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Abstract .  A cointegrated vector AR-GARCH time series model is introduced. 
Least squares estimator, full rank maximum likelihood estimator (MLE), and re- 
duced rank MLE of the model are presented. Monte Carlo experiments are conducted 
to illustrate the finite sample properties of the estimators. Its applicability is then 
demonstrated with the modeling of international stock indices and exchange rates. 
The model leads to reasonable financial interpretations. 
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1. Introduction 

Granger (1981) introduced the notion of co-integration and its use in time series 
analysis. It has then attracted the attention of many researchers, and in particular, 
analysts of economic time series. It is because the idea can be used to justify that  many 
non-stationary economic variables will reach a long run equilibrium. There is a huge lit- 
erature on cointegration. A good introduction to the field is Engle and Granger (1991). 
Banerjee et al. (1993) gave a guide to the literature on cointegration and modeling of 
integrated processes. On the other hand, Engle (1982) introduced the autoregressive 
conditional heteroscedasticity (ARCH) model. It relaxes the usual constant conditional 
variance assumption of linear time series models. Very naturally the model is enticing 
to researchers in finance and economics. It is common sense that  many financial prices 
and economic indicators are volatile and the constant conditional variance assumption 
is impractical. The ARCH model has many extensions, including generalized autore- 
gressive conditional heteroscedasticity, abbreviated by GARCH (Bollerslev (1986)), and 
integrated GARCH (Engle and Bollerslev (1986)), etc. 

For a long time, however, there is not much research work on the joint modeling of 
cointegration and conditional heteroscedasticity. Lee and Tse (1996) discussed the issue 
of testing for cointegration in the presence of GARCH. Their work was based on simu- 
lation and no formal model was proposed. Li et al. (2001) was possibly the first paper 
that  investigated a model which encompasses these two issues together. In their formu- 
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lation, the conditional means of the relevant time series follow a partially nonstationary 
multivariate autoregressive model, which allows its innovations to be generated by a mul- 
tivariate ARCH-type process, which is an extension of Tsay's (1987) CHARMA model. 
They also discussed the estimation of the model by least squares, maximum likelihood 

�9 and reduced rank maximum likelihood approaches. The multivariate ARCH-type pro- 
cess in Li et al. (2001) cannot be extended to capture the persistence of the conditional 
heteroscedasticity. Ling and McAleer (2003) proposed a new vector ARMA-GARCH 
model which can overcome the drawback in Li et al. (2001). 

In this paper, we will develop a partially nonstationary vector ARMA-GARCH 
model. Its applicability will be demonstrated with the modeling of international stock 
indices and exchange rates. Clearly they are highly important in international finance 
and macroeconomics. It goes without saying that numerous economists and financial 
experts publish on these data. We, however, reiterate again that most researchers in- 
vestigate them from the standpoints of cointegration and conditional heteroscedasticity 
separately. There is a lot of empirical evidence that  the presence of GARCH is ubiqui- 
tous in these data, see for example, the survey article by Bollerslev et al. (1992), and 
Bera and Higgins (1993). On the other hand, the empirical evidence on cointegration in 
these data  is rather mixed. 

Extensive s tudy of international stocks dated back to early seventies, in papers 
by Granger and Morgenstern (1970), Grubel and Fadner (1971), and Levy and Samat 
(1970). From that  time to the mid eighties, there were a number of empirical studies: 
e.g., Agmon (1972), and Jorion and Schwartz (1986), showing that there were no inter- 
dependence in international markets. In other words, there was no cointegration. The 
financial implication is that the national stock markets are segmented and hence interna- 
tional portfolio diversification is worthwhile. Note that  these early studies relied largely 
on simple correlation and regression methodologies. In the nineties, however, with the 
financial market deregulation and improvements in information technology, there seemed 
to be more people believing in the interdependence of international equity markets. An- 
other way of saying this is the existence of cointegration is highly probable. Some recent 
papers are Wu and Su (1998), and Gerrits and Yiice (1999). In these papers, more con- 
temporary techniques like vector autoregressive (VAR) models, vector error correction 
(VEC) model (Eagle and Granger (1987)), and Johansen's cointegration tests (Johansen 
(1988, 1992)) were used. For exchange rates data, even greater controversy has been 
reported in the literature. Borthe and Glassman (1987) reported no cointegration for 
several major currencies using the Eagle and Granger (1987) test. Baillie and Pecchenino 
(1991) also concluded with no cointegration in a dollar-pound model using the Johansen 
technique (Johansen (1988)). However, MacDonald and Taylor (1992, 1993) reported 
the presence of the cointegrating vectors using the Johansen technique, while Cushman 
et al. (1996) also concluded the existence of co-integrating vectors in the exchange rates 
of several OECD countries. 

The review above shows that the modeling of financial data has gotten more sophis- 
ticated with the development and application of modern techniques. The purpose of this 
article is to introduce a cointegrated conditional heteroscedastic time series model, which 
is a combination of two important existing models. Its application will be illustrated with 
stock prices data. 

The rest of the paper is organized as follows: Section 2 describes a partially non- 
stationary vector AR-GARCH model and their properties. Section 3 considers the least 
squares estimator. Section 4 considers the full rank estimator. Section 5 considers the 
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reduced rank estimator�9 A small simulation study is reported in Section 6. The inter- 
national stock data and its modeling are discussed in Section 7. Section 8 considers the 
modeling of three exchange rates and Section 9 is the conclusion�9 

2. A cointegrated AR model with conditional heteroscedasticity 

Although many econometricians and financial researchers believe that  conditional 
heteroscedasticity exists in multivariate time series, how to formulate this feature is a 
difficult problem�9 Ling and Deng (1993), Wong and Li (1997), and Li et al. (2001) ex- 
tended Tsay's (1987) CHARMA model to the multivariate cases. These models usually 
have too many parameters so that only some special cases are useful�9 Another mul- 
tivariate extensions of Engle (1982) and Bollerslev (1986) was proposed by Engle and 
Kroner (1995)�9 The general form of Engle and Kroner's (1995) model is quite compli- 
cated. Except for some special cases, many basic properties, such as strict stationarity 
and the positive definiteness of the conditional covariance, are not clear�9 Recently, Ling 
and McAleer (2003) proposed a new vector ARMA-GARCH models. As they argued, 
the vector ARMA-GARCH model seems to be simpler and more reasonable�9 

Suppose that  the m-dimensional  data {Yt} is generated by 

(2�9 Yt = ( I ) l Y t - 1  -I- � 9  -J- ~pY t -p  + s 

(2�9 et = Dt~ t  with H t  = W + A g t - 1  + B H t - 1  

where q)i's are constant matrices; det{(I'(z)} = II - qhz . . . . .  OpzP I = 0 has d < m 
unit roots and the remaining roots are outside the unit circle; rank {O(z)} = r with 
r = m - d; r h = ( r h t , . . .  , rlmt )' is a sequence of independent and identically distributed 

�9 1 / 2  h l / 2 h  2 I (i.i.d.) standard normal vector, Dt  . . . .  dlag(hlt , gt (e2t, , em t  ) , W 
�9 , e ~ m t  ] ,  �9 , . = 

( w l , . . . ,  win) ' ,  H t  = (h i t , . . - ,  hint) ' ,  A = (oLij)rnxrn and B = d i a g ( t l , . . . ,  tim). We call 
models (2�9149 the partially nonstationary AR-GARCH model�9 We also assume that 
each component of the first difference Yt - Yt-1 is stationary�9 The restriction on the 
parameters for this can be found in Johansen (1996)�9 The extension to higher lags in 
(2�9 is straightforward. The results in Ling and McAleer (2o03) indicate that  et is 
strictly stationary and Ee2t < c~ if all the roots of JI - A L  - B L I  = 0 are outside the 
unit circle�9 The sufficient condition for the existence of the higher-order moment of zit  
can be found in the same paper�9 

When all the roots of det{O(z)} = JI - O l z  . . . . .  OpzPJ = 0 are outside the unit 
circle, Yt is stationary if et is stationary. In this case, the asymptotic theory can be 
found in Ling and McAleer (2003). For the partially nonstationary AR-GARCH models, 
we first need to reparameterize model (2.1) as 

(2.3) Wt = CY't-1 + ( ~ W t - 1  + ' ' "  + ~p_ l  Wt -p+l  + 5t, 

�9 p 
. . . .  E i = I  (I)i) " where W t  = Yt - Yt-1, (I)i - E k = i + l  (I)k and  C -(I)(1) --(Ira P 

Following Ahn and Reinsel (1990), let m x m matrices P and Q = p -1  be such that  
Q p ( ~ = 1  (~i )P = diag(Id, F~), the Jordan canonical form of ~--~-i=1 p (Ih. Defining Zt  = Q Y t ,  
we obtain 

Zt  = diag(Id, F ~ ) Z t - 1  + ut  and ut  ---- Q [ ~ W t - 1  -'~- " , " + Op_l  W t - p - 1  -~- ct]. 
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Furthermore ,  let g(z) = (1 - z)-ddet{~(z)}  and H(z) = (1 - z)-d+ladj{~(z)},  we can 
rewrite ut as { 1 } 

~ = I.~ + Q Z e~g(B)-IH(B)  PB~ at = e(B)a~ 
j = l  

p--1  where at = Qet and ~ ( B )  = I,~ + Q Y-~j=I O~g(B)- IH(B)  P B j  = Y ~ - o  rgkBk, in which 

~o = Ira, q2k = O(p k) and p E (0, 1), as in Ahn  and Reinsel (1990). 
Par t i t ion  Q'  = [Q1, Q2] and P = [P1, P2] such tha t  Q1 and P1 are rn x d matrices,  

! I ! and Q2 and P2 are m x r matrices.  Fu r the rmore  par t i t ion  ut = [ult, u2t] such tha t  ult 
! I is d x 1 and u2t is r x 1. Define Zxt = Q1gt and Z2t = Q2Yt, so tha t  

Zlt = Zl t -1  + Uxt and Z2t = P~Z2t-1 + u2t. 

Thus,  {Zlt}  is a nons ta t ionary  d x 1 t ime series with d unit  roots.  However, {Z2t} is a 
s ta t ionary  r x I t ime series if at is s tat ionary.  Th e  ma t r ix  Q~ is the so-called cointegrated 
vector  with rank r,  as in Engle and Granger  (1987). Th e  error  correct ion form of model  
(2.1) can be found in Ahn and Reinsel (1990). 

3. Preliminary estimation 

We first consider the least squares es t imator  (LSE) of the paramete rs  in (2.1). Let  
Y.' W.' * * X t - 1  ~- [ t - l ,  t - l , ' " ,  W;-p+ll' and F = [C, (I) l , . . .  , (I)p_ll. Then,  the LSE of F is 

P (~'-t=l ' '* , -1 n ,. n X t -  1 X t _  1 ) and hence /0 F = WtXt-1)(Y'~.t=l , - = ( E t = l  ctXt-1) " 

(Y~-t=ln Xt_ lX t_ l  ) ,  -x.  Denote  Q* = diag(Q, Im(p-1)), P* = diag(P,  Ira(p-I)) ,  and X~' = 
rz/ W, I O*Xt = [Z~t, U[]', with Ut = t st, t - - l , ' ' ' ,  Wtl-p+2] '. T h e n  

�9 ' t = l  t - -1 t - - l )  
Q ( F -  F)P* = atXt_ 1 ~ X *  X*' 

Denote  D* = diag(D,  V~Im(p_l)), where D = diag(nld, V~IT). As n -a/2 ~tn=_l �9 
! 

S t - l Z l t _  1 : Op(1) (see Ling and Li (1998)), we can show that 

n 1 n l 

Q ( F -  F)P*D* = 1 E a t z l t _ l  �9 - Z l t_ lZl t_ l  
\ n  ~=1 / n~ 

1 E a t U t _  1 E U t - 1  {~!t-1 +Op(1).  
t = l  t = l  

Thus,  the est imators  of the unit  roots  and the  s ta t ionary  paramete rs  are asymptot ica l ly  
independent .  As in L i e t  al. (2001), we can obta in  the following result: 

THEOREM 3.1. If  e! is strictly stationary and Ee~t < co, then 

(F - F ) P * D *  ---+1: P[M,  N],  

= 0 1 / 2 I  i ' l  where M ..a tJo Bd(u)dB,~(u) '} '{Bd(u)Bd(u) 'du}-XaaJ/2~l  1, Bm(u) and Bd(U) = 
f~l/2[Id, Olf~l/2Bm(u) are standard Brownian motions; f~a = coy(at)  = QVoQ', Vo = 



JOINT MODELING OF COINTEGRATION AND GARCH 87 

E(CtE~); |  ~ - c o v ( a l t ) ~ - [ I d ,  Ol~a[Zd, O]'; l~ i i  = [Id, O](Ek~176 ~'~k)[fd, O]'; and v e c ( N )  
is a normal vector with mean 0 and covariance E - ] ( U t _ i U [ _ l  | Im)E(Ut_IU[_ 1 | 

2 -i zm). Q D t Q ) E  (Ut- lU[_l  | 

Let the residuals gt = Yt - X t - I F .  Using gt as the artifical observations of r we 
estimate the parameters in (2:2) by the maximum likelihood estimator (MLE). Denote 
6 = (a' ,  3 ' ) '  with a = (W', vec'(A))' and/3 = (31 , . . . ,  3m)'- The MLE of/~ is 6, which 
maximizes the conditional log-likelihood function 

f i  1 1 ekt  
L(6) = It and It = - ~ log hkt -- ~ hkt 

t= l  k=l  k= i  

where hkt is treated as the function of 6 and et. When et in L(6) is replaced by the 
estimated residuals ft, L(6) is denoted by L(6). Since gt = et + Op(D*-I) ,  it is straight- 
forward to show that the MLE of 6 based on L(6) is asymptotically equivalent to that  
based on the true likelihood L(6), see the proof in Ling et al. (2003) for the univariate 
case. From Ling and McAleer (2003), we know that ~ is v/-~-consistent and asymptoti- 
cally normal if Eet 6 < oo. 

4. Full rank ML estimation 

From Section 3, we know that ~ and/~ are consistent. In fact, ~ is also asymptotically 
efficient, bu t /~  is not. In order to obtain the efficient estimator of F ,  we need to use the 
maximum likelihood method. Rewrite model (2.3) as 

$ 

(4.1) Wt = CP1Zl t -1  + CP2Z2t-1 + r + . . .  + rbp_lWt-p+l + st. 

Denote 30 = vec(CP1), 31 = vec(CP2,@~,. . . ,@p_i) ,  ~0 = vec(CP1), /31 = vec(CP2, 

~ i , -  ^* --,~p-1),* and Q* = diag(Q |  I(p_U~2 ). Then Q*'- lvec(/~ - F )  = I(/)o - 

30)', (~i - 3 i ) ' ] ' .  Let /~ be the MLE of F,  which maximizes the conditional log-likelihood 
function 

i 1 ekt, 
(4.2) L ( F )  = It and It = - ~ log hkt - -~ hkt 

t= i  k=i  k----i 

where ckt and hkt are treated as the function of F and Yt, and 6 is replaced by 8. In 
the following, we use the notation: OF = 0vec(F) ,  where the vec operator transforms 
a matrix into a column vector by stacking the columns of the matrix below each other. 
By direct differentiation, 

Olt _ l OH; D t 2  l _ e~it ~ 
OF 2 OF ~lt  J ' " "  1 - -~mt,] + (Xt  | Im)Dt2r  

OH~ _ i t -  1 
OH~ _ 2(Xt-1 | Im)g;_i A -k ~ B  : 2 ~ - ~ ( X t - k  | Im)gt  k A B  k - i  
OF - ' k=l 

where g~ = d iag(e l t , . . . ,  e,~t). Denote/!)* = D |  = diag(nIdm, v/~I~,~+(p_l)m2). As 
in Ling et al. (2003), we can show that 

D , - 1  =-, 02L(F) 0,'/),-1 q b-gg-F 
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-- _ E D*-I(~ * OH[-1D-aOH*-I 
t----1 OF t 

+ (Xt-1 @ Im)Dt2(X~_l | I '~) /Q* ' / )*- I  + Op(1) 

?z 

= E/~) t - l (~*MtQ*' /7) ; -1  + op(1), 
t = l  

where Mt = (OH[_I/OF)Dta(OHt-1/OF')/2 + (Xt-1 | Im)Dt2(X[_l | Im). 
As in Ling and Li (1998), we can show that  n-1/2D*-IO*OL2(E)/OF05 ' = Op(1). 

Thus, F and 5 can be estimated separately without loss of efficiency. The MLE of F can 
be obtained by the iterative approximate Newton-Raphson relation: 

where F (i) is the estimator at the i-th iteration and /~ (the LSE of F)  is used as the 
initial estimator. Since D*~)*'-lvee(/~ - F) = Op(1), using a similar argument as in Li 
et al. (2001), we can obtain the asymptotic representation: 

--  t ^ - - * - - 1  - - *  - - . t  - - * - - 1  
D'Q* - lvee(F- F) = O Q MtQ O /)*-I~)*OF j + op(1). 

k t = l  

Now partition Q*(Xt-i | Ira) into two parts corresponding to/30 and/31, 

0*(x ,_ ,  | Ira) = (Zl ,_ ,  | 
\ Vt-i | Im ]" 

Furthermore, we can show that, 

" ~  t = l  \N2t] '  
1 t - 1  ] 

[i~=l Dt  ~ t + ( Z l t - l |  N i t  = --~ ( Z l t - i - 1  | I m ) g t A B  i -2 

1 [/__~ 1 ] Dt ~ t+(Ut - l |  N2t = --~ (Ut_i_ 1 | l m ) ~ t A B  i -2 

where ~t (1 ~12t, 1 2 , n_3/2 n = -- " ' ' ,  - - /~rat)  �9 As E t = l  V t - i Z l t - j  -1 = op(1) ,  i , j  = 1,. . .  ,q 
(see Ling and Li (1998)), the cross-product terms in )-~t~l D*- IO*MtO*JD*- I  involving 

Ut-i and Zl t - j  converge to zero when multiplied by n -3/2. Thus, we have 
n 

E ~=~.- 1,z,. iF f ~ . ' D . - 1  z.t to d t~d 
t = l  

diag n ,  2 ' , 1 -m- Z l t - i - l Z l , _ i _ l  | git) + Z l t - l Z l t _  1 | D t , 
ki=l  

n -1 ( g t - i - l g ~ _ i _  1 | Vit) -I.- g t - l g ~ _  1 | D t  2 -~- Op(1), 
t = l  k i= l  
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where V/t = gtABiD;-4BiAgt.  
Using the causal expansion in Ling and McAleer (2003) and following the method 

in Ling and Li (1998), we can obtain the following theorem: 

THEOREM 4.1. Let ~o and ~1 be the full rank MLE obtained from (4.3). 
strictly stationary and E f t  < oc, then 

If  et is 

(a) n ( C - C ) P 1  --+s ~11 {flBe(u)dWm(U)'}'x {j~o1Bd(~t)Bd(tt)t}-l~all/2tltlll; 

(b) x/~(31 - ill) ----~/2 N(0, flu1), 

where B d • aa11/2[/d, o]~l/2gm(lt) and Bin(u) = Vj1/2Wm(~t) are standard Brownian 
motions, (W' m (u), W~  (u) )' is a 2m-dimensional Brownian motion with covariance given 

( V ~  I m ) ,  f~u = Ei~174174  and by Uf~b = u Im ~21 

f~l = E D t  2 + ~-~i~=l El/it. 

When Vt is a constant matrix, ftl = V0 and hence the limiting distribution of C" 
reduces to that given in Theorem 3.1. In the univariate case, Ling and Li (1998) have 
shown that the MLE of the unit root is more efficient than the LSE of the unit root 
when the innovations have a time-varying conditional variance. 

5. Reduced rank estimation 

Using the notation in Section 2, we decompose C = K B  with K = - P 2 ( I r  - 
t ~ f ) ' - -  1 f - ) t  t t r )O21, B Bo] and Bo = " 21 where = (02 , ,  022) and Q h  is r • r,  see 

Reinsel and Ahn (1992). Such a decomposition is unique and B0 is an r x d matrix 
of unknown parameters. For this decomposition, it is assumed that the components of 
series Yt are arranged so that J'Yt is purely nonstationary, where J '  = [0, Id]. This 
assumption was used in Ahn and Reinsel (1990) and Yap and Reinsel (1995). Based on 
this decomposition, model (2.1) can be rewritten further as 

(5.1) Wt = K B Y t - 1  + O{Wt-1 + " "  + r Wt-p+l -}- Et. 

Z * . . * : ! I ) 1  Denote 70 vec(Bo) and 9'1 vec(K,(I'l,  . ,Op-1).  Then, "7 ('7o,9'1 is the vector 
of unknown parameters with dimension b = rd + mr  + (p - 1)m 2. Define 

(5.2) brt*_l = [(J'Yt-1 @ g ' ) ' ,  U;-1 Q/m] ' ,  

where U-t-, -- [(BYt-1)', W{_I , . . . ,  W{_p+I]'. The likelihood function is defined as in 
(4.2), with parameter F replaced by % By directly differentiating (4.2), 

' [ (  ( _ _  -- * !  - - 2  Olt IOH~D_ 2 l e~t~ e ~ t ~ ]  +U~-IDt  ct, 
07 2 07 t ~lt.] " ' "  1 -  hmt,] J 

OH~ _ .' -. OHm_ 1 t-I  
-~7 - 2 U t - l c t - l A + - - ~ 7  B = 2 E u * '  ~* ABk-1  t_lCt_k 

k=l 
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Denote /7)** = diag(nI~d, V/~Ib--rd). As in Ling and Li (1998), we can show that  
n-1/2D**-1(c921/O~/095 I) = Op(1). Thus, 7 and 5 can be estimated separately without 
loss of efficiency. As in Section 4, we discuss only the estimator of y. Again, as in Ling 
and Li (1998), we can show that  

n 

_ _  - * * - - 1  - - * * - - 1  1)**-1  02l f ) * * - i  = __ E D M t D  + Op(1), 
0V07' t=l 

= (7* D-2U *' where 2~It (OH~/Ov)Dt4(OHt/Ov')(];'i-1 + t-1 t t-1. 
Let 0 = [C1,02] be the full-rank MLE of C, where C1 is m x r. Then, using a similar 

method as in Reinsel and Ahn (1992), we can show t h a t / ~  = d I i8 a consistent estimator 
of K of order Ov(n -112) and B0 = ( R ' h ~ l R ) - l R ' f t ~ 1 0 2  is a consistent estimator of 

n ! 
B0 of order Op(n-1), where h~ = n -1 ~ t = l  etet. With this initial estimator, the MLE 
of V can be obtained by iterating the relation: 

( 5 . a )  

[]_1[ 
,~/(iq-1) : , ~ ( i )  q_ ~ / [ t  f i  Olt] 

t = l  ~=@i) t= l  &/J -y=7( ~ ) 

where V (i) is the estimator at the i-th iteration. As in Li et al. (2001), we can obtain the 
asymptotic representation: 

- o . ( 1 ) .  (5.4) 

Let J 'P  = [P21,/~ where/~ i s  d • d and P22 is d • r. Then, J'Yt = [0, Id]PZt = 
P2]Zlt + P22Z2t. Here, J'Yt and Zlt are purely nonstationary, Z2t is stationary, and P21 
is nonsingular. Thus, terms involving Z2t in the first rd components of D**-l(Olt/07) 
will converge to zero, and hence 

j~)**-- 1 

J~lt  

~ 

N 2 t =  

k Olt 
t = l  ~n--1/2]Q2t/ -~- Op(1), 

t--1 

E(P21Zl t_k_l  | A)g t kABk-1 -2 - Dt ~t Jr- (P21Zlt-1 | A)Dt2et, 
k=l  

o o  

E ( U t - k - 1  | Im)g~_kABk-lDt2{t + (Ut-x | ]m)Ot2c t  �9 
k=l  

As  - - 3 / 2  x- 'n  ~ft_iZl t_j_l  : Op(1), i , j  ~- 1, ,q  (see Ling and Li (1998) ) ,  the cross -  �9 ~ m..~t=l - - �9 
product terms in ~t~=l D**-lkT/tL3 **-1 involving Ut-i and Zlt - j  converge to zero in 
probability. Similar to Li et al. (2001), we can show the following result: 

THEOREM 5.1. Let [~o and ;{1 be the reduced-ranked estimators obtained from 
(5.4). Then, under the same assumptions as in Theorem 4.1, 

 AOlA  'A } ' 
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1 }-, 
X ~[ L Bd(U)Bd(U)'du ['~'all/2ff~111P211; 

(b) v~(~l - ~1) -~L N(0, ~ ; ' ) ,  

where ~u = ~--].i=l~176 E(~Yt-i-l~Z't_i_l | + E(~Zt_l~f[_l | DtU), and the other notation 
is defined as in Theorem 4.1. 

As in the full rank MLE case, we can show that, when Vt is a constant matrix, 
the limiting distribution o f / )0  is the same as that given in Ahn and Reinsel (1990). 
Generalizations of our results to the case with a constant non-zero drift parameter p and 
Q~p = 0 in (2.1) is direct. 

6. S imu la t i on  results 

Our simulation experiment considers data  generated from the following two equa- 
tions. 

(6.1) Yt = (I)lYt-1 + et 

(6.2) et = Dtrh with g t  = W + A~t-1 + B g t - 1 .  

These are special cases of equations (2.1) and (2.2) and the definitions of the relevant 
symbols were given in Section 2. We consider two models: 

Model 1. 

(I)1 ~-- 0 .25 0 .75 ] 

(0::) 01) 
0.15 0.1 ' 

Model 2. 

B = 

0.9 0 . 1 )  
(I)l = 0.1 0.9 

(000,) 
W = \0 .01 ]  A = 

' 0.2 O.5 

0.6 0 )  

0 0.7 

 =(02 0) 
0 0.1 

Remark. It is not difficult to see that  the reduced rank parameters for the ma- 

trix 0.25 0 .75]  and 0.1 0.9 are ( - 0 . 2 5 ,0 .25 , -1 )  and ( - 0 . 1 , 0 . 1 , - 1 )  respectively. 

Moreover, in both models, we have 

a n d  

For each model, three sample sizes, n = 300, 500, and 800 are considered. These 
sample sizes can be regarded as small to moderate in financial applications. For Model 1, 
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Table 1. Empirical  means and sample s t andard  errors for Model 1. 

Model L S  F R  R R  

Parameters  Mean SSE Mean SSE Mean SSE 

300 
0.75 0.7421 0.0485 0.7445 0.0373 

0.25 (--0.25) 0.2542 0.0482 0.2531 0.0392 -0 .2528 0.0370 

0.25 (0.25) 0.2519 0.0507 0.2511 0.0374 0.2558 0.0387 

0.75 (--1) 0.7385 0.0504 0.7419 0.0388 --1.0018 0.0301 

0.15 0.2066 0.1025 0.2064 0.1025 

0.2 0.2149 0.0718 0.2163 0.0703 

0.1 0.1264 0.0569 0.1249 0.0554 

0.6 0.5279 0.1196 0.5296 0.1181 

0.1 0.1505 0.0856 0.1504 0.0847 

0.15 0.1811 0.0621 0.1798 0.0617 

0.1 0.1088 0.0568 0.1086 0.0544 

0.7 0.6357 0.1019 0.6366 0.1009 

500 
0.75 0.7440 0.0378 0.7459 0.0285 

0.25 (--0.25) 0.2528 0.0382 0.2524 0.0303 --0.2521 0.0287 

0.25 (0.25) 0.2525 0.0387 0.2517 0.0286 0.2532 0.0297 

0.75 (--1) 0.7432 0.0388 0.7447 0.0303 -1.0002 0.0162 

0.15 0.1813 0.0704 0,1857 0.0740 

0.2 0.2088 0.0549 0.2098 0.0535 

0.1 0.1141 0.0419 0.1125 0,0415 

0.6 0.5594 0.0895 0.5561 0.0906 

0.1 0.1322 0.0617 0.1301 0.0623 

0.15 0.1673 0.0454 0.1661 0.0456 

0,1 0.1029 0.0420 0.1017 0.0411 

0.7 0.6636 0.0724 0.6668 0.0765 

800 
0.75 0.7470 0.0301 0.7477 0.0217 

0.25 ( -0 ,25)  0.2520 0.0301 0.2508 0.0241 -0.2516 0.0221 

0,25 (0.25) 0.2508 0.0321 0.2508 0.0219 0.2518 0.0241 

0.75 (--1) 0.7456 0.0322 0.7476 0.0241 --1.0003 0.0100 

0.15 0.1713 0.0584 0.1699 0.0574 

0.2 0.2054 0.0430 0.2051 0.0428 

0,1 0.1065 0.0320 0.1068 0.0328 

0.6 0.5744 0.0730 0.5756 0.0730 

0.1 0.1024 0.0474 0.1191 0.0470 

0.15 0.1597 0.0373 0.1605 0.0374 

0.1 0.1000 0.0328 0.1002 0.0324 

0.7 0.6785 0.0608 0.6786 0.0617 

the eigenvalues for ~1 are 0.5 and 1, whereas the corresponding eigenvalues for Model 2 
are 0.8 and 1,  so that  both models represent systems of bivariate time series with partial 
nonstationarity. We calculate the least-squares (LS), full-rank (FR) and reduced-rank 
(RR) estimates for each possible combination of model and sample size. The number 
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Table 2. Empir ical  means  and  sample  s t a n d a r d  errors for Model 2. 
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Model L S  F R  R R  

Paramete r s  Mean  SSE Mean SSE Mean SSE 

300 
0.9 0.8823 0.0552 0.8964 0.0233 

0.1 ( - 0 . 1 )  0.1059 0.0437 0.1028 0.0176 --0.1028 0.0228 

0.1 (0.1) 0.1091 0.0562 0.1008 0.0237 0.1030 0.0177 

0.9 ( - 1 )  0.8889 0.0447 0.8958 0.0181 --0.9994 0.0463 

0.04 0.0419 0.0110 0.0422 0.0111 

0.6 0.6043 0.1177 0.6004 0.1140 

0.1 0.1375 0.0876 0.1388 0.0905 

0.2 0.1826 0.0864 0.1832 0.0870 

0.01 0.0101 0.0036 0.0103 0.0036 

0.2 0.2006 0.0455 0.1966 0.0442 

0.5 0.4919 0.1073 0.4880 0.1055 

0.1 0.1093 0.0626 0.1071 0.0625 

500 
0.9 0.8894 0.0457 0.8972 0.0169 

0.1 ( - 0 . 1 )  0.1040 0.0379 0.1008 0.0133 --0.1017 0.0173 

0.1 (0.1) 0.1052 0.0455 0.1009 0.0171 0.1015 0.0128 

0.9 (--1) 0.8926 0.0377 0.8982 0.0134 -0 .9992  0.0263 

0.04 0.0414 0.0084 0.0413 0.0084 

0.6 0.6028 0.0978 0.6011 0.0941 

0.1 0.1207 0.0639 0.1229 0.0681 

0.2 0.1839 0.0717 0.1863 0.0721 

0.01 0.0100 0.0027 0.0101 0.0027 

0.2 0.1995 0.0364 0.2009 0.0360 

0.5 0.4891 0.0829 0.4880 0.0833 

0.1 0.1052 0.0492 0.1051 0.0498 

800 
0.9 0.8931 0.0364 0.8979 0.0134 

0.1 ( - 0 . 1 )  0.1049 0.0361 0.1005 0.0104 -0 .1018  0.0136 

0.1 (0.1) 0.1036 0.0342 0.1012 0.0134 0.1012 0.0102 

0.9 ( - 1 )  0.8932 0.0341 0.8990 0.0104 - 1.0001 0.0151 

0.04 0.0413 0.0068 0.0411 0.0069 

0.6 0.6014 0.0805 0.5986 0.0810 

0.1 0.1100 0.0498 0.1109 0.0504 

0.2 0.1884 0.0612 0.1920 0.0619 

0.01 0.0099 0.0022 0.0099 0.0022 

0.2 0.2028 0.0279 0.2018 0.0272 

0.5 0.4949 0.0679 0.4947 0.0680 

0.1 0.1002 0.0391 0.1009 0.0391 

o f  r e p l i c a t i o n s  f o r  e a c h  c o m b i n a t i o n  is 1000.  T h e  e m p i r i c a l  m e a n s  a n d  s a m p l e  s t a n d a r d  

e r r o r s  o f  t h e  e s t i m a t e s  o f  M o d e l  1 a n d  M o d e l  2 a r e  c o m p u t e d  a n d  l i s t e d  i n  T a b l e  1 a n d  

T a b l e  2 r e s p e c t i v e l y .  

F r o m  T a b l e s  1 a n d  2, t h e  f o l l o w i n g  p r o p e r t i e s  a r e  n o t e d .  F i r s t ,  t h e  f u l l - r a n k  a n d  
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reduced-rank estimators are better than the least-squares in terms of bias and efficiency. 
The efficiency improvement should probably be emphasized. Note that in Table 2, the 
sample standard errors of the ~I matrix from least-squares estimates are at least double 
those of the full-rank and reduced-rank. The reason is that in FR and RR estimates, 
we have taken care of the conditional heteroseedasticity in the data, which are neglected 
in the LS estimates. Such a big difference in the standard errors may cause problem in 
statistical inference about the parameters. Secondly, there is not much difference between 
the FR and RR estimates, in terms of both bias and efficiency. The same observation 
was made by Ahn and Reinsel (1990) and Li et al. (2001). However, as argued by Ahn 
and Reinsel (1990), the reduced-rank model may provide better forecasting performance. 

7. An example: Standard and Poor's (SP500) and Sydney's All Ordinary (AO) indices 

To illustrate the presence of both co-integration and GARCH, we consider the SP500 
and the AO indices during the period January 1993 to June 1997. There are 1136 
observation's for each series. The two series are of different magnitude, with the mean 
of AO series about 3.5 times that  of SP500. To get a graphicM understanding of the 
data, we multiply the SP500 series by 3.5 and plot it with the AO series in Fig. 1. 
It is interesting to observe that  the two series looked quite different in the first 400 
observations or so, but they show rather clear co-movements in roughly the last 200 
observations. 

This can be interpreted by the idea of cointegration, i.e., the two series are reaching 
an equilibrium near the end of the period. To explore their variance structures, we 
consider their first differences. The first differences of the two raw data series are shown 
in Figs. 2 and 3 respectively. Now it is quite clear that  SP shows more conditional 
heteroscedasticity than AO. The SP graph shows small fluctuations at the beginning 
and larger fluctuations near the end. The AO graph does not show such behavior. We 
then fit a GARCH (1, 1) model to the individual return series, i.e. first difference of logs 
times by 100. Let Zt be the return series. We find Zt = at and at is first order white 
noise. Let E ( a  2 I ff2t-1) --- 60 + 61a2t_1 + f lht -1 ,  and the results for the two series are 
summarized Table 3, with values in brackets being standard errors. For convenience, 61 

3000 - . ~  

2500 - 

a ~/, All Ordinary ~ ,~ 'L , t~  

2000 - ' " '~ ~ 'f~ /~'", f'~ 

1500 - 
I I [ I I 

Index 200 400 600 800 1000 

Fig. 1. Time plot of SP500 (transformed) and All Ordinary series. 
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1 0 -  

o -  

-10 - 

-20 - -  

Index 

F i g .  2. 

I I I I I 

200 400 600 800 1000 

Time plot of first differences of SP500 series. 

5 0  - 

0 - -  

6 

-50 - 

I I I I I 

Index 200 400 600 800 1000 

Fig. 3. Time plot of first differences of All Ordinary series. 

Table 3. 

50 51 fl 
SP500 0.009 (0.0046) 0.0483 (0.012) 0.9329 (0.0177) 

All Ordinary 0.1875 (0.167) 0.0716 (0.0299) 0.5991 (0.2875) 

and fl will be called the A R C H  and G A R C H  coefficients. 
Note tha t  using t-rat io of 2 as yardstick, the parameters  in the G A R C H  models are 

significant. 

To check the presence of co-integrat ion in the two series, we use Johansen ' s  test  
from the package CATS in RATS (Hansen and Juselius (1995)). Note tha t  like the 
Dickey-Fuller test, Johansen ' s  test could be inefficient in the presence of G A R C H  (see 
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Table 4. SP500 and All Ordinary indices: I(1) analysis using the Johansen test. 

Upper 90% critical value 

Eigenv. L-max Trace H0 : r m - r L-max Trace 

0.0113 12.90 15.70 0 2 10.60 13.31 

0.0025 2.80 2.80 1 1 2.71 2.71 

Eigenv., 

H0, 
L-max, 

Trace, 

eigenvalues corresponding to the maximized likelihood function 

hypothesis about  the cointegrating rank r 

the likelihood ratio test statistic for testing r cointegrating vectors 

versus the al ternative of r -t- 1 cointegrating vector 

the likelihood ratio test statistic for testing the hypothesis of at most r 

cointegrating vectors 

for example Sin and Ling (2004), Ling and Li (1998), and Ling et al. (2003)). There is 
one cointegrating vector found. See Table 4. 

Thus the preliminary analysis shows that  it is worthwhile to consider a conditional 
heteroscedastic model for the data. We try to model the centred data of the log prices. 
The centred data are also multiplied by 100. It is quite well-known that  the observation 
equation of stock prices contains a lag-1 term at most. Thus a first order model for (2.1) 
is tried. If Ylt  and Y2t are the transformed data for the SP500 and All Ordinary indices, 
then our model is 

Y t] r r \Y2t-i/ + 

o) 
+ t32 \ h 2 t - 1 ] "  

( (~11 ~12 / "  R e c a l l  C = q 5 -  I a n d  C = ( : 1 ) ( 1  b). T h e  results of the fu l l  
Let �9 = \ r  r 

/ 
rank and reduced rank estimation are summarised in Table 5. 

Using a t-ratio of 2 as a yardstick again, it is interesting to observe that  the volatility 
of the SP index is driven by itself but not the AO index. Note that  a12 is not significant. 

On the other hand, the volatility of the AO index is driven by the SP index but not 
by itself. This is because a21 is significant but a22 is not. Li et al. (2001) considered 
a cointegrated model with diagonal ARCH. The present example shows the need of a 
non-diagonal GARCH model. It should also be emphasized that  both a22 and ~32 are 
not significant. This is an intriguing observation. In the univariate GARCH model, the 
AO index's volatility is driven by itself, since the ARCH and GARCH coefficients are 
significant. This is not true now. The change can be from the effect of cointegration, 
the ARCH effect from SP500 index, or from both. We shall come back to this point in 
the next example. 

Finally, the likelihood ratio test for no GARCH versus GARCH is highly significant. 
The log-likelihood for the constant variance model is -949.962, which is much smaller 
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Table 5. Full rank and reduced rank estimates of parameters  SP500 and All Ordinary indices. 

Parameter  Full rank Reduced rank 

r 1.0017 (0.0023) 

r 0.0054 (0.0037) 

r -0.0019 (0.0025) 
r 0.9902 (0.0044) 

aol  0.0665 (0.0307) 0.0669 (0.0308) 

Otll 0.1173 (0.0404) 0.1189 (0.0407) 

a12 0.0046 (0.0182) 0.0048 (0.0183) 

/31 0.8693 (0.0426) 0.8680 (0.0429) 

ao2 0.7154 (0.1648) 0.7168 (0.1639) 

as]  0.4026 (0.1075) 0.4021 (0.1073) 

O~22 0.0708 (0.0588) 0.0715 (0.0589) 

/32 0.0870 (0.1652) 0.0854 (0.1643) 

a l  0.0013 (0.0022) 

(0.0025) a2 0.0055 

b -1.7752 (0.4929) 

Loglikelihood -916.828 -916.948 

Note: the values in brackets are the  s tandard errors. 

than the two conditional heteroscedastic model. 

8. Three exchange rates 

8.1 Preliminar~y analysis 
The data  in this example are the daily closing rates of the Japanese Yen (Yen), 

German Mark (Mark) and the UK Sterling (Ster) against U.S. dollars during the period 
May 5, 1986 to June 5, 1995. For each series, there are 2354 data. Descriptive statistics 
of the three return series, i.e. first difference of logs, are shown in Table 6. 

From Table 6, we observe that the kurtosis of Yen is larger than the other two 
exchange rates. 

Next, we fit GARCH (1, 1) models to the individual return series. To avoid unnec- 
essary numerical problems due to small variance, they are again multiplied by 100. All 
three individual series can be described by the same model, i.e., Zt -- at, at is the first 
order white noise such that 

E(a2t ] ff!~t-1) : ht  : (~o -[- 51a2t_l + 13ht-1. 

Estimation results are summarized in Table 7. 
Similar results have been widely reported in the literature. Both 51 and ~ are 

significant in all cases and 51 +/3  is close to 1. Test for cointegration is the final step 
in the preliminary analysis. The Johansen test as implemented in Hansen and Juselius 
(1995) package is used again. In parallel with our earlier transformation, the raw data  
are logged, centered and then multiplied by 100. There is no cointegration detected and 
the results are shown in Table 8. 
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T ab l e  6. D e s c r i p t i v e  s t a t i s t i c s  o f  r e t u r n s .  

Yen Mean  Std Dev M i n i m u m  M a x i m u m  Sum Variance Skewness Kur tos i s  
-0 .00028128 0.0069645 -0 .045473  0.039550 -0 .66185  0.000048504 -0 .26207  6.39885 

Mark Mean  Std Dev M i n i m u m  M a x i m u m  Sum Variance Skewness Kur tos i s  
-0 .00018689 0.0073068 -0 .032339  0.036088 -0 .43974  0.000053389 0.0048518 4.75041 

Ster Mean  Std Dev M i n i m u m  M a x i m u m  Sum Variance Skewness Kur tos i s  
-0 .000013718 0.0071065 -0 .033163  0.047943 -0 .032277  0.000050503 0.24489 5.78971 

T a b l e  7. 

50 51 
Yen 0.047 (0.0086) 0.103 (0.0158)  0.806 (0.024) 

M a r k  0.038 (0.0079) 0.069 (0.0124)  0 .860 (0.0221) 

S te r  0.023 (0.0046) 0.065 (0.0100)  0 .890 (0.0155) 

N.B.  Va lues  in s m a l l  b r a c k e t s  a re  s t a n d a r d  er rors .  

T a b l e  8. 

E i g e n v  L - m a x  T r a c e  H o : r  p - r  L - m a x 9 0  T r a c e  90 

0.0044 10.27 15.72 0 3 13.39 26.70 

0 .0023 5.41 5.46 1 2 10.60 13.31 

0 .0000 0.04 0.04 2 1 2.71 2.71 

8.2 Further analysis 
Up to now, there seems to be nothing very unusual. It confirms some earlier reports 

of no cointegration in exchange rates. We know that there were several important eco- 
nomic and political events in the early nineteen nineties. The economic bubble in Japan 
started to blow up and the communist countries in Europe toppled one after the other. 
With this in mind, we divide our data into roughly two equal parts. The first part is 
from May 5, 1986 to December 31, 1990, and the 2nd part  is from January 2, 1991 to 
June 5, 1995. The two parts consist of 1204 and 1150 data, respectively. Descriptive 
statistics for the two parts are shown in Table 9. 

It is clear that the kurtosis of the series in the 2nd part  is in general larger than that 
in the first part, meaning that the conditional heteroscedasticity is larger. As before, we 
now test for cointegration. Results are shown in Tables 10(a) and 10(b). 

From Table 10(a), by Johansen's test using a 5% significance level, there is clear 
cointegration. Note that both the L-max test and the trace test reject the Ho of no 
cointegration. From Table 10(b), we see that  the L-max test and the trace test are 
insignificant at 5% level. We thus conclude that there is no cointegration. There is 
a plausible explanation emerging from Tables 9 and 10. Conditional heteroscedastic- 
ity and cointegration in exchange rates may be striving for a delicate balance. When 
conditional heteroscedasticity is strong, cointegration will be weak, and if conditional 
heteroscedasticity is weak, then cointegration may prevail. On the other hand, as the 
two are related, it is reasonable to fit the data  with a partially stationary vector AR- 
GARCH model. Models for the full data  and the 2nd part of the data are tried. The 
model is defined as in (2.1)-(2.2). 
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Table  9(a).  Descr ip t ive  s ta t i s t i cs  of  r e tu rns ,  1986-1990. 
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Yen1 Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis 
-0.00016396 0.0070326 -0.030104 0.039550 -0.19724 0.000049458 -0.027654 5.49386 

Mark1 Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis  
--0.00032070 0.0068636 --0.028593 0.032256 --0.38580 0.000047109 --0.095485 4.51995 

Sterl  Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis  
--0.000188802 0.0067203 --0.027287 0.027795 --0.22619 0.000045162 0.13162 4.88755 

Table  9(b).  Descr ip t ive  s ta t i s t i c s  of  r e tu rns ,  1991-1995. 

Yen2 Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis  
-0.00039855 0.0068939 -0.045473 0.037274 --0.45793 0.000047526 -0.52725 7.41425 

Mark2 Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis  
-0.000046660 0.0077472 -0.032339 0.036088 -0.053612 0.000060019 0.066136 4.78591 

Ster2 Mean Std Dev Minimum Maximum Sum Variance Skewness Kurtosis  
0.00017280 0.0074898 -0.033163 0.047943 0.19855 0 .000056097  0.31372 6.28681 

Table  10(a). Co- in tegra t ion  tes t  for the  first p a r t  da ta ,  1986-1990. 

Eigenv L - m a x  Trace H0 : r p - r L - ma x95  Trace 95 

0.0171 20.76 37.64 0 3 17.89 24.31 

0.0079 9.59 16.89 1 2 11.44 12.53 

0.0060 7.29 7.29 2 1 3.84 3.84 

Table  10(b). Co- in tegra t ion  tes t  for t he  second p a r t  da ta ,  1991-1995. 

Eigenv L - m a x  Trace Ho : r p - r L - ma x95  Trace 95 

0.0124 14.35 22.52 0 3 17.89 24.31 

0.0070 8.08 8.17 1 2 11.44 12.53 

0.0001 0.09 0.09 2 1 3.84 3.84 

Results  for the full da ta  are: 
Loglikelihood = - 938.22 

= 

= 

, = 

0.9975(0.0014) 0.0013(0.0024) -0.0027(0.0020) 
-0.0018(0.0015) 0.9988(0.0026) -0.0038(0.0022) 
-0.0032(0.0014) 0.0039(0.0025) 0.9947(0.0021) 

0.0525(0.014), 0.417(0.0088), 0.0228(0.0052)]' 
0.1048(0.0171) 

0 
0 

"0.7869(0.0338) 
0 
0 

0 0.0053(0.0059) 

0.0663(0.0122) 0.0054(0.0092) 

0.0001(0.0073) 0.0644(0.0112) 

0 0 

0.8523(0.0209) 0 

0 0.891(0.016) 



100 HEUNG WONG ET AL. 

N.B.I: Values in small brackets are standard errors. 
N.B.2: The BHHH algorithm is used in the maximum likelihood estimation. 
N.B.3: Small negative values in the A matrix are set to zero. 
Results for the 2nd part of the data  are: 
Loglikelihood = -555.29 

[ 0.9961(0.0029) 0.004(0.0054) -0.0066(0.0043) - 

~)=  /0.0066(0.0035) 0.9849(0.0065) 0.0063(0.0054) 

L 0.0002(0.0036) -0.0078(0.0067) 0.9988(0.0058) 

-- [0.0809(0.0264), 0.081(0.0257), 0.0346(0.0091)]' 

_ -  

! 0.1361(0.0312) 0 0.0083(0.0094) 

0 0.0671(0.0243) 0.0208(0.0208) 
0 0 0.1021(0.0186) 

0.6947(0.0736) 0 0 
0 0.7816(0.0504) 0 

0 0 0.8399(0.0273) 

Following a similar argument as in Section 7, we fit the ordinary AR1 model to the 
full data and the data  in the second part. 

Results for the full data  are: 
The loglikelihood value is - 1126.68. 

0.9979(0.0015) 0.0038(0.0026) -0.0042(0.0023)'~ 

= =0.0013(0.0016) 0.9992(0.0027) -0.0038(0.0024) / " 

-0.0023(0.0016) 0.0015(0.0027) 0.9951(0.0023) ] 

Results for the data  of the second part are: 
The loglikelihood value is -657.88. 

[0.9962(0.0031) 0.0056(0.0058) -0.008(0.0047)) 

~)=  10.0065(0.0035) 0.9848(0.0064) 0.007(0.0053) . 

\0.0052(0.0034) -0.0161(0.0062) 1.0032(0.0051) 

Therefore, for the full data and the second part data, the likelihood ratio statistic for the 
presence of GARCH in the AR1 model are 376.92 and 102.59 respectively. Obviously 
both statistics are highly significant. Also note that  for the full data, the standard 
errors of the parameters in the observation equation are uniformly smaller than their 
counterparts in the linear AR1 model. This suggests asymptotically we have smaller 
confidence intervals and hence better power in statistical inference. 

The same model is tried with the data in first part. There are no convergent 
estimates. A possible explanation is that there is not much GARCH effects in the data  
with the presence of cointegration, as in the stocks example. The model is misspecified, 
so there is no convergence when we try to fit a vector GARCH model. To verify the 
conjecture, we fit the three parts by least squares and then use the estimated squared 
residuals to test for ARCH disturbances, using the Lagrange multiplier test suggested 
by Engle (1982). The procedure is as follows. 



JOINT MODELING OF COINTEGRATION AND GARCH 

Table 11. 

1 2 3 

Yen 

First  18.82" 32.91" 37.60* 

Data  Second 28.22* 28.32* 30.55* 

Port ion Whole 23.52* 25.86* 28.20* 

Mark 

First  0.85 4.70 5.07 

Data  Second 21.17" 28.21" 28.22* 

Port ion Whole 11.76" 18.81" 19.45" 

Ster 

Firs t  0.28 0.76 2.35 

Data  Second 14.11" 32.09* 35.44* 

Port ion Whole 9.41 39.97* 46.06* 

N.B. * denotes a value significant at  5% level. 
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1. Fit the model 
Yt = @Yt-i + ~t. 

Estimate @ by least squares. Then gt = Yt - (~Yt-1 as the estimated residuals, and 

& = (~It, ~2t, ~3t)'. 
2. As indicated in Engle ((1982), p. 100), we regress g2 t on a constant and p lags and 

2 Here n is the sample size and R 2 is the coefficient of determination. test n R  2 as a Xp. 
Similar tests are constructed for g~t and g]t. In the study, we try with the values p = 1, 
2 and 3 and the results are summarized in Table 11. Entries in the table are n R  2 values 
from the regressions. 

The values are consistent with our belief. In the first half of the data, only Yen 
has conditional heteroscedasticity; whereas for the second part  of the whole data, all 
the exchange rates have conditional heteroscedasticity. It is thus worthwhile to redo the 
estimation for the first half of the data, letting Yen to be conditionally heteroscedastic 
and the other two to be conditionally homoscedastic. It is interesting that  the iterations 
now converge and the results are reported below. 

Loglikelihood = - 398.79 

0.9833(0.0039)-0.0091(0.0042) 0.0207(0.0061) 

8 = - 0 . 0 0 6 1 ( 0 . 0 0 4 0 )  1.0014(0.0042)-0.0021(0.0063) 

-0.0035(0.0039) 0.0097(0.0041) 0.9915(0.0062) 

= [0.0881(0.0216), 0.4685(0.0191), 0.4481(0.0183)]' 

"0.1182(0.0253) 0 0 ]  

o o o  

0 0 0  

/ 3 =  0.7069(0.0548)00 000i] . 

From Johansen's test in Table 10(a), there should be two unit roots and one coin- 
tegrating vector for this data set. Using the reduced rank estimation in Section 5, the 
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coin tegra t ing  vector  is found to be  [1.37, 0 .27 , -1 .03]  r. 

9. Conclusion 

A coin tegra ted  vector  A R - G A R C H  mode l  is p roposed  to  inves t igate  co in tegra t ion  
and  condi t ional  he teroscedas t ic i ty  s imultaneously.  Leas t  squares  and  m a x i m u m  likeli- 
hood es t imat ion  of the  model  p a r a m e t e r s  are presented.  In  a set of s tocks da ta ,  we 
observe t ha t  when  cointegrat ion exists, condi t ional  he te roscedas t ic i ty  seems to  be  weak- 
ened. In a set of exchange ra tes  da ta ,  we observe the  p h e n o m e n o n  t h a t  when  condi t ional  
he teroscedas t ic i ty  is s t rong,  cointegra t ion seems to be  weakened,  and  the  converse is also 
true.  This  re la t ionship cannot  be  revealed if the  series are be ing inves t iga ted  for the  two 
proper t ies  separately.  The  p h e n o m e n o n  is interest ing and  it deserves fur ther  work  to 
s t udy  the joint  model ing of cointegra t ion  and  condi t ional  heteroscedast ic i ty .  
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