬂnlp)/} Z (Xt—l - Ilnlp)ft’

t=p+1 t=p+1

n -1 n
Cin = { > (Xt = iinlp)(Xi1 — ﬂnlp)'} > (Xeot = ndp)(un = 1)

t=p+1 t=p+1
p
j=1

and Yoy, 62, and {,,, are 51m11arly defined. Note that if we set qbn Gp + 610+ C1p
and 0, = 0, + 6q,, + Cans ¢n and @, are the least square estimates of ¢,, and 8,, when
rjt = 0, j = 1,2. Imitating the proof of Lemma 3 of Berk (1974), we can easily show
that under (C1),

(4.1) Ifn — #,1> =0p(n"'p) and  [Bn — 0,]* = Op(n™'q).
(cf. Lee and Wei (1999), Lemma 3.3). If we put
A ~ ~t ~ A~ A 7 A
€= Xi ~ fn — O (X1 — finlp) and  H =Y — 0 — 0,(Y_1 — Dnly),
we can write

& =& — Vin(Xio1 — finlp)  and 7 =17 — Yo, (Y1 — Pnly).
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The following lemma is proven in a similar fashion to Lemma 2.2 of Lee and Wei
(1999)(cf. Lemmas 5.1 and 5.2 of Neuhaus (1971)), and the proof is omitted for brevity.

LEMMA 4.1. Suppose that k is a nonnegative integer, (€},m;) are random vectors
satisfying

n
nV2 N Iy < @) (nf <y)— Flz+ etk — €,y + 7 — 7))
t=kt1

Qp = sup
w?y

+ F(z,y) — I(e—k < 2)I(n: < y)]

= op(1),
and Bjn, j = 1,2, are r.v.’s with Bjn, = op(n='/2). Then if (C2) holds,
nY2 ST (I(ef_p Sz + Bre) () < y+ Bar)

t=k+1
—~ F(z 4+ ek —€f + Bre,y + 1 — nf + Bar)

sup
x’y

+ F(z,y) — I{et—k < 2)I(ne < y)]

=op(1).

LEMMA 4.2. Let k be a nonnegative integer. Suppose that (C1)—(C3) hold. In
addition, assume that

(a) supjn™"/? " [I(&_r < 2)I(A < y) — F(T+ €k — ée—k, Y + T — )
z.y t=k+1

+ F(z,y) = (e < 2)(ne < y)l| = op(1);

(b) sup|n=!/2 Z I(ét—k < z) — Fi(x + €4 — és—i) + Fi(z) — I(e4—k < )]
z t=k+1
=op(1);

(c) sup|n™2 > [I(fe—k < y) — Fa(y + -k — k) + Fa(y) — I(m—k < v)]
Y t=k+1
= Op(l).

Then, under Hy, we have

(42) sup Ignk(x>y) - Snk(xay)l = OP(n_1/2)7
z,Yy

where Spi(-) is the same as Spi(:) in (2.1) with e, and 1, replaced by & and 7.
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PRrROOF. Let
(4.3) Eni(@,y) = (n—B)™M2 > " [I(é-k < 2)I(h < y) - Fl,y)],
t=k+1
(4.4) Erne(@) = (n— k)2 3 Iy < 7) - Fi(a)]
t=k+1
and "
(4.5) Eank(y) = (n = k)72 D" [I(e-k < y) — Fa(y)].
t=k+1

Define gnk(x,y), f:'lnk(m) and ggnk(y) similarly to énk(a:,y), élnk(x) and ffgnk(y) by
replacing é; and #; by & and ;. Using this notation, we can write that

(4.6)  n'2{Spi(z,y) — Snrlz,v)} _
= {n(n — k)" P2 [{Eur(z,y) — En(@,9)} — Fo(y){E1nk(z) — Ernk(2)}
— Fi(z){€2n0(y) = E2no(v)}
=12 E k(@) — Erni(@) HEmo(y) — E2no(v)}
=7V E k(@) — Ernr (@) }ono ()
— 1" Y Esn0(y) — Eano(¥) }ink ().

Since & = & — ¥, (X¢-1 — finlp) and 7y =y — v5, (Y 1—1 — Pn1,), the first term in the
right hand side of (4.6), viz., sup,, ,, |Enk (2, y) —Enk (2, y)| is bounded by Iing+I2nk + I3nk,
where

n

(n=k)72 Y (e < 2)I( < )
t=k+1

Ilnk = sup
x’y

—Flx+e_k—E&—k,y+m— 1)

+ F(x,y) — I(es—x < z)I(n: < y)]

K

n
Iypi, = sup|(n — k)~1/2 Z -k < 2+ Y Xkt — nlp) (B < y
»y t=k+1
+Yon (Y1 = 0nly)) — F(z + €1k — &
+ 7lln(Xt—k—1 - ﬂnlp),y + e — ﬁt
+ 7/271,( Yt—l - Dnlq)) + F(.’E, y)
— (et < x)I(ne < y)|,
n
I3k = sup|(n — k)—1/2 Z [F(z + €t— — 4k + Yin(Xtok—1 — finlp),y +ns — 0t
Y t=k+1

+ 7l2n(Yt—1 - ’inq)) ~Fx+e g —é g, y+mn— ﬁt)] -
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First, note that I1,,; = op(1) due to (a). Next, using (C1) and the arguments used
to prove Lemmas 2.1 and 3.2 of Lee and Wei (1999), we can show that

(4.7) max Yin(X o1 = finlp)| = op(n™/?)
and
(4'8) 1r£1£a<x |‘72n(Yt 1~ anq)’ = OP(n_1/2)7

whose detailed proof is omitted for brevity. The arguments (4.7) and (4.8) with Lemma
4.1 and (a) imply Iank = op(1). Finally, I3, is op(1) from (4.7), (4.8), (C2) and Taylor’s
series expansion. Combining all these results, we have

(4.9) sup |Enk (2, y) — En(z,y)| = op(1).

Then (4.2) is yielded by (4.6), (4.9) and the fact that:
sup Iglnk(ﬂﬂ) - ‘élnk(x)l =op(1),

sup |Eank(y) — E2nk ()| = 0p(1),

and sup, |Emi ()] = Op(1) (cf. Lee and Wei (1999)). O

Notice that the arguments in (b) and (c) hold due to Corollary 2.2 of Lee and Wei
(1999) under (C1)—~(C3). The following lemma is concerned with (a).

LEMMA 4.3. Let k be a nonnegative integer, and assume that (C1)—(C3) hold.
Then, under Hy,

n
Cop = sup|n™2 D" [I(é—k < 2)I(r S y) — F(@ + €1k — €—k, Y + M — 7t)
Ty t=k+1

+ F(z,y) — I(et—k < 2)(ne < )]

= Op(].).

PrOOF. Letting

€ =€ — (¢n hn) (X1 — finlp), Ny =Nt — (én - en)’( Y1 —Dnly),
p
Z(ﬂn_!‘) Z¢j—1 s V:zz([/n_l/) Zgj—l s
7=1

* * *
z :x—l""rw y*:y_Vn7
we can write Cpg < Iink + Ionk, where

n
Tk = sup|n™2 3 [H(ef_ € 0 = roam i)} <" — 1) — Fla* + 1y
.y t=k+41
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— €k — T1,t—k, vt —-np — Tat)

+ F(a*,y") — I{es—x < 7)1 (n, < y")]

?

and
n

Ionk = sup‘n_l/2 > U(et-k <2)I(ne < y) - Fla,y)
Y t=k+1

— e < ") (e < y*) + F(z*,y")]

First, we can see that Io,x = op(1l) in view of Lemmas 5.1 and 5.2 of Neuhaus
(1971). On the other hand, due to (C1), we have that

_ —1/2 _ -1/2
p+IP§atX$n]T1t| op(n™/*) and q+11néa;csn|r2t| op(n=""%)

(cf. Lee and Wei (1999), Lemma 3.2). Therefore, in view of Lemma 4.1, it suffices to
show that

sup [Coy(z,y)| :=sup|n™ % 3" [I(e4k < T+ (b — ¢,) (X tmk1 — fin1p))
x?g x7y t=k+1

x I(nt <y+ (én - Bn)l(Yt_l - lA/nlq))
- F(z + ((Abn — @) (X k-1 — finlp),
Y+ (0 — 6,) (Y1 — Daly))

+ F(z,y) — I{et—k < 2)I(ne < y)]| = op(1).

Let z; and y;, 4,7 = 1,...,n be such that —c0o = 2z < - <z, = 00, —00 =
Yo < -+ < Yn = 00, Fi(z;) = i/n, and Fr(y;) = j/n, where F; and F, denote the
marginal distribution of €; and 7,, respectively. Observe that for any z € (znr, Tn ry1]
and ¥ € (Yns, Yn,s+1), Cop(x,y) is bounded by Ilink + Ilonk + [I3nk, where

n_l/2 Z [I(et"k ST+ (&n - ¢n)l(xt—k—1 - f}'nlp))
t=k+1

.{11 = max
" i=7,7+1,5=8,8+1

X I(me < yj + (Bn = 02) (Y eo1 = Duly))
— F(zi + (¢, — 9,) (X t—-1 — fin1p),
Y; + (On - Bn)’( Yi1- lA/n]-q))

+ F(xzayj) - I(Gt_k S xl)I(nt S y])] )

n
n=1/2 Z [F(J;‘, + (¢n - ¢n)l(Xt—k_1 B ﬂnlp),yj
t=k+1

II2 = max
nk i=r,r+1,j=s,5+1

+(6n — 0,) (Y11 — im1y))
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- F(JZ + (d)n - ¢n)l(Xt——k—1 - ,[lfnlp)v

y+ (én - Bn),(Yt—l - Dﬂlq))]

?

n
_ -1/2 . ) — Flz;y;
Hang =, max  in t_fk_;rl[f(et—k < z)I(m < y5) - Fzi,95)

+ F(z,y) — I(es—k < 2)I(n: < y)]

Using Taylor’s series expansion and the proposition in the Appendix of Lee and Wei
(1999), we can readily show that sup, , [/lonk| = op(1). On the other hand, it follows
from Lemmas 5.1 and 5.2 of Neuhaus (1971) that sup, , [II3nk| = op(1). Therefore, it
suffices to prove that

n

(410) Gy = max In"V2 Y I(ep < 27 + (b, — ) (Xiok-1 — finlp))
== t=k+1

X I(ﬁt < Ys + (én - an)l(Yt—l - ’inq))
- F(IL'T + (&n - ¢n)/(Xt~k—1 - ﬂnlp)a
Ys + (én - gn),(yt—l - },)nlq))

+ F(xr,ys) — I{e—k < zp) (e < ys)]| = 0p(1).

Let v be any positive real number. In view of (4.1), we can choose a positive real
number K, such that P(U3_,S¢) < v for all sufficiently large n, where

1= {ll¢n — &l < M(n™'p)"/2, 1|8, — 6]l < M(n " q)"/?},

n n
o {Z [ Xeor = findpll < an1/2vz Y o1 — Dnlgll < an1/2} )

t=1 t=1

= — {1 < 1/2 — 1/2
o= {11 = il < M) %, max 1Y ics = 1] < Mna)/2 .

Then for A > 0,

P(Ci > X)) < P(Cr > M\N3_18:) + v

n—1/2 Z dtk:((mra yS)> Z)

t=k+1

IA

max > A8 NS; | +
(ogr,sgn,zjezj,j=1,2 102 3 g

where z = (21,22),2; € 2;, j = 1,2, 21 = {z1 € RP;||z1|| £ K},2y = {29 €
RY;||z2|| < K}, and

dir((%,9),2) = I{eg—x <z + ZQX:—k—l)I(nt <y+2z,Y; )
P+ 21X,y +2Y )+ Flz,y) — I(e—x < 2)I(n: < y)

with X} = (n"'p)2(X; — inl,) and Y} = (n"1q)V2( Y — 9, 1,).
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In order to verify (4.10), it suffices to show that

sup n~1/? Z di((zr,Ys), 2)| I(S2 N S3) = op(1)

0<r,s<n,z;€2;,j=1,2 t—k+1

since v can be chosen arbitrarily small.

To this end, we partition the rectangle [-M, M|? in RP by subrectangles generated
by the vertices V,, = {(z115,...,21p;);7 = 1,...,n}, where z1;; = —M + 2Mj/n, i =
L,...,p, 5 =0,...,n. Similarly, we partition [-M, M]? in R? by V; = {(221j,-- -, 224;);
j=1,...,n}, where z3;; = —-M +2Mj/n,i=1,...,¢q,7 =0,...,n. Let B; be the class
of all subrectangles C; such that C;NZ; # 0, and denote it by B; = {By,;1; = 1,..., kjn},
J =1,2. Here, my, and my, are at most n? and n?, respectively. For z; € B;,, we define
v;','c’ll = SUp,,ep,, 21X i k-1 and vy, =inf; ep 21X} ;. Similarly, for 22 € B,
we define ”:1;,12 = SUPz,ep,, 22 Y ;-1 and vy, = inf,,ep, 25 Y7 ;. Note that
(vt",;’ll,v::o,h) and (vgc,ll,vt"oylz) are F;_r_1-measurable, where F;_r = o((€s—,71s); 8 <

Now for z; € By, we have that L ((z,y), 2) < du((z,9), 2) < Uw((z,y), z), where

Uk((,9), 2) = I(es—k <z +vf (e <y+vfy ) — Fl@+oh, ,u+vf,,)
+ F(z,y) — I(es—x < 2)I(n: < )
+ F(z + ”tj;,ll’y + ,U:,-O,lg) —Flr+ 21X} _,_1,y+25Y] ),

and Lk ((z,y), z) is the same as Uy ((z,y), z) with vt“;’lj replaced by Uk, On Sy N S5,
we have that

|F(m+v§c’ll,y+vz0,lz) ~Flz+21X{ 41,y +25Y7 )]

OF(z,y) " OF (z,y) *
< sup oz |U:7c,11 - 21X} 1| +sup “ou |UI0,12 -2 Y} ]
©,y z,y Y

= 0?01 +0(q"*n™") = o(n~1/2),

and similarly,
|F(@ + g4, + Vio0,) = Fle+ 21 X7 1,y + 25 Y1) = o(n™'/?).

Therefore, we can write that

n—1/2 Z dtk((xryys)a Z) I(SQ M SS) < IIIlnk + IIIan + 0(1)7

t=k+1

sup
0<r,s<n,2; €2;,j=1,2

where

n

n=1/2 Z etk((m’!‘7y$)7(’U:]_c,ll7vt-i:07[2))
t=k+1

n
n~1/2 Z ek ((zr, ys)y (vt_k,ll’vt_,o,lg))
t=k+1

I = max max I(S2N Ss),

lgl] Smjn7j=172 0<r,s<n

Iy = max max I(S2 N S3),

1<l;<myp,j=1,20<r,5<n
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and

ew((z1,11), (z2,¥2)) = I{er—k < 21+ 22)I (e <1 +y2) — F(z1 + 22,91 + y2)
+ F(z1,y1) — I{es—r < z1)I(ne < 31).

Here, we only prove that IIIj,x = op(1) since the negligibility of IIIyk is similarly

proven.
Define
n
I, = max max |n~%/?2 E €k,
1<l;Emn,5=1,2 0<r,s<n
t=k+1
where

étk: = étk((x‘ra ys)a (U:]_g’ll ) ,Ut-l:O,IQ)) = etk((x’m ys); ('Ut-l]:;,[l s "’:,—0,12))

t t
XTI > Xkt — finlpll < Mnp'/2, >~ || Yioy — 0n1] < Mng'/?
i=p+k+1 i=g+1

Note that {&;, Fi—k} forms a sequence of martingale differences with || < 1 a.s. for
all ¢, and

n

Y E(E| Fik-1) < sup

t=k+1 .Y

oF
(z,y) p3/2M2n1/2 1 sup q3/2K2n1/2

z,y

N

OF (z,y)
F)

B(®¥? + ¢*m'/?,  B>o.

IN

Then, using Bernstein’s inequality for martingales (cf. Shorack and Wellner (1986),
p- 855) we have that for any A > 0,

ni%/2
_B(p3/2 n q3/2)n1/2 +nl/2)\/3

P11, > A) < Dn®+9+t2 exp ( ) , D>0.

Since
P(éw # ewn((zr,ys), (U;;,ll,vtfo,lz)) for some t < m on Se NS3) =0,

we have P(III1ny > A) = P(ITI1n; > X) = o(1). This completes the proof. [J
PROOF OF (2.5). Write that nBnk = nBpi + Ink + Ionk, where
Lo =1 [ (82%(2,9) ~ S2(0,)}dFos(z,),
T =1 [ S24(0, ) Fui(,9) ~ Fus(@,0)}

For(z,y) = (n— k)P 30 i e < 2)I(n: < ), and Fop(z,y) is the same as
F,i(z,y) with €; and n, replaced by & and ;. Since

Iink, < nsup|S2.(z,y) — S2(2,y)| < 2n!/?sup |Snk(z, y) — Sni(z, ),
$7y z’y
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it suffices to show that

(411) sup |§nk(‘ray) - Snk(x7y)| = OP(n—1/2)7
IVy

and

(4.12) Inng = op(1).

First, we prove (4.11). Since sup,, 1Sk (2,y) — Snk(z, )| = op(n~1/2) by Lemma
4.2, it suffices to show that

(4.13) sup [Snk(z, ) — Snk(z,y)| = op(n™1/?).
Z,Y

Write that

(4.14) VS (x,y) — Snk(z,9)}
= {n(n — &) Y2 [{Ear(z,y) — Enn(2,9)} = Fo(y){E1nn(2) — Ernk(2)}
- Fi(z){€2n0(y) — E2no(v)}
=Y E1nk (@) — Exnk () HE2no(y) — E2no(v)}
=72 €1k () — Ernk(2) }E2n0(y)
—n V2 E50(y) — Eano(¥) ik (@),

where Enk(2,y), E1nk(z) and Eank(y) are the same as f:'nk(z,y)i Ernn(z) and Exnk(y) in
(4.3)-(4.5) with é; and 7, replaced by €; and n;. Here, split £,x(z,y) — Enk(z,y) into
ILnk(z,y) + Ionk(z,y), where

n

Hk(z,y) = (n— k)72 D" [I(ép S 2)I(A < y) = F(& + €1k — -k, Y + 7 — 7t)

t=k+1
+ F(z,y) — I(et-x < ) I(m: < y)]
and n
Ipnk(z,y) = (n— k) /2 Z [F(z + €ei—k — é—k,y + 1 — 1) — F(z,9)].
t=k+1

First, note that sup, , [I11.x(z,y)| = op(1) due to (C1)-(C3) and Lemma 4.3. Next,
using a Taylor’s series expansion we have that
8F("L‘7y) 1/2, = aF(m,y)

Iyni(z,y) = B U T"WVZ + &nl(z,y)

with sup, , [§n(z,y)| = op(1). Hence,

(415)  Eule,y) - Emlary) = - L&Y 120

OF(z,y) nl/2
oz dy

Vo +6(2,0)
with sup, , 16, (2, y)| = op(1). Similarly, we can show that

(4.16) Eunn(®) - Evan(a) = - 201z e ()

and
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(4.17) @m@—&ww=—@%ﬂwﬁq+@M)

with sup, |£in(2)] = 0p(1), 2 = 1,2. Then (4.13) follows from (4.14)—(4.17) and the fact

that sup, |Ejnk(z)| = Op(1) (cf. Billingsley (1968), pp. 103-108).
Meanwhile, (4.12) is a direct result of the equality

Ian - n“1/2 /{nllzsnk(-z'a y)}zd{gnk(xv y) - gnk($7y)}y

(4.9), (415) and the fact that sup, , |n2/2S,1(x,y)] = Op(1). This establishes the
argument in (2.5). 0

PROOF oF THEOREM 2.2. Define

n—2 -1/2
Hox, = {2V0 > 94("3/Kn)} > g (k/Kn){(n — k)Bnk — Mo}
k=2-n k=1-n
with
2
o = [T | [ Bttt - B b )i )
j=1
and )
vo=]1 [/{Fj(uj A uj) — Fj(Uj)Fj(U})}QdFj(uj)dFj(u})] :
Jj=1
Put

n—2 -1/2 4
~12Kn = {2V0 Z 94(k/Kn)} Z gz(k/Kn){(n - ‘ki)énk - MOn}~

k=2-n k=1-n
Then, provided
(4.18) Moy, — Mo = Op(n™'/?),
in view of (2.5) we have

(4.19) Sy, — Hax, = op(1).

Note that under the conditions in Theorem 2.2, we have Hyk, 4N (0,1) (cf. Hong
(1998)), and then by (4.19),

(4.20) Aoy % N(0,1).
Furthermore, if it holds that

(4.21) Von — Vo = op(1),
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then from (4.20), (4.21) and Slusky’s theorem, we have
Hux, 2 N(0,1).

Hence, to establish the theorem, it suffices to show (4.18) and (4.21).
Put

Anlug, 45} i= Fyn(uy A ) = Fjn(u5) Py ()
and
A(ug,uf) = Fj(uj A ug) — Fj(ug) Fj(uj).

Then it is obvious that

Mop — Mon = /{HA (uj,u;) — HA (uJ’uJ)}HdFJn(UJ

J=1
2 3 2
+/HAn(Uj,Uj) Hdan(uJ HdFJ (u;)
=1 J=1 j=1
From (4.10), (4.11), (4.16) and (4.17), we have that

2 2
11 @Fin(u;) = ] dF;(u;) = Op(n=1/?),

j=1 j=1
and

Ap(ujuz) — HA (uj,u;) = Op(n~'/?).
j=1

llzw

Therefore, since H]2‘=1 A(uj,u}) is bounded, we obtain (4.18).
Meanwhile, note that

2 2
%—%=/HAW, - [T 4%us038) [T don(udFincs)
j=1 J=1
2
+/HA2(uj,u;){H Fyn(uj)dFjn(uf) — HdF (uj)dF; (u} )}.
Jj=1 =1 j=1

Since H§=1 A?(uj,u}) is bounded, it can be shown that

2 2
H dan(u]')dan(u;) - H dFJ(uj)dFJ(uS) = OP(n—l/Z),
Jj=1 j=1
and

HA2 (uj, uj HA2(UJ’ u; = O0p(n~1/?),

This establishes (4.21). O
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PrROOF OF THEOREM 2.3. As in Skaug (1993), we can write that for Z, =
(X, Ys),

B =(n—k)"% > hi(Zs,Z;) +O0p(n*?), |k <K,
s,t=k+1

where

hi(zs,2t) = /qk(u,zs)q;c(u,zt)dF(u),

and
a1 22) = { (2o s <) — Fi(w)}{I(ws < us) — F(ug)}, k>0,
) Zs {I(zs < w) — Fi(un) HIWao i < u2) — Fa(u2)}, k<O

Also, we can write that

hi(Zs,20) = D Nijudijr(zs)Bije(ze),

=1

where {Xijx, di;x} are an orthogonal set of eigenvalues and eigenfunctions of hy (cf.
Serfling (1980) and Dunford and Schwartz (1963)). Now following essentially the same
arguments as in Serfling ((1980), pp. 194-199), one can readily show that

(4.22) (nBn_K,...,nBuk) > W_k,..., Wk),

of which detailed proof is omitted for brevity since the proof is rather standard. There-
fore, we have

~ d
max nBuyr — max Wi, as n— oo
k| <K k| <K

by continuous mapping theorem, (4.22) and (2.5). This completes the proof. O
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